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Abstract The rotational motion of a charged rigid body (RB) is examined. The RB has a spherical cavity that contains an incom-
pressible viscous liquid. The influence of a gyrostatic moment (GM), constant torques at the body-connected axes, and the action
of the torque of a resistant force, due to the shape of the liquid, are considered. Assuming the liquid has a sufficiently high velocity,
the Reynolds number does indeed have a small value. The regulating system of motion is derived in an appropriate formulation
through Euler’s equations of motion. The averaging method is used to approach a suitable form of the motion’s governing system.
In addition to using Taylor’s method to reach a solution for the averaged equations of motion of the RB, some initial conditions are
considered to approach the required results. The asymptotic approach of the averaged system besides the numerical analysis enables
us to obtain the appropriate results of the problem. To draw attention to the beneficial effects of the different values of the body’s
parameter on the motion’s behavior, these results are graphed through a computer program along with the associated phase plane
curves. These diagrams illustrate the influence of several values respected to the GM, charge, body-constant torques, and resistive
force torque. The stability of the RB’s motion has also been discussed through the represented phase plane diagrams. These results
are viewed as a generalization of prior ones, which have been reported for the scenario of an uncharged body or the absence case of
the GM. The significance of the obtained results is due to its numerous real-world applications in life, such as for spaceships and
wagons carrying liquid fuel.

Abbreviations

RB Rigid body
GM Gyrostatic moment
GSM Governing system of motion
NFF Newtonian field of force
3D Three dimensions
NDE Nonlinear differential equation
D The inertia tensor of the body
Dj ( j � 1, 2, 3) Principal moments of inertia
� � (p, q , r ) The body’s angular velocity vector
λ � (λ1, λ2, λ3) Gyrostatic moment vector
Mc

l (l � 1, 2, 3) Body-constant torque
ζ Positive factor that is influenced by the medium’s characteristics and the body’s shape
p0, q0, r0 Initial value of p, q , r
ε f p , ε fq , ε fr Perturbation terms of system (7)
λ′

3 Small deviation value of λ3

l ′1 Small deviation value of l ′
τ Slow time parameter
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a Amplitude of Eq. (11)
δlm Kronecker delta
P Constant tensor
ρ Density of the liquid
O Origin point
ε Small parameter
h The radius of the spherical cavity
Oxyz Body’s fixed frame
Ox1y1z1 Body’s moving frame
Mr Resistive forces’ torque
ν Coefficient of kinematic viscosity
t Time
D′

1, D′
2 Small deviation values from the corresponding parameters D1 and D2

e Point charge
H Strength of the charge
l′ Distance from e to the origin O
θ Angle between Oz and Oz1

J0 Characteristic value of the principal moments of inertia
ϕ Phase of Eq. (11)

1 Introduction

The rotational motion of a charged RB containing a high-viscosity liquid is examined. It will depend on several complex factors
related to its geometry, material properties, and external environment. Accurate modeling and analysis of these systems can be
challenging but is important for understanding their behaviors in various applications. It is really a complex phenomenon. It has
been examined according to several different cases by distinguished researchers [1–21], due to its applications in the industrial field
for wagons, spaceships, and airplanes. The difficulty of such a problem is due to its governing system of motion (GSM), which is
controlled by nonlinear differential equations (NDEs).

