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Abstract Diffusive shock acceleration (DSA) of particles at collisionless shocks is the major accepted paradigm about the origin
of cosmic rays (CRs). As a theory, it was developed during the late 1970s in the so-called test-particle case. If one considers the
influence of CR particles at shock structure, then we are talking about nonlinear DSA. We use semi-analytical Blasi’s model of
nonlinear DSA to obtain non-thermal spectra of both protons and electrons, starting from their quasi-thermal spectra for which we
assumed the κ-distribution, a commonly observed distribution in out-of-equilibrium space plasmas. We treated more carefully than
in the previous work the jump conditions at the subshock and included electron heating, resonant and, additionally, non-resonant
magnetic field instabilities produced by CRs in the precursor. Also, corrections for escaping flux of protons and synchrotron losses
of electrons have been made.

1 Introduction

The main accepted paradigm that aims to explain the acceleration of particles to cosmic ray (CR) energies up to the ∼ 1015 eV or even
higher is the so-called diffusive shock acceleration (DSA) at collisionless interstellar medium (ISM) shocks [1, 2]. Primary sites of
CR acceleration are believed to be supernova remnants (SNRs) and other astrophysical objects in our Galaxy. As a theory, DSA was
developed during the late 1970s independently by [3–5] and [6]. There are two main approaches to the problem, macroscopic and
microscopic introduced by Bell [5]. In common to both approaches is that they treat the so-called test-particle case, when particles
do not affect the shock. If one considers the influence of CR particles at shock structure, then we are talking about nonlinear DSA,
CR back-reaction and modified shocks (see e.g., [7–12]).

The presence of CRs affects the shock in such a way that it changes the (Rankine–Hugoniot) jump conditions, i.e., the very
structure of the shock. This can be understood as follows: high-energy particles diffuse ahead of the shock and their non-negligible
pressure/energy density induce the so-called precursor with density, pressure and velocity gradients. The discontinuity is still present
at the so-called subshock with compression Rsub � ρ2/ρ1 � u1/u2, where ρ is the density and u fluid velocity in the shock frame.
However, this compression is smaller than the total compression of a modified shock Rtot � ρ2/ρ0 � u0/u2. Indices, 2, 1, 0, mark,
respectively, downstream, immediate upstream and far upstream values with regard to the subshock, with shock velocity in the
laboratory frame being us � −u0, since far upstream plasma in this frame is assumed to be at rest.

In the test-particle approach the standard DSA particle spectrum is in the power-law form f (p) ∝ p−3R/(R−1) ∝ p−4, for strong
shock with compression R � 4. While CRs modify the shock, the shock itself at the same time modifies the CR particle (power-law)
spectrum, producing it to be more concave-up. Further upstream the CR particles reach, the more energy/momentum they have, so
the low-energy particles will be confined to the subshock, and high-energy particles can sample the whole precursor. Conditionally
speaking, the low-energy particles will experience only the jump at the subshock and have a steeper spectrum, while the high-energy
particles will experience larger compression, consequently having a flatter spectrum. The overall spectrum will thus be concave-up.

The DSA-based description strictly holds for ions i.e., protons, whose acceleration is more easy to understand since the typical
shock thickness should be of the order of proton gyro-radius [13–16], and thus a fraction of protons needs to be only slightly supra-
thermal in order to cross and re-cross the shock unaffected and engage in DSA cycles. Because of their much smaller mass, and
consequently smaller gyro-radii, the acceleration of CR electrons is generally less understood. Nevertheless, kinetic particle-in-cell
(PIC) simulations that include both protons and electrons [17–19], as well as synchrotron radio observations (see [20]) suggest that
electron spectra resemble those of protons.
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In the next section, we shall use semi-analytical Blasi’s model of nonlinear DSA [10, 11] to obtain non-thermal spectra of both
protons and electrons, starting from their quasi-thermal spectra for which we assumed the κ-distribution, a commonly observed
distribution in out-of-equilibrium space plasmas [21–24].

