Skip to main content
Log in

Influence of perturbations on linear and nonlinear optical properties of quantum dot

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study focused on investigating the influence of perturbations on the linear and nonlinear optical properties of \(GaAs/Ga_{1-x}Al_{x}As\) screened modified Kratzer potential (SMKP) quantum dot (QD). The optical absorption coefficients (OACs) and refractive index changes (RICs) for \(GaAs/Ga_{1-x}Al_{x}As\) have been presented. The density matrix and iterative approaches were used to derive expressions of OACs and RICs in SMKP QD. The diagonalization method has been used to obtain energy eigenvalues and eigenfunctions of \(GaAs/Ga_{1-x}Al_{x}As\) SMKP QD under the effects of Al concentration-x, hydrostatic pressure, and temperature. Our results reveal that the Al concentration-x, hydrostatic pressure, and temperature greatly impact the position and amplitude of the resonant peaks of the linear and nonlinear OACs and RICs. Interpretations have been presented in detail. The results of this study will find applications in the optical physics of semiconductors and other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on reasonable request [37, 38].]

References

  1. M. Choubani, D. Makhlouf, F. Saidi, H. Maaref, Enhancement of the second harmonic generation in a coupled lens-shaped quantum dots under wetting layer, temperature, pressure, and electric field effects. Opt. Quant. Electron. 52, 1 (2020)

    Article  Google Scholar 

  2. M. Sayrac, A. Turkoglu, F. Ungan, Influence of hydrostatic pressure, temperature, and terahertz laser field on the electron-related optical responses in an asymmetric double quantum well. Eur. Phys. J. B 94, 1 (2021)

    Article  Google Scholar 

  3. M. Sayrac, Effects of applied external fields on the nonlinear optical rectification, second, and third-harmonic generation in an asymmetrical semi exponential quantum well. Opt. Quant. Electron. 54, 1 (2022)

    Article  Google Scholar 

  4. J. De Jesus, G. Chen, L.C. Hernandez-Mainet, A. Shen, M.C. Tamargo, Strain compensated cdse/znse/zncdmgse quantum wells as building blocks for near to mid-ir intersubband devices. J. Cryst. Growth 425, 207 (2015)

    Article  ADS  Google Scholar 

  5. J. Feng, R. Akimoto, S.-I. Gozu, T. Mozume, T. Hasama, H. Ishikawa, Band edge tailoring of ingaas/alassb coupled double quantum wells for a monolithically integrated all-optical switch. Opt. Express 21, 15840 (2013)

    Article  ADS  Google Scholar 

  6. M. Karimi, A. Keshavarz, A. Poostforush, Linear and nonlinear intersubband optical absorption and refractive index changes of asymmetric double semi-parabolic quantum wells. Superlattices Microstruct. 49, 441 (2011)

    Article  ADS  MATH  Google Scholar 

  7. E. Ozturk, Depending on the electric and magnetic field of the linear optical absorption and rectification coefficient in triple quantum well. Opt. Quant. Electron. 49, 1 (2017)

    Article  Google Scholar 

  8. D.A.M. Abo-Kahla, The atomic inversion and the purity of a quantum dot two-level systems. Appl. Math. Inform. Sci. 10, 1579 (2016)

    Article  Google Scholar 

  9. C.M.S. Negi, D. Kumar, J. Kumar, Analysis of polarized light generation in anisotropic strained quantum dots. J. Comput. Electron. 16, 805 (2017)

    Article  Google Scholar 

  10. D. Raeyani, S. Shojaei, S. Ahmadi-Kandjani, Optical graphene quantum dots gas sensors: theoretical study. Superlattices Microstruct. 114, 321 (2018)

    Article  ADS  Google Scholar 

  11. K. Zhang, Y.F. Ma, Y.Q. Zhang, H. Gao, Y.B. Han, Concentration modulated photoluminescence and optical switching performance of graphene-oxide quantum dots. J. Lumin. 209, 116 (2019)