Zhukovskii [2] was the first notable scientist to tackle this issue in 1885, and he studied the motion of a RB with an ideal
incompressible fluid and a completely filled hollow. It is presumed that the fluid’s impact on the RB can be explained by its
relationship to some other bodies, where the centers of mass of the fluid together with those other bodies meet. Many scientific
papers have examined such motions’ stability, including [15–21]. In [3], the coupled system made up of a RB with a hollow
wholly filled with a viscous liquid is investigated. It is demonstrated that for arbitrary initial data and finite kinetic energy, every
associated weak solution converges to a uniform rotation as time increases infinitely. An asymptotic approach was applied in [4] to
examine the inertial movement of a rotating top having a spherical hollow filled with a viscous liquid. The evolution of the system’s
motion in Andoyer’s canonical coordinates was described by a first approximation of this technique. The short-term oscillations
of a spinning top with a cavity fully filled with an incompressible viscous liquid are investigated in [5]. There are no limitations
on how the body’s bulk is distributed or how the cavity is shaped. Aspects of the evolution operator that correspond to the linear
equations’ spectral features are also examined as the system approaches its stability criteria. The influence of a solid cylindrical
body on the surface of a cylindrical cavity is discussed in [6] for gaps between the cavity surface and the body surface that are
zero and nonzero. Hydrodynamic and kinematic properties are obtained. Several analytical and numerical discoveries about the
movement of a system made up of a RB with a hollow cavity filled entirely with a Navier–Stokes liquid that flows devoid of external
influences are presented in [7]. In [8], the authors studied the fast rotation of a non-symmetric satellite that is a viscous liquid in
a bore filled with respect to its center of mass if a gravitational torque is applied to the body. The GSM has been averaged and
analyzed to establish the direction of the kinetic moment’s vector in the orbital coordinate system. Generalization of this issue
has been found in [9] when the force of light pressure is taken into account. The system’s inertial motion consists of a RB with
a stationary point and a viscous incompressible fluid occupying an ellipsoidal bore inside it was examined in [10]. The averaging
method was utilized to get the desired results, demonstrating that the system’s motion tends to be a continuous rotation around
the greatest inertia moment axis, where it is directed along the system’s constant angular momentum vector. In [12], the author
derived a full solution for a dynamically asymmetric satellite with a spherical hollow filled with viscous liquid, in addition to its
stabilization and orientation. In [13], the authors approached a complete study of the rotational motion of a RB under the influence of
body-constant torque and the action of the torque of a resistant force, due to the shape of the liquid, in the absence of the GM and the
electromagnetic field during its movement. An approach was done to develop some technical details for the model of Chernousko
[14], exploring the situation of limited dynamics while providing a coordinate-free representation for some fundamental formulas.
They use fractal geometry to describe the patterns and behavior of fluids at different scales, from the large-scale flow of ocean
currents to the small-scale behavior of individual molecules. The stabilization of such a system was examined in [15]. In [16],
the author used a stabilizing feedback control with system-active program control to get close to an accurate analytical solution
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regarding the category of continuous functions. The potential for stabilizing the monoaxial attitude of an artificial earth satellite in
the orbital coordinate frame is examined in [17] using an electrodynamic control of attitude system. The authors demonstrated a
theorem regarding the asymptotic stability of body-controlled attitude motion. The numerical modeling supports the effectiveness
of the built-in controls for attitude with a distributed delay. In [18], a symmetric RB with a spherical base, a rotor, and a cavity in
the shape of an ellipsoid of rotation is investigated. This cavity is entirely filled with an ideal incompressible fluid in uniform vortex
movement. A geometrical integral, an energy integral, Jellett’s integral, and the integral of constant vorticity are all proven to be
valid for this system. In [19], the issue of stabilization over areas with the planned orientation motion of gyrostat is studied using
the approach of Lyapunov functions and the method of limit equations and systems. In [20], the issue of global stabilization around
a gyrostat’s center of mass is explored. The author used a combination of Lyapunov functions, limit systems, and limit equations to
solve the problem of the universal balancing program motions of a containing gyrostat with fluid. The motion of a body point close
to an attracting center is examined in [21]. It is demonstrated that the area of space where the body point’s trajectory is situated
may be understood as the orbital of an electron in a hydrogen atom. All theoretical findings identified in this study are new since
the problem of body-point motion near an attractive center is being explored for the first time. In [22], the technique of a large
parameter is applied to demonstrate the asymptotic solutions of the GSM for a constrained gyrostatic system. Certain uses for the
RB movement in space have been investigated in [23] when the body rotates under the effects of gravity force, the Newtonian field
of force (NFF), and GM, while the stability of a single-rotor gyrostat rotating freely with an internal moment exists is explored in
[24]. In [25], the author found that the presence of the GM may have a considerable influence on the control of the rotatory motion
of the RB. The small parameter method of Poincaré is used to get the solutions of the GSM, which allows him to gain the required
analytical expressions for time-varying control torques. It is found in [26] that as the RB moved through the electromagnetic field, it
gained a net positive charge which led to an increase in its motion. The reason is due to the interaction between the RB’s charge and
magnetic field. Moreover, it is noted that the body’s motion is dependent on the strength and direction of the magnetic field, as well
as the initial charge of the body. In [27], the impact of the different body parameter values on the motion’s behavior is theoretically
explained for a charged RB containing a viscous incompressible liquid. The rotating RB enclosing a viscous fluid is a conundrum, in
which it illustrates how the body characteristics impact the fluid’s dynamic behavior. In [28], the gyrostatic effect on the dynamical
motion of a symmetric RB around a principal axis is discussed. It is considered that the body has a movable mass associated double
elastically with a located point on the dynamical symmetry axis and a completely spherical hollow cavity with a viscous liquid.