2 Analysis and results

For modeling proton and electron spectra, we shall use Blasi’s semi-analytical model whose details can be found in [10, 11] (see
also [12, 19, 25–30]). Blasi’s model implies solving diffusion-advection equation
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−
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coupled with equations of mass and momentum conservation
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−Up , (4)

where ρ is density,

�p � Pth
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1 + ζ (γ − 1)
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0

MA
(1 −U γ

p )
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(5)

is normalized thermal gas pressure (see [8]), �p CR pressure, and αp magnetic field, i.e., waves pressure, both normalized to
shock ram pressure ρu2

0, and Up is velocity in the precursor normalized to u0. Mach number and Alfven–Mach number in the
unperturbed medium (ISM far upstream) are defined as M0 � u0/cs and MA � u0/vA, where cs � √

γ P0/ρ0 is the sound speed,
vA � B0/

√
4πρ0 Alfven velocity, B0 ISM magnetic field strength, γ adiabatic index (set to 5/3) and ζ is the Alfven-heating

parameter [31]. The model assumes that particles of momentum p typically diffuse up to a distance

xp � D(p)

Upu0
(6)

in the precursor, where D(p) is Bohm-like diffusion coefficient, so that all relevant physical quantities u, PCR, Pw, Pth, and conse-
quently Up , �p , αp , �p , depend on p.

2.1 The κ–distribution

PIC simulations [13–15] show that the proton downstream spectrum consists of thermal, supra-thermal and non-thermal parts.
Presence of supra-thermal part is expected, since in order to enter DSA cycles, particles need to be pre-accelerated somehow. This
can be accomplished by specular reflection, through the so-called shock-drift acceleration (SDA) by a combination of SDA and
DSA [17, 32], or by a kind of micro DSA (μ-DSA, [33]). As already said, the acceleration of electrons is less easier to understand
[9, 34], but they should generally go through the similar pre-acceleration process and once they reach the injection momentum of
protons, they will continue to behave in the same fashion and further accelerate through the DSA mechanism.

In [32], in order to explain the downstream particle spectrum, the authors introduce the so-called minimal model. As assumed
in this model, while the majority of the (thermal) protons will be advected and isotropized downstream, a constant fraction of them
can gain extra energy by performing a few gyrations while drifting along the shock surface, performing SDA cycles. A fraction
of these supra-thermal particles provide the seed (injection) particles for the standard DSA mechanism. The model thus describes
supra-thermal and non-thermal particle distributions through the same formalism, as basically the same distribution.

One could also try to describe thermal and supra-thermal particle distribution with one continuous quasi-thermal distribution –
the κ-distribution [35, 36]

dN

dp
� 4πp2 f (p) � N04πp2

(πκp2
κ )3/2


(κ + 1)


(κ − 1
2 )

1[
1 + p2

κp2
κ

]κ+1 , p2
κ � 2mkTκ (7)

In this quasi-thermal distribution, index κ is a free parameter which serves as a kind of a measure of non-equilibrium [21, 22]. When
κ → ∞, the plasma reaches equilibrium and the distribution becomes Maxwellian

dN

dp
� 4πp2N0

(2πmkT )3/2 e
− p2

2mkT . (8)

123



Eur. Phys. J. Plus         (2023) 138:863 Page 3 of 11   863 

As inferred from PIC simulations, this happens further from the shock, in the far downstream [35] and possibly immediately behind
the shock after enough time has passed. For higher momenta, κ-distribution is actually a power-law with index −2κ . Note that while
T is true thermodynamic temperature, Tκ in Eq.(7) is not.

At some injection momentum, κ-distribution should match non-thermal distribution. We can thus find the matching condition
that relates injection parameter ξ � pinj/pth (p2

κ � κ−3/2
κ

p2
th) and injection efficiency η � nCR/n, where n is the total particle

number density and nCR that of CRs [36]

η � 4

3
√

π
(Rsub − 1)


(κ + 1)

(κ − 3
2 )3/2
(κ − 1

2 )

ξ3

[
1 + ξ2

κ− 3
2

]κ+1 . (9)

When κ → ∞ one obtains standard injection efficiency (from matching non-thermal to thermal (Maxwell) distribution) as [26]

η � 4

3
√

π
(Rsub − 1)ξ3e−ξ2

. (10)

2.2 Magnetic fields from streaming instability

2.2.1 Resonant instabilities

In addition to CR acceleration at strong collisionless ISM shock, a process that is happening in parellel is the magnetic field
amplification. Some amplification must occur, since plain shock compression (of normal field component B⊥) cannot explain the
observed magnetic field strengths in synchrotron sources, for example. Magnetic field pressure in Eq. (3) emerges from the so-called
streaming instability induced by CRs, that can be resonant or non-resonant [5, 37, 38].

