Skip to main content
Log in

Higher flow harmonics of strange hadrons in Au+Au collisions at \(\sqrt {s_{{{\text{NN}}}} }\) = 200 GeV and Pb+Pb collisions at \(\sqrt {s_{{{\text{NN}}}} }\) = 2.76 TeV with HYDJET++ model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the HYDJET++ model, we measure the higher-order flow harmonics \(v_{n}\) (n = 2, 3, 4) of (multi-) strange hadrons in Au+Au collisions at \(\sqrt{s_{\mathrm{NN}}}\) = 200 GeV and Pb+Pb collisions at \(\sqrt{s_{\mathrm{NN}}}\) = 2.76 TeV. We have compared our model results with the available experimental data at RHIC and LHC energies. The model reproduces the higher flow harmonics of (multi-) strange hadrons as a function of \(p_{\mathrm{T}}\), centrality, and quark content. We have studied and discussed mass ordering of flows \(v_{n}\) (n = 2, 3, 4) among \(\pi ^{+}+\pi ^{-}\), \(K^{-}+K^{+}\), \(K_{s}^{0}\), \(p+\overline{p}\), \(\Lambda +\overline{\Lambda }\), \(\Xi ^{-}+\overline{\Xi }^{+}\), and \(\Omega ^{-}+\overline{\Omega }^{+}\) at low \(p_{\mathrm{T}}\) and the baryon-meson grouping at intermediate \(p_{\mathrm{T}}\). We observe NCQ scaling in both RHIC as well as LHC energy regimes. Study of flow harmonics behaviour at RHIC and LHC energy regimes will provide an additional insight into the dynamics of anisotropic flow and the effect of radial flow expansion in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are openly available in public through experimental data at HEPData. Our finding data will be made available on request].

References

  1. S. Acharya et al., JHEP 10, 152 (2021). [arXiv:2107.10592 [nucl-ex]]

    Article  ADS  Google Scholar 

  2. R. Snellings, New J. Phys. 13, 055008 (2011). [arXiv:1102.3010 [nucl-ex]]

    Article  ADS  Google Scholar 

  3. R. Snellings, EPJ Web Conf. 97, 00025 (2015). [arXiv:1411.7690 [nucl-ex]]

    Article  Google Scholar 

  4. M. Abdallah et al., Phys. Rev. C 103, 064907 (2021). [arXiv:2103.09451 [nucl-ex]]

    Article  ADS  Google Scholar 

  5. J. Adams et al., Nucl. Phys. A 757, 102–183 (2005). [arXiv:0809.2949 [nucl-ex]]

    Article  ADS  Google Scholar 

  6. S.A. Voloshin, A.M. Poskanzer, R. Snellings, Landolt Bornstein 23, 293–333 (2010). [arXiv:0809.2949 [nucl-ex]]

    ADS  Google Scholar 

  7. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665–672 (1996). [arXiv:hep-ph/9407282 [hep-ph]]

    Article  Google Scholar 

  8. C.P. Singh, Phys. Rept. 236, 147–224 (1993)

    Article  ADS  Google Scholar 

  9. H. Stoecker, Nucl. Phys. A 750, 121–147 (2005). [arXiv:nucl-th/0406018 [nucl-th]]

    Article  ADS  Google Scholar 

  10. L. Adamczyk et al., Phys. Rev. C 88, 014904 (2013). [arXiv:1301.2187 [nucl-ex]]

    Article  ADS  Google Scholar 

  11. D. Solanki, P. Sorensen, S. Basu, R. Raniwala, T.K. Nayak, Phys. Lett. B 720, 352–357 (2013). [arXiv:1210.0512 [nucl-ex]]

    Article  ADS  Google Scholar 

  12. J. Adam et al., JHEP 09, 164 (2016). [arXiv:1606.06057 [nucl-ex]]

    Article  ADS  Google Scholar 

  13. B.I. Abelev et al., Phys. Rev. C 81, 044902 (2010). [arXiv:1001.5052 [nucl-ex]]

    Article  ADS  Google Scholar 

  14. U. Heinz, Z. Qiu, C. Shen, Phys. Rev. C 87, 034913 (2013). [arXiv:1302.3535 [nucl-th]]

    Article  ADS  Google Scholar 

  15. L.V. Bravina, E.S. Fotina, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, E.N. Nazarova, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Eur. Phys. J. C 75, 588 (2015). [arXiv:1509.02692 [hep-ph]]

    Article  ADS  Google Scholar 

  16. V.K. Tiwari, C.P. Singh, Phys. Lett. B 411, 225–229 (1997)

    Article  ADS  Google Scholar 

  17. A. Bazavov, H.T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann, Y. Maezawa, S. Mukherjee, H. Ohno, P. Petreczky et al., Phys. Rev. Lett. 113, 072001 (2014). [arXiv:1404.6511 [hep-lat]]