In this paper, the 3D motion of a charged RB containing a spherical cavity is examined, in which it contains a viscous incom-
pressible liquid. It is assumed that the RB spins in the presence of constant torques at the axes related to the body, a GM, an
electromagnetic field that is due to a point charge, and a resisting force torque brought on by the shape of the cavity. Take into
consideration that the liquid is considered to move sufficiently fast, so the Reynolds number undoubtedly has a very tiny value. The
GSM that regulates the motion is derived through Euler’s dynamic equations, and the averaging of the generated system is also
approached to simplify the procedure of the required solutions. In the process of applying Taylor’s method to roughly solve the
issue, some initial conditions are obtained. The influence of external forces and torques on the body’s motion is graphed at several
values of the GM, the resistance force torque, the body constant torques, and the charge. The obtained outcomes in certain graphs
are visualized along with the related phase plane curves to highlight the beneficial effects of several values of the body’s parameters
on the stability behavior of the motion. These findings are thought of as a generalization of those that had previously been reported
for the case of an uncharged body or without the GM, as they show the various trajectories and paths that the RB takes while dealing
with several forces affecting its motion. The obtained outcomes are considered significant because they have numerous practical
uses, such as for liquid fuel wagons and spacecraft.

2 Problem’s description

In this section, the rotational motion of a charged RB containing a spherical cavity of radius h filled with a high-viscosity liquid
with density ρ, relative to its inertia’s center is examined. Therefore, considering two Cartesian frames with the same origin O; the
first Oxyz is a fixed one and the second Ox1y1z1 is a moving frame that coincides with the system’s inertia center and rotates with
the body, see Fig. 1. Let � � (p, q , r ) be the body’s angular velocity vector in which its components are directed along the body’s
principal axes and D � (D1, D2, D3) represents the inertia tensor of the body. Take into account that the body is acted by a GM
λ � (0, 0, λ3) along the same inertia axes, in which its third component λ3 has a nonzero value while the other two components λ1

and λ2 do, the viscosity force, and the electromagnetic field which is owing to the charged body. Moreover, the cavity configuration
has an impact on the constant tensor P � P0δlm ; P0 > 0, (l, m � 1, 2, 3), where δlm points to a Kronecker delta symbol and
P0 � 8 π h7

/
525 [11, 13].

The torques that are related to the body-connected axes are given as

Mc
l � ε2Ml � const, (l � 1, 2, 3), (1)

where ε is a small parameter, as 0 < ε << 1.
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Fig. 1 Portrays the RB’s motion

In this case for a cavity holding a "frozen" fluid, the resistive forces’ torque is supposed to be proportional to the body’s angular
momentum [1, 10, 15].

Mr � −ε2ζD�. (2)

where ζ is a proportionality positive factor that is influenced by the medium’s characteristics and the body’s shape.
Therefore, the GSM of the RB can be written as follows [1, 13, 27]

D1
dp

dt
+ [( D3 − D2 )r + (λ3 − eHl

′2 cos θ )]q � ρ P0 p

νD1D2D3
[D3(D1 − D3)(D1 + D3 − D2)r2

+ D2 (D1 − D2 )(D1 + D2 − D3)q2] − ε2ζD1 p + ε2M1,

D2
dq

dt
+ [(D1 − D3)r − (λ3 − eHl

′2 cos θ )]p � ρP0q

νD1D2D3
[D1(D2 − D1)(D2 + D1 − D3)p2

+ D3(D2 − D3)(D2 + D3 − D1)r2] − ε2ζD2q + ε2M2,

D3
dr

dt
+ (D2 − D1) pq � ρ P0r

νD1D2D3
[D2 (D3 − D2 )(D3 + D2 − D1)q2 + D1(D3 − D1)

× (D3 + D1 − D2)p2] − ε2ζD3r + ε2M3. (3)

where ν denotes the coefficient of kinematic viscosity, Dj ( j � 1, 2, 3) are the RB’s principal moments of inertia and t represent
the time.

Let us consider the scenario of a virtually dynamically spherical RB in which the main core moments of inertia of a frozen body
are close to each other. Hence, one can write

D1 � J0 + ε D′
1, D2 � J0 + ε D′

2, D3 � J0, (4)

where J0 is the characteristic value of the principal moments of inertia, D′
1 and D′

2 are the small deviations values from the
corresponding parameters D1 and D2.