In the case of resonant instability, the unstable modes are Alfven waves whose wavelength is assumed to be in resonance with
CR gyration or Larmor radius rL � p⊥/(eB‖), where e is elementary charge and B‖ ≈ B0, i.e., for the wave number k we should
have krL ∼ 1. The stationary equation for the growth and transport of self-generated Alfven waves [39] with normalized pressure

αr � B2

8πρ0u2
0

can be transformed to [31]

2Up
dαr

dx
� (1 − ζ )VA

d�

dx
− 3αr

dUp

dx
, (11)

where VA is normalized compressed Alfven speed VA � √
Up/MA. Assuming strong shocks i.e., high Mach number, with dominant

CR pressure upstream, � ≈ 1 −Up , the last equation can be solved to give [31]

αr � (1 − ζ )U−3/2
p

1 −U 2
p

4MA
. (12)

The dependenceU−3/2
p describes adiabatic compression, while the term (1−ζ ) regulates Alfven waves damping, as the corresponding

parameter 0 ≤ ζ ≤ 1 in Eq. (5) regulates the amount of Alfven heating. It is clear that this term cannot be too small for magnetic
field to be substantially amplified.

At the subshock, taking into account transmission and reflection of waves, the jump condition for the magnetic field pressure is
[28, 31, 40]

αr ,2 � R2
subαr ,1. (13)

2.2.2 Non-resonant instabilities

Non-resonant or Bell’s instabilities [37] represent almost purely growing modes that do not correspond to Alfven waves. Bell
estimated the saturated field to be [37]

B2
sat

8π
≈ 1

2

u0

c
uCR, (14)

where uCR � 1
γCR−1 PCR is CR energy density. In Ref. [41] the authors added this non-resonant term to resonantly amplified magnetic

field B2
res

8π
≈ uCR/MA to describe magnetic field amplification, particle acceleration and synchrotron emission of SNRs, but only in

the test-particle regime of DSA, without paying attention to the actual structure of the precursor. Empirical evidence that the theory
presented by [41] is quite inaccurate in reproducing radio fluxes of supernova remnants was given by [42]. In [43], full hydrodynamic
modeling was performed and synchrotron radio evolution of SNRs was investigated, with nonlinear particle acceleration based on
Blasi’s model, but aside from different global dependence (∝ u0/c instead 1/MA) the non-resonant instabilities were treated in a
similar fashion to resonant (Eq. 12) which cannot be correct.
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A rigorous description of these instabilities is still missing, but we can use the arguments by [37] and assume for the normalized

magnetic pressure due to non-resonant instabilities αn � B2
res

8πρ0u2
0

� 3ι
2
u0
c �, where ι is some parameter of order unity. If again one

assumes � ≈ 1 −Up , we have finally

αn � 3ι

2

u0

c
(1 −Up). (15)

The lack of understanding of the interaction of particles with these instabilities, does not permit us to go much further than this in
their quantitative description. For the same reasons, it is difficult to treat magnetic field jump conditions at the subshock, and we
can only assume the normal field component(s) to be compressed, so that

αn, 2 � 1 + ( j − 1)R2
sub

j
αn, 1, j � 1 +

B2
1, ⊥
B2

1, ‖
�

{
2 if B1, ‖ � B1, ⊥
3 if B1, x � B1, y � B1, z

In [41] the authors assumed random (isotropic) distribution upstream with j � 3, but it may as well be that j � 2, or something
else.

It is worth noting that αn � αr only for large shock velocities, so the non-resonant instabilities should be relevant e.g., in the
early stages of evolution of SNRs [38]. However, this will depend on the exact values of different parameters involved. By using
Eqs. (12) and (15), for ι � 1 and ζ � 0, αr � αn gives

6u2
0

vAc
� U−3/2

p + U−1/2
p . (16)

The transition between dominant non-resonant and resonant instabilities would then be at u0 ∼ 1000−2000 km/s for vA ∼ 10
km/s. Nevertheless, in this intermediate domain both instabilities should be relevant, as it is shown in Fig. 1. Panel (a) shows the
test particle case with shock velocity u0 � 1010 km/s and 1/Rprec � 0.95, i.e., Rtot � Rsub � R ≈ 4, and panel (b) represents a
modified shock with u0 � 1150 km/s and 1/Rprec � 0.3. Since Up can be related to u(x) i.e., through Eq. (6) to the position in the
precursor x, U1 � 1/Rprec � Rsub/Rtot marks the position of the subshock, while unperturbed medium starts i.e., precursor ends
at U � U0 � 1. We can see that in the intermediate, transition domain, resonant instabilities dominate ahead of the subshock, and
non-resonant further upstream.

2.3 Electron heating

In order to find injection momentum of particles entering DSA through Eq. (9) or (10) one needs to know downstream temperature.
We shall assume ηe � ηp , i.e., ξe � ξp (κe � κp), however T2, e � T2, p . Treating electrons independently (more precisely,
energy conservation for electrons), from Rankine–Hugoniot jump conditions one expects β � T2, e/T2, p � me/mp , nevertheless
observations of SNRs show that this is not the case and that there is significant electron heating, expected to be happening in the
precursor [44–46]. Recently, apparent discrepancies in β between results from SNR shocks, Solar wind shocks and PIC simulations
were highlighted in [47].