    Article  ADS  Google Scholar 

  18. A. Singh, P.K. Srivastava, G. Devi, B.K. Singh, Phys. Rev. C 107, 024906 (2023)

    Article  ADS  Google Scholar 

  19. L. Adamczyk et al., Phys. Rev. Lett. 116, 062301 (2016). [arXiv:1507.05247 [nucl-ex]]

    Article  ADS  Google Scholar 

  20. M. Abdallah et al., Phys. Rev. C 105, 064911 (2022). [arXiv:2203.07204 [nucl-ex]]

    Article  ADS  Google Scholar 

  21. B.B. Abelev et al., JHEP 06, 190 (2015). [arXiv:1405.4632 [nucl-ex]]

    Article  ADS  Google Scholar 

  22. J. Adams et al., Phys. Rev. Lett. 95, 122301 (2005). [arXiv:nucl-ex/0504022 [nucl-ex]]

    Article  ADS  Google Scholar 

  23. B.I. Abelev et al., Phys. Rev. C 77, 054901 (2008). [arXiv:0801.3466 [nucl-ex]]

    Article  ADS  Google Scholar 

  24. M. Abdallah et al., Phys. Rev. C 107, 024912 (2023). [arXiv:2205.11073 [nucl-ex]]

    Article  ADS  Google Scholar 

  25. S. Acharya et al., JHEP 09, 006 (2018). [arXiv:1805.04390 [nucl-ex]]

    ADS  Google Scholar 

  26. J. Adam et al., Phys. Rev. Lett. 116, 132302 (2016). [arXiv:1602.01119 [nucl-ex]]

    Article  ADS  Google Scholar 

  27. J. Adams et al., Phys. Rev. C 72, 014904 (2005). [arXiv:nucl-ex/0409033 [nucl-ex]]

    Article  ADS  Google Scholar 

  28. A. Adare et al., Phys. Rev. C 93, 051902 (2016). [arXiv:1412.1038 [nucl-ex]]

    Article  ADS  Google Scholar 

  29. S. Acharya et al., Phys. Lett. B 784, 82–95 (2018). [arXiv:1805.01832 [nucl-ex]]

    Article  ADS  Google Scholar 

  30. K. Aamodt et al., Phys. Rev. Lett. 107, 032301 (2011). [arXiv:1105.3865 [nucl-ex]]

    Article  ADS  Google Scholar 

  31. X. Zhu, Adv. High Energy Phys. 2016, 4236492 (2016). [arXiv:1607.04003 [nucl-th]]

    Article  Google Scholar 

  32. S. Pandey, B.K. Singh, J. Phys. G 49, 095001 (2022). [arXiv:2107.01880 [hep-ph]]

    Article  ADS  Google Scholar 

  33. B. Schenke, C. Shen, P. Tribedy, Phys. Rev. C 99, 044908 (2019). [arXiv:1901.04378 [nucl-th]]

    Article  ADS  Google Scholar 

  34. S.A. Voloshin, Nucl. Phys. A 715, 379–388 (2003). [arXiv:nucl-ex/0210014 [nucl-ex]]

    Article  ADS  Google Scholar 

  35. D. Molnar, S.A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003). [arXiv:nucl-th/0302014 [nucl-th]]

    Article  ADS  Google Scholar 

  36. A. Singh, P.K. Srivastava, O.S.K. Chaturvedi, S. Ahmad, B.K. Singh, Eur. Phys. J. C 78, 419 (2018). [arXiv:1707.07552 [nucl-th]]

    Article  ADS  Google Scholar 

  37. S. Acharya et al., JHEP 07, 103 (2018). [arXiv:1804.02944 [nucl-ex]]

    ADS  Google Scholar 

  38. B. Schenke, C. Shen, P. Tribedy, Phys. Rev. C 102, 044905 (2020). [arXiv:2005.14682 [nucl-th]]

    Article  ADS  Google Scholar 

  39. X. Zhu, F. Meng, H. Song, Y.X. Liu, Phys. Rev. C 91, 034904 (2015). [arXiv:1501.03286 [nucl-th]]

    Article  ADS  Google Scholar 

  40. S.A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina, C. Ernst, L. Gerland, M. Hofmann, S. Hofmann, J. Konopka et al., Prog. Part. Nucl. Phys. 41, 255–369 (1998). [arXiv:nucl-th/9803035 [nucl-th]]

    Article  ADS  Google Scholar 

  41. Z. Qiu, C. Shen, U. Heinz, Phys. Lett. B 707, 151–155 (2012). [arXiv:1110.3033 [nucl-th]]

    Article  ADS  Google Scholar 

  42. L.V. Bravina, B.H. Brusheim Johansson, G.K. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Eur. Phys. J. C 74, 2807 (2014). [arXiv:1311.7054 [nucl-th]]