It must be noted that when ε � 0, the motion is restricted to be for a symmetric RB. Additionally, consider the following

∣∣D′
1 − D′

2

∣∣ � O(εJ ′), |D1 − D2| � O(ε2 J ′), J ′ ≈ J0, λ3 � ελ′
3, l ′ � √

εl ′1. (5)

Based on (4) and (5), one can obtain

D2 − D1 � ε(D′
2 − D′

1) � ε2 J ∗, D1 − D3 � ε D′
1, D3 − D2 � −εD′

2. (6)
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The substitution from (4)-(6) into Eqs. (3), yields the below GSM related to the slow time parameter τ � εt

dp

dτ
� [D′

2 r − (λ′
3 − eHl

′2
1 cos θ )]

J0

(
1 − ε

D′
1

J0

)
q + ε f p ,

dq

dτ
� − [D′

3 r − (λ′
3 − eHl

′2
1 cos θ )]

J0

(
1 − ε

D′
2

J0

)
p + ε fq ,

dr

dτ
� D′

1 − D′
2

J0
pq + ε fr . (7)

with the following initial conditions

p(0) � p0, q(0) � q0, r (0) � r0. (8)

It is important to emphasize that the system (7) consists of three first-order NDEs on which its frequency depends on r . A close
look at the third equation in this system reveals that it is explicitly given in terms of ε, and then the third equation of this system is
therefore regarded as a slow variable. The perturbation terms ε f p , ε fq , and ε fr are expressed [13] as

ε f p � ρP0

ν J 3
0

p
{
D′

1 [J0 + ε(D′
1 − D′

2 )]r2 + (D′
1 − D′

2 )[J0 + ε(D′
1 + 2D′

2 )]q2} − ε

(
ζ p − M1

J0

)
,

ε fq � ρP0

ν J 3
0

q
{
(D′

2 − D′
1 )[J0 + ε(2D′

1 + D′
2 )]p2 + D′

2 [J0 + ε(D′
2 − D′

1 )]r2} − ε

(
ζq − M2

J0

)
,

ε fr � − ρP0

ν J 3
0

r
{
D′

2 [J0 + ε(2D′
2 − D′

1 )]q2 + D′
1 [J0 + ε(2D′

1 − D′
2 )]p2} − ε

(
ζr − M3

J0

)
. (9)

It is obvious that the friction force’s moment is relatively modest.

3 The proposed method

The unperturbed form of system (7) at ε � 0 when ν−1 � 0, can be written as [13, 27]

dp

dτ
� [D′

2 r − (λ′
3 − eHl

′2
1 cos θ )]q

/
J0,

dq

dτ
� − [D′

1 r − (λ′
3 − eHl

′2
1 cos θ )]p

/
J0,

dr

dτ
� 0. (10)

The integration of the last equation of the above system (10) yields r � r0.
Now, some mathematical manipulations are being performed on the first two equations of (10), i.e., differentiating the first one

with respect to τ and then using the second one, yields

d2 p

dτ 2 + ω2 p � 0, (11)

where

ω2 �
[
D′

2 r0 − (λ′
3 − eHl

′2
1 cos θ )

][
D′

1 r0 − (λ′
3 − eHl

′2
1 cos θ )

]/
J 2

0 > 0.

The solution of the aforementioned Eq. (11) can be determined via Laplace transformation and the initial conditions (8), as

p(τ ) � p0 cos ωτ + ( ṗ0
/

ω) sin ωτ ; (· � d
/
dτ ) (12)

which might be expressed as

p � a cos ϕ, q � −J0aω sin ϕ
/

[D′
2 r0 − (λ′

3 − eHl
′2
1 cos θ )], r � r0. (13)

where a �
√
p2

0 + ( ṗ0
/

ω)2 and ϕ � ωτ + ϕ0 are, respectively, the amplitude and phase of Eq. (11). Here ϕ0 is the initial phase, ω

is the frequency, cos ϕ0 � p0
/
a, and sin ϕ0 � q0

a

√
D′

2 r0− (λ′
3−eHl

′2
1 cos θ )

D′
1 r0− (λ′

3−eHl
′2
1 cos θ )

.