For intermediate SNR shock velocities, the amount of heating appears to be roughly constant �E ≈ 0.3 keV, so that [46]

β ≈
3
16meu2

0 + �E
3
16mpu2

0

. (17)

In Refs. [19, 36] the authors implemented this by removing the energy �E � 0.3 keV from Alfven-heated protons and adding
it to electrons (constant electron heating ahead of the subshock), so that the downstream temperatures are T2, p � T ′

2, p − �E/k,
T2, e � T ′

2, e − �E/k (where temperatures T ′
2 are obtained from jump conditions). Nevertheless, it seems that there is flattening in

β � β(u0) dependence, so that for high shock velocities β → β0 ≈ const [46]. This means that for very strong shocks the energy
�E may be a constant fraction of shock ram pressure or proton downstream temperature rather the constant itself.

We shall try to account for this by assuming that

�E � akT2,p + b. (18)

Downstream temperatures for strong shocks can be found from energy conservation, and if we add/subtract �E , we have

kT2,e �γ − 1

2γ

(
1 − 1

R2

)
meu

2
0 + akT2,p + b, (19)

kT2,p �γ − 1

2γ

(
1 − 1

R2

)
mpu

2
0 − akT2,p − b, (20)
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Fig. 1 Ratio of magnetic field
pressure from resonant instabilites
to that from non-resonant
instabilities (solid line) The
dashed line determines a value of
Up i.e., the position in the
precursor where αr � αn . Top
panel a shows the test particle
case with shock velocity u0 �
1010 km/s and 1/Rprec � 0.95,
while the bottom panel
b represents a modified shock
with u0 � 1150 km/s and
1/Rprec � 0.3. For both cases, we
have assumed vA ∼ 10 km/s,
ι � 1 and ζ � 0

yielding the ratio

β �
γ−1
2γ

(
1 − 1

R2

)(
(1 + a)me + amp

)
u2

0 + b

γ−1
2γ

(
1 − 1

R2

)
mpu2

0 − b
. (21)

From the last equation we see that

�E0 � b � 0.3 keV, (22)

and in accordance with observations [46]

β0 � a + (1 + a)me/mp ≈ a � 0.05. (23)

Functional dependence in Eq. (21), as well as that in Eq. (17) with �E � const, are plotted together in Fig. 2.
In our modeling, Eq. (18) i.e., �E � β0kT2, p + �E0 can be applied at the subshock, so that

T2,e � γ − 1

2kγ

( 1

R2
prec

− 1

R2
tot

)
meu

2
0 + T1,e + β0T2,p + �E0/k. (24)

On the other hand, from the overall jump conditions, including Alfven waves [28, 29, 40], and Bell instabilities one has

T2,p + T2,e

T1,p + T1,e
� (γ + 1)Rsub − (γ − 1)[1 − (Rsub − 1)�][

(γ + 1) − (γ − 1)Rsub
]
Rsub

� A,

� � (Rsub − 1)2
Pr ,1 + j−1

j Pn,1

Pp,1 + Pe,1
� (Rsub − 1)2�∗. (25)
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Fig. 2 Ratio of downstream
temperatures of electrons and
protons as a function of shock
velocity. Solid line represents
functional dependence in Eq. (21),
dashed line that in Eq. (17) with
�E � const, while the dotted line
represent the expected value from
jump conditions, assuming no
heating i.e., energy conservation
for electrons

The last two equations with [19]

T1,p

T0
� Rγ−1

prec

(
1 + ζ (γ − 1)

M2
0

MA
(1 − R−γ

prec)
)

,
T1,e

T0
� Rγ−1

prec , (26)

assuming plain adiabatic compression for electrons, allow us to calculate proton and electron downstream temperatures:

T2,p

T0
� 1

1 + β0

(T1,p

T0
+
T1,e

T0

)
A − 1

1 + β0
B,

T2,e

T0
� β0

1 + β0

(T1,p

T0
+
T1,e

T0

)
A +

1

1 + β0
B, (27)

where

B � γ − 1

2

( 1

R2
prec

− 1

R2
tot

)me

mp
M2

0 +
T1,e

T0
+

�E0

kT0
. (28)

2.4 Modeling

In order to obtain particle spectra, we need to solve simultaneously Eq. (1) for protons and electrons, and the differentiated momentum
equation (Eq. 4)