    Article  Google Scholar 

  12. A. Naifar, N. Zeiri, S.A.B. Nasrallah, M. Said, Theoretical study on third nonlinear optical susceptibility in inxga1-xn/gan cylindrical quantum dots. Phys. Scr. 95, 099502 (2020)

    Article  ADS  Google Scholar 

  13. D.A.M. Abo-Kahla, Information entropy and population inversion of a three-level semiconductor quantum dot. Indian J. Phys. 95, 1295–1304 (2021)

    Article  ADS  Google Scholar 

  14. S. Aqiqi, C.A. Duque, A. Radu, J.A. Gil-Corrales, A.L. Morales, J.A. Vinasco, D. Laroze, Optical properties and conductivity of biased gaas quantum dots. Physica E 138, 115084 (2022)

    Article  Google Scholar 

  15. M. Kirak, Y. Altinok, S. Yilmaz, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. J. Lumin. 136, 415 (2013)

    Article  Google Scholar 

  16. B.A. Farkoush, G. Safarpour, A. Zamani, Linear and nonlinear optical absorption coefficients and refractive index changes of a spherical quantum dot placed at the center of a cylindrical nano-wire: Effects of hydrostatic pressure and temperature. Superlattices Microstruct. 59, 66 (2013)

    Article  ADS  Google Scholar 

  17. M.J. Karimi, G. Rezaei, M. Nazari, Linear and nonlinear optical properties of multilayered spherical quantum dots: effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature. J. Lumin. 145, 55 (2014)

    Article  Google Scholar 

  18. N. Zamani, A. Keshavarz, H. Nadgaran, Nano multi-layered spherical quantum dot optimization by pso algorithm: Maximizing the optical absorption coefficient. Superlattices Microstruct. 77, 82 (2015)

    Article  ADS  Google Scholar 

  19. B. Vaseghi, G. Rezaei, T. Sajadi, Optical properties of parabolic quantum dots with dressed impurity: combined effects of pressure, temperature and laser intensity. Phys. B 456, 171 (2015)

    Article  ADS  Google Scholar 

  20. E. Owji, H. Mokhtari, A. Keshavarz, Effects of temperature, pressure, and size on different transitions of optical properties of spherical quantum dot. Iranian J. Sci. Technol. Transact. A 42, 1669 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, M. El Haouari, C.A. Duque, C.V. Nguyen, H.V. Phuc, Refractive index changes and optical absorption involving 1s–1p excitonic transitions in quantum dot under pressure and temperature effects. Appl. Phys. A 125, 17 (2019)

    Article  ADS  Google Scholar 

  22. N. Aghoutane, L.M. Perez, A. Tiutiunnyk, D. Laroze, S. Baskoutas, F. Dujardin, A. El Fatimy, M. El-Yadri, E.M. Feddi, Adjustment of terahertz properties assigned to the first lowest transition of (d+, x) excitonic complex in a single spherical quantum dot using temperature and pressure. Appl. Sci. 11, 5969 (2021)

    Article  Google Scholar 

  23. C.O. Edet, E.B. Al, F. Ungan, N. Ali, M.M. Ramli, M. Asjad, Effects of the confinement potential parameters and optical intensity on the linear and nonlinear optical properties of spherical quantum dots. Res. Phys. 44, 106182 (2022)

    Google Scholar 

  24. C.O. Edet, E.B. Al, F. Ungan, N. Ali, N. Rusli, S.A. Aljunid, R. Endut, M. Asjad, Effects of applied magnetic field on the optical properties and binding energies spherical gaas quantum dot with donor impurity. Nanomaterials 12, 2741 (2022)

    Article  Google Scholar 

  25. K. Batra, V. Prasad, Spherical quantum dot in kratzer confining potential: study of linear and nonlinear optical absorption coefficients and refractive index changes. Eur. Phys. J. B 91, 1 (2018)

    Article  Google Scholar 

  26. Y. Duan, X. Li, C. Chang, Z. Zhao, L. Zhang, Effects of hydrostatic pressure, temperature and al-concentration on the second-harmonic generation of tuned quantum dot/ring under a perpendicular magnetic field. Physica B 631, 413644 (2022)