Now, a transformation from the slow variables to new ones is executed, i.e., from variables p, q , and r to the variables a, r , and
ϕ.

p � a cos ϕ, q � −J0aω sin ϕ
/

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )], r � r. (14)
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As consequence of the above system (14), it may be differentiated regarding τ . Therefore, the substitution in (7) about dp
/

dτ ,
dq

/
dτ , and dr

/
dτ yields

ȧ cos ϕ − a ϕ̇ sin ϕ � −
(

1 − ε
D′

1

J0

)
aω sin ϕ − ε

(
ζa cos ϕ − M1

J0

)
+

ρp0a cos ϕ

ν J 3
0

×
{

D′
1 [J0 + ε(D′

1 − D′
2 )]r2 + (D′

1 − D′
2 ) [J0 + ε(D′

1 + 2D′
2 )]

× [D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

a2 sin2 ϕ

}

, (15)

ȧ sin ϕ + a ϕ̇ cos ϕ �
(

1 − ε
D′

2

J0

)
aω cos ϕ − ε

(

ζa sin ϕ +

√
[D′

2 r − (λ′
3 − eHl

′2
1 cos θ )]

[D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

M2

J0

)

+
ρp0a sin ϕ

ν J 3
0

{
(D′

2 − D′
1)

[
J0 + ε(2D′

1 + D′
2)

]
a2 cos2 ϕ

+ D′
2 [J0 + ε(D′

2 − D′
1)]r2}, (16)

ṙ � D′
2 − D′

1

J0

√
[D′

1 r − (λ′
3 − eHl

′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

a2 sin ϕ cos ϕ − ε

(
ζr − M3

J0

)

− ρp0r

ν J 3
0

{

D′
2 [J0 + ε(2D′

2 − D′
1 )]

[D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

a2 sin2 ϕ

+ D′
1 [J0 + ε(2D′

1 − D′
2 )]a2 cos2 ϕ

}
. (17)

Solving Eqs. (15) and (16) to obtain ȧ and ϕ̇ as

ȧ � ε
D′

1 − D′
2

J0
aω sin ϕ cos ϕ − ε

{

ζa − M1

J0
cos ϕ +

M2

J0

√
[D′

2 r − (λ′
3 − eHl

′2
1 cos θ )]

[D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

sin ϕ

}

+
ρp0a

ν J 3
0

{
r2[D′

1 cos2 ϕ(J0 + εD′
1) + D′

2 sin2 ϕ(J0 + εD′
2) − εD′

1 D′
2

]
+ a2 sin2 ϕ cos2 ϕ

× (D′
1 − D′

2)

(

[J0 + ε(D′
1 + 2D′

2)]
[D′

1 r − (λ′
3 − eHl

′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

− [J0 + ε(2D′
1 + D′

2)]

)}

. (18)

ϕ̇ � ω(r ) − ε
ω(r )

J0
(D′

1 sin2 ϕ + D′
2 cos2 ϕ) − ε

a

{
M2

J0

√
[D′

2 r − (λ′
3 − eHl

′2
1 cos θ )]

[A′r − (λ′
3 − eHl

′2
1 cos θ )]

cos ϕ

+
M1

J0
sin ϕ

}
+

ρp0 sin ϕ cos ϕ

ν J 3
0

(D′
2 − D′

1 )
{
[J0 + ε(D′

1 + D′
2 )]r2 + a2 ([J0 + ε(2D′

1 + D′
2 )]

× cos2 ϕ +
[
J0 + ε(D′

1 + 2D′
2 )

] [D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

sin2 ϕ)

}

. (19)

Here, the quantity ω(r ) preserves the definition of the system’s perturbed frequency. In light of averaging Eqs. (17)–(19) over the
phase ϕ [11, 13], it is easy to get

ȧ � �a

{
r2

2
[J0(D′

1 + D′
2) + ε(D′

1 − D′
2)2] +

D′
1 − D′

2

4
([J0 + ε(D′

1 + 2D′
2)]

× [D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

− [J0 + ε(2D′
1 + D′

2)])

}

− εζa. (20)

ϕ̇ � ω

[
1 − ε( D′

1 + D′
2 )

2J0

]
, (21)

ṙ � −�ra2

2

{

D′
2 [J0 + ε(2D′

2 − D′
1 )]

[D′
1 r − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2 r − (λ′

3 − eHl
′2
1 cos θ )]

+ D′
1 [J0 + ε(2D′

1 − D′
2 )]

} − ε

(
ζr − M3

J0

)
. (22)
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where

� � ρp0
/

ν J 3
0 . (23)

As a result, the numerical solutions of Eqs. (20)–(22) can be determined using Taylor’s method [13] in the presence of the initial
conditions τ � τ0, a(τ0) � a0, r (τ0) � r0, and ϕ(τ0) � ϕ0 as follows

a(τ ) � a(τ0) + (τ − τ0)

{
�a(τ0)

r2(τ0)

2
[J0(D′

1 + D′
2 ) + ε(D′

1 − D′
2 )2] + �a(τ0)

D′
1 − D′

2

4

×
(

[J0 + ε(D′
1 + 2D′

2 )]
[D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

− [J0 + ε(2D′
1 + D′

2 )]

)

− ελa(τ0)} +
(τ − τ0)2

2!