    Article  ADS  Google Scholar 

  43. I.P. Lokhtin, A.V. Belyaev, L.V. Malinina, S.V. Petrushanko, E.P. Rogochaya, A.M. Snigirev, Eur. Phys. J. C 72, 2045 (2012). [arXiv:1204.4820 [hep-ph]]

    Article  ADS  Google Scholar 

  44. E.E. Zabrodin, L.V. Bravina, B.H.B. Johansson, J. Crkovska, G.K. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, J. Phys. Conf. Ser. 668, 012099 (2016)

    Article  Google Scholar 

  45. S. Pandey, S.K. Tiwari, B.K. Singh, Phys. Rev. C 103, 014903 (2021)

    Article  ADS  Google Scholar 

  46. L.V. Bravina, G.K. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Phys. Rev. C 103, 034905 (2021). [arXiv:2012.05139 [nucl-th]]

    Article  ADS  Google Scholar 

  47. J. Crkovska et al., Phys. Rev. C 95, 014910 (2017). [arXiv:1603.09621 [hep-ph]]

    Article  ADS  Google Scholar 

  48. S. Chatrchyan et al., Phys. Rev. C 89, 044906 (2014). [arXiv:1310.8651 [nucl-ex]]

    Article  ADS  Google Scholar 

  49. I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 45, 211–217 (2006). [arXiv:hep-ph/0506189 [hep-ph]]

    Article  ADS  Google Scholar 

  50. I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, I. Arsene, K. Tywoniuk, Nonlinear Phenom. Complex Syst. 12, 348–355 (2009). [arXiv:0910.5129 [hep-ph]]

    Google Scholar 

  51. I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, Phys. Atom. Nucl. 73, 2139–2147 (2010)

    Article  ADS  Google Scholar 

  52. I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, I. Arsene, K. Tywoniuk, Comput. Phys. Commun. 180, 779–799 (2009). [arXiv:0809.2708 [hep-ph]]

    Article  ADS  Google Scholar 

  53. N.S. Amelin, R. Lednicky, T.A. Pocheptsov, I.P. Lokhtin, L.V. Malinina, A.M. Snigirev, I.A. Karpenko, Y.M. Sinyukov, Phys. Rev. C 74, 064901 (2006). [arXiv:nucl-th/0608057 [nucl-th]]

    Article  ADS  Google Scholar 

  54. N.S. Amelin, R. Lednicky, I.P. Lokhtin, L.V. Malinina, A.M. Snigirev, I.A. Karpenko, Y.M. Sinyukov, I. Arsene, L. Bravina, Phys. Rev. C 77, 014903 (2008). [arXiv:0711.0835 [hep-ph]]

    Article  ADS  Google Scholar 

  55. G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, J. Letessier, J. Rafelski, Comput. Phys. Commun. 167, 229–251 (2005). [arXiv:nucl-th/0404083 [nucl-th]]

    Article  ADS  Google Scholar 

  56. T. Sjostrand, S. Mrenna, P.Z. Skands, JHEP 05, 026 (2006). [arXiv:hep-ph/0603175 [hep-ph]]

    Article  ADS  Google Scholar 

  57. A. Adare et al., Phys. Rev. Lett. 107, 252301 (2011). [arXiv:1105.3928 [nucl-ex]]

    Article  ADS  Google Scholar 

  58. G. Aad et al., Phys. Rev. C 86, 014907 (2012). [arXiv:1203.3087 [hep-ex]]

    Article  ADS  Google Scholar 

  59. L. Bravina, B.H.B. Johansson, J. Crkovská, G. Eyyubova, V. Korotkikh, I. Lokhtin, L. Malinina, E. Nazarova, S. Petrushanko, A. Snigirev et al., J. Phys. Conf. Ser. 736, 012024 (2016). [arXiv:1606.03250 [hep-ph]]

    Article  Google Scholar 

  60. M. Aaboud et al., Eur. Phys. J. C 78, 997 (2018). [arXiv:1808.03951 [nucl-ex]]

    Article  ADS  Google Scholar 

  61. A. Adare et al., Phys. Rev. C 85, 064914 (2012). [arXiv:1203.2644 [nucl-ex]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

BKS gratefully acknowledges the financial support provided by the BHU Institutions of Eminence (IoE) Grant No. 6031, Govt. of India. AS would like to thank CSIR, India for providing Senior Research Fellowship. SP and GD acknowledge the financial support obtained from UGC under the research fellowship scheme in central universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Singh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, G., Singh, A., Pandey, S. et al. Higher flow harmonics of strange hadrons in Au+Au collisions at \(\sqrt {s_{{{\text{NN}}}} }\) = 200 GeV and Pb+Pb collisions at \(\sqrt {s_{{{\text{NN}}}} }\) = 2.76 TeV with HYDJET++ model. Eur. Phys. J. Plus 138, 921 (2023). https://doi.org/10.1140/epjp/s13360-023-04544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04544-7

Navigation