    Article  Google Scholar 

  27. C. Edet, A. Ikot, Effects of topological defect on the energy spectra and thermo-magnetic properties of \(co\) diatomic molecule. J. Low Temp. Phys. 203, 84 (2021)

    Article  ADS  Google Scholar 

  28. S. Adachi, Gaas, alas and \(al_x/ga_{1-x}as\): Material parameters for use in research and device applications. J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  29. E.B. Al, E. Kasapoglu, H. Sari, I. Sökmen, C.A. Duque, Shallow-donor impurity effects on the far infrared electron-electron optical absorption coefficient in single and core/shell spherical quantum dots with konwent-like confinement potential. Opt. Quant. Electron. 54, 1 (2022)

    Article  Google Scholar 

  30. H. Sari, E.B. Al, E. Kasapoglu, S. Sakiroglu, I. Sökmen, M. Toro-Escobar, C. Duque, Electronic and optical properties of a \(d_+^2\) complex in two-dimensional quantum dots with gaussian confinement potential. Eur. Phys. J. Plus 137, 464 (2022)

    Article  Google Scholar 

  31. E.B. Al, Effect of size modulation and donor position on intersubbands refractive index changes of a donor within a spherical core/shell/shell semiconductor quantum dot. Cumhuriyet Sci. J. 42, 694–701 (2021)

    Article  Google Scholar 

  32. H. Cheon, H.-J. Yang, S.-H. Lee, Y.A. Kim, J.-H. Son, Terahertz molecular resonance of cancer dna. Sci. Rep. 6, 37103 (2016)

    Article  ADS  Google Scholar 

  33. T. Kampfrath, K. Tanaka, K.A. Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013)

    Article  ADS  Google Scholar 

  34. K. Sengupta, T. Nagatsuma, D.M. Mittleman, Terahertz integrated electronic and hybrid electronic-photonic systems. Nat. Electron. 1, 622–635 (2018)

    Article  Google Scholar 

  35. A. El Fatimy, R.L. Myers-Ward, A.K. Boyd, K.M. Daniels, D.K. Gaskill, P. Barbara, Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335–338 (2016)

    Article  ADS  Google Scholar 

  36. L. St Marie, A. El Fatimy, J. Hruby, I. Nemec, J. Hunt, R. Myers-Ward, D.K. Gaskill, M. Kruskopf, Y. Yang, and R. Elmquist, Nanostructured graphene for nanoscale electron paramagnetic resonance spectroscopy, J. Phys. Mater. 3, 014013 (2020)

  37. A. El Fatimy, A. Nath, B.D. Kong, A.K. Boyd, R.L. Myers-Ward, K.M. Daniels, M.M. Jadidi, T.E. Murphy, D.K. Gaskill, P. Barbara, Ultra-broadband photodetectors based on epitaxial graphene quantum dots. Nanophotonics 7, 735 (2018)

    Article  Google Scholar 

  38. A. El Fatimy, P. Han, N. Quirk, L. StMarie, M.T. Dejarld, R.L. Myers-Ward, K. Daniels, S. Pavunny, D.K. Gaskill, Y. Aytac, T.E. Murphy, P. Barbara, Effect of defect-induced cooling on graphene hot-electron bolometers. Carbon 154, 497 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

C. O. Edet acknowledges eJDS (ICTP).

Funding

COE and NA acknowlegdes the support from the  Long-Term Research Grant Scheme (LRGS) Grant LRGS/1/2020/UM/01/5/2 (9012-00009) provided by the Ministry of Higher Education of Malaysia (MOHE). RE and SAA acknowledges the support from the LRGS under Grant Number LRGS/1/2020/UM/01/5/4 (9012-00010) provided by the Ministry of Higher Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Al.

Ethics declarations

Conflict of interest

All the authors declared that there is no conflict of interest in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edet, C.O., Al, E.B., Ungan, F. et al. Influence of perturbations on linear and nonlinear optical properties of quantum dot. Eur. Phys. J. Plus 138, 904 (2023). https://doi.org/10.1140/epjp/s13360-023-04519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04519-8

Navigation