{[
� f1(τ0)r2(τ0)

2
+ �a(τ0)r (τ0) f2(τ0)

]
[J0(D′

1 + D′
2 )

+ ε(D′
1 − D′

2 )2] + [J0 + ε(D′
1 + 2D′

2 )]

{

f1(τ0)
[D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

+ a(τ0)
[(D′

2 − D′
1 ) (λ′

3 − eHl
′2
1 cos θ )] f2(τ0)

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]2

}
�(D′

1 − D′
2 )

4
− � f1(τ0)(D′

1 − D′
2 )

4

× [J0 + ε(2D′
1 + D′

2 )] − εζ f1(τ0)} + O(τ 3), (24)

ϕ(τ ) � ϕ(τ0) + (τ − τ0)

⎧
⎨

⎩

√
[D′

2 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )][D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

J0

×
(

1 − ε(D′
1 + D′

2 )

2J0

)}
+

(τ − τ0)2

2!

{
1

2J0

(
1 − ε(D′

1 + D′
2 )

2J0

)

× [2D′
1 D′

2 r (τ0) − (D′
1 + D′

2 ) (λ′
3 − eHl

′2
1 cos θ )] f2(τ0)

√
[B ′ r (τ0) − (λ′

3 − eHl
′2
1 cos θ )][D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

⎫
⎬

⎭
+ O(τ 3), (25)

r (τ ) � r (τ0) − (τ − τ0)

{
�r (τ0)a2(τ0)

2
{D′

2 [J0 + ε(2D′
2 − D′

1 )]
[D′

1 r (τ0) − (λ′
3 − eH

′2
1 cos θ )]

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

+ D′
1 [J0 + ε(2D′

1 − D′
2 )]

}
+ ε

(
ζr (τ0) − M3

J0

)
} +

(τ − τ0)2

2!

{
−�a(τ0)

2

× D′
2 [J0 + ε(2D′

2 − D′
1 )]

{

[2r (τ0) f1(τ0) + f2(τ0)a(τ0)]
[D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

+ r (τ0)a(τ0)
[(D′

2 − D′
1 ) (λ′

3 − eHl
′2
1 cos θ )] f2(τ0)

[D′
2 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]2

}

− �a(τ0)

2
D′

1 [2r (τ0) f1(τ0)

+ f2(τ0)a(τ0)][J0 + ε(2D′
1 − D′

2 )] − εζ f2(τ0)} + O(τ 3), (26)

where

f1(τ0) � �a(τ0)

{
r2(τ0)

2
[J0(D′

1 + D′
2 ) + ε(D′

1 − D′
2)2] +

D′
1 − D′

2

4
( [J0 + ε(D′

1 + 2D′
2)]

× [D′
1 r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

− [J0 + ε(2D′
1 + D′

2)])

}

− εζa(τ0), (27)

f2(τ0) � −�r (τ0)a2(τ0)

2

{

D′
2 [J0 + ε(2D′

2 − D′
1 )]

[D′
1r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

[D′
2r (τ0) − (λ′

3 − eHl
′2
1 cos θ )]

+ D′
1 [J0 + ε(2D′

1 − D′
2)]

} − ε

[
ζr (τ0) − M3

J0

]
, (28)

f3(τ0) � 1

J0

√
[D′

2 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )][D′

1 r (τ0) − (λ′
3 − eHl

′2
1 cos θ )]

× [1 − ε(D′
1 + D′

2)

2J0
]. (29)
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4 Discussion of outcomes

The major goal of this section is to present a graphical simulation of the required solutions p, q , and r in Eq. (14) as well as the
solutions a and φ in Eqs. (24) and (25). Additionally, it gives a description of the stable and unstable behavior of the body’s motion.
Therefore, let us consider the following data:

D � (9.51, 9.3, 9) kg · m2, e � (10−2, 103, 104)C , ζ � (1.5, 2, 2.5) rad · s−1,

P0 � 1.9m7, ν � 1000 m2 · s−1, H � 100 T, M3 � (−3 , −6, −9)kg · m · s−2.

l ′ � 0.01 m, θ � 0.3 rad, ρ � 1250 kg · m−3, ε � 0.1.

It is worthy that all numerical results for Eqs. (24)-(26) are calculated with the initial conditions τ0 � 0, a(0) � 1, r (0) � 1, and
ϕ(0) � 0.

The investigation through this section goes on with four different cases presented as follows:

4.1 The GM

In this case, the impact of the third component λ3 of the GM on the RB’s motion relative to the trajectories of its angular velocities
is investigated. Curves in Figs. 2 and 3 reveal, respectively, the variation of a, r , ϕ, p, and q in which they are calculated, when
λ3(� 0.1, 0.15, 0.2) kg · m2 · s−1, and λ3(� 15, 20, 25) kg · m2 · s−1. An examination of the drawn curves in parts of Fig. 2 shows
that the curvatures of these curves increase as time goes on, which are consistent with the formulas (24) and (25). The mentioned
various values of λ3 are considered to reveal the change on the curves according to these values. In other words, if the same values
are considered, no variation can be observed in the waves of the solutions p and q . The variation of the solutions p and q with
time t has the simulation of the decay waves during the investigated period of time as λ3 has the aforementioned values, which
indicates that these waves have a stable behavior. The oscillations’ number increases with the increase of the GM values, in which
the corresponding wavelengths decrease. This conclusion approves the mathematical forms of Eq. (14). Curves of Fig. 4, when
examined in further detail, show the phase plane of the solutions p and q at the same values of the third component of the GM in
the direction of Oz1. Closed curves have been graphed in portions (a) and (b) of this figure, which demonstrate that these solutions
have stationary behaviors and a stable manner.

Therefore, the main outcome result of this case is that the increase of the GM value for the RB’s motion yields a decrease of the
amplitude in the angular velocity trajectories, increasing the frequency, decreasing the wavelength, and maintaining the stability of
the motion as time goes on.

4.2 The resistive force torque

In this case, the effect of the resistance force torque on the body’s motion is investigated according to the values of the positive
factor ζ which have determined by the medium’s characteristics and the body’s shape. The time histories of the functions a, r , ϕ,

Fig. 2 Portrays the temporal
behaviors for the waves of: a a,
b r , and c ϕ when λ3(� 0.1, 0.15,
0.2) kg · m2 · s−1
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Fig. 3 Shows the variations of the
functions: a p(t) and b q(t) when
λ3(� 15, 20, 25) kg · m2 · s−1

Fig. 4 Describes the phase plane
curves at the same values of Fig. 3
for: a p and b q

Fig. 5 Illustrates the influence of
ζ (� 1.5, 2, 2.5) rad · s−1 on the
behavior of: a a, b r , and c ϕ

p, and q at different values of ζ (� 1.5, 2, 2.5) rad · s−1 besides the aforementioned data above are graphed in Figs. 5, 6, 7. The
graphed curves in potions (a) and (b) of Fig. 5 decrease gradually with the increase of ζ for the functions a and r . On the other hand,
the behavior of the function ϕ increases tile a certain value of time and then decreases during the examined time interval. Standing
waves with some nodes have been drawn in parts (a) and (b) of Fig. 6 to reveal the influence of the parameter ζ on the solutions p
and q . The plotted waves have a decay behavior through the investigated period of time, where their amplitudes decrease with the
increase of values ζ . Moreover, the wavelengths remain steady and consequently their frequencies are still unchanged. The phase
plane curves of the presented solutions in Fig. 6 have been graphed in parts of Fig. 7. These curves have spiral forms and are directed
toward one point, which indicates that the waves of the solutions have a stable behavior.

The main result of this case is that decreasing the resistive force torque values on the RB’s motion will decrease the amplitude
of the angular velocity wave trajectories, keeping the stability of the motion as time goes on while the frequency and wavelength
remain the same.

4.3 The body-constant torque

The influence of the body-constant torque on the RB’s motion has been presented in this case. Curves in Figs. 8, 9, 10 show the
impact of various values of the third constant torque component M3 � (−3, −6, −9) kg · m · s−2 on the manner of the describing
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Fig. 6 Describes the impact of the
values of ζ (� 1.5, 2, 2.5) rad · s−1

on the functions: a p(t) and b q(t)

Fig. 7 Sketches the good action of
ζ (� 1.5, 2, 2.5) rad · s−1 on the
curves in the planes: a Phase plane
plots for p ṗ and b qq̇

Fig. 8 The impact of M3 values
on the behavior of: a a, b r , and
c ϕ

waves of the solutions functions a, r , ϕ, p, and q . Therefore, previous data have been considered to output the curves of these figures.
As mentioned above, portions of Fig. 8 show the plotted curves of the functions a, r , and ϕ during the interval t ∈ [0, 20]s[0, 20]s.
These curves decrease when time goes on for the waves describing a and r , while the behavior of the function ϕ increases until
it reaches a specified value and then decreases. Accordingly, the impression that is taken from these curves is that they are stable.
The inspection of the portions in Fig. 9, shows that the behavior of the waves that describe the change of solutions p and q with
time has decayed during the same studied period of time, which confirms the stability of these solutions. This decay increases with
the decrease of M3 values over time. The corresponding diagrams of these solutions in the planes p ṗ and qq̇ have been drawn,
respectively, in parts (a) and (b) of Fig. 10. The behaviors of the plotted curves in these planes have spiral forms that are directed
toward the center of these curves, which assert the stable behavior of these solutions.

Therefore, one can conclude for this scenario that the decrease of the body constant torque values for the RB’s motion as time
goes on produces a decrease in the angular velocity amplitudes, increases the oscillation number, decreases the wavelength, and
maintains the stability of the motion.
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Fig. 9 Reveals the decay behavior
of: a p(t) and b q(t) at various
values of M3

Fig. 10 Presents the spiral curves
in the planes: a p ṗ and b qq̇

Fig. 11 Presents the action of
e � (10−2, 103, 104) C on the
behavior of: a a, b r , and c ϕ

4.4 The charge

In the present scenario, the impact of various values of the charge e on the trajectories of the RB angular velocities is investigated. In
Figs. 11 and 12, the curves describe the time histories of (a, r , ϕ) and (p, q), respectively, when the charge e has the values (10−2,
103, 104)C . The impact of these values yields a decrease of the behavior of the functions a and r , as seen in Figs. 11a and b. The
wave describes ϕ behavior increases during the studied time period and then decreases at the end of this period. On the other side,
decaying waves are plotted in Fig. 12 to describe the behavior of the solutions p and q . The action of e values seems slightly, to
some extent, on these solutions. Figure 13 depicts the projections of these waves in the planes p ṗ and qq̇, which shows that they
have spiral patterns, which point to their stability.

It must be mentioned that the increase of the charge’s value as time goes on yields a slight deviation of the body’s angular velocity,
as it impacts a decrease in the amplitude and keeps the stability of the body’s motion while the frequency and wavelength remain
the same.

References [13] and [27] are the closest works to our subject and provide an identical result with 0% error between both techniques.
For comparison purposes with these works, the zero values of the GM and the point charge are considered to ensure the accuracy
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Fig. 12 Shows the impact of e
values on: a p(t) and b q(t)

Fig. 13 Presents the projections of
p and q in the planes: a p ṗ and
b qq̇

of the above-presented methodology. Therefore, the obtained results are considered generalizations of those obtained previously in
[13, 27], which is because the viewpoint considered in studying the influence of the GM and the charge is not related before.

5 Conclusion

The 3D motion of a charged RB with a spherical cavity filled with an incompressible viscid liquid has been studied. The charged RB
in such a case revolves under the influence taken by the body-constant torques, the GM, and a torque of resistive forces that resulted
from the cavity’s geometry. The liquid is considered to move sufficiently fast, and therefore the Reynolds number has a very small
value. The GSM is derived in light of the dynamic equations of Euler. The averaging technique has been applied to the derived GSM
to transform this system into a suitable one to easily achieve the required solutions, in which Taylor’s method has also been applied.
In view of the selected values of the GM, resistive force torque, body-constant torques, and charge, those derived solutions and their
projections in the diagrams of phase planes have been graphed to reveal the impact of these parameters on the behavior of these
outcomes. The results of this investigation are presented in four cases: (1) the increase of the GM values on the RB’s motion will
decrease the amplitude of the angular velocity trajectories, increasing the frequency, and decreasing the wavelength, (2) the decrease of
the resistive force torque on the RB’s motion will decrease the amplitude of the angular velocity wave trajectories, while the frequency
and wavelength are still stationary, (3) the decrease in the body constant torque values decreases the amplitude and wavelength of
the angular velocity trajectories and increases the frequency, which is similar to the impact of increasing the GM, (4) the increase of
the charge yields decrease the amplitude of the angular velocity wave trajectories, while the frequency and wavelength will remain
stationary. The body’s stability is still stationary in all four scenarios. Those outcomes make it possible for the analysis of astronomical
body motions influenced by minimal internal and external torques. The momentousness of this study is due to its numerous practical
applications, including those for spacecraft and wagons that transport liquid fuel and are influenced by external forces.
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