1

3

( 1

Rtot
−Up

)
p

d f p
dp

−
(
Up +

1

3
p

dUp

dp

)
f p � 0, (29)

1

3

( 1

Rtot
−Up

)
p

d fe
dp

−
(
Up +

1

3
p

dUp

dp

)
fe � 0, (30)

dUp

dp

[
1 − U−(γ +1)

p

M2
0

(
2 + ζ (γ − 1)

M2
0

MA

)
− 1 − ζ

8MA

U 2
p + 3

U 5/2
p

− 3ι

2

u0

c

]

� p4 f p√
1 + p2

+
p4 fe√

(me/mp)2 + p2
. (31)

In the last set of equations, we introduced dimensionless quantities p
mpc

→ p, 4π
3

m4
pc

5

ρ0u2
0
f → f , included both resonant and

non-resonant instabilities, and used Eq. (5) for the pressure of thermal protons, while for thermal electrons, as already said, we
assumed adiabatic compression �e � U−γ

p (with �E added at the subshock). Note that M0 and MA are (proton) Mach number and
Alfven–Mach number in the far upstream.

Between pinj, e and pinj, p it is assumed that Up � 1
Rprec

, so that fe ∝ p−3Rsub/(Rsub−1). We need to prescribe Rprec here and

at the beginning of integration (p � pinj, p , f p � 3Rtot
Rsub−1

ηn0

4πp3
inj, p

, Up � 1/Rprec) and start iterations. In each iteration Rsub (and

consequently Rtot) is calculated through equations [10, 11, 28].

R2
sub−

2 + (γ − 1 + 2γ P∗
w1)M2

1

2(γ − 2)P∗
w1M

2
1

Rsub +
γ + 1

2(γ − 2)P∗
w1

� 0,
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M2
1 �M2

0 R
−γ−1
prec

(
2 + ζ (γ − 1)

M2
0

MA
(1 − R−γ

prec)

)−1

,

P∗
w1 � 1

γ M2
1

�∗ � (Rprec − 1)

(
1 − ζ

4MA

√
Rprec(Rprec + 1) +

j − 1

j

3ι

2

u0

c

)
. (32)

Iterative procedure is stopped when Up � 1 at

pmax � 3

8

u0

c2 eB0R, (33)

whereR is now (SNR) shock radius (see [48] and references therein). We actually need to integrate only advection–diffusion equation

for protons since fe � Kep f p , where electron-to-proton ratio at high energies is Kep � ηe
ηp

( me
mp

β)
3

2(Rsub−1) [19].
We shall apply two corrections a posteriori: for protons we shall apply a correction due to the flux of escaping particles, and for

electrons a cutoff at ploss due to the synchrotron losses.

2.4.1 Escaping flux

The proton spectrum obtained through the above integration has a sharp break at p � pmax. In reality, we expect particles to escape
freely after reaching the outer boundary of precursor at xmax. This can be accounted for by inclusion of an additional term φesc in
Eq. (1) [28, 49], which will lead to a relatively gradual decrease around pmax in the spectrum.

If one defines normalized escape flux �esc � φesc
u0 f , the solution of Eq. (1) can be written as [28, 49]

f � 3

Up − 1/Rtot

ηn0

4πp3
inj

exp

(
−

∫ p

pinj

3(Up + �esc)

Up − 1/Rtot

dp′

p′

)
. (34)

By using Eq. (6) and assuming Bohm diffusion with coefficient D � 1
3

pv
eB0

, we approximate the normalized escape flux as

�esc � 1

e
pmaxc
pv − 1

, (35)

from which it follows that the spectrum obtained through the system of Eq. (31) f p, 0 can be corrected approximately as

f p � f p,0(1 − e− pmax
p )

3Rtot
Rtot−1

p
pmax , (36)

where for p > pmax we assumed f p, 0 ∝ p
−3Rtot
Rtot−1 .

2.4.2 Synchrotron losses

Ultra-relativistic electrons in strong magnetic field will emit synchrotron radiation. We should thereby also try to correct electron
spectrum for synchrotron losses. Since the magnetic field is the strongest at the subshock (particularly downstream), we can
reasonably expect that the losses will be dominant there. We shall therefore use test-particle approach results by [50] and [51] who
included an additional term in the advection–diffusion equation: 1

p2
∂
∂p (p2A f ). For high-energy electrons suffering bremsstrahlung

losses A ∝ p, while for synchrotron or inverse-Compton losses A ∝ p2 [1].

In [51], by assuming Bohm difussion and taking A � 4e4B2

9m4
ec

6 p
2, the authors find that the resulting spectrum at high momenta has

the form f ∝ √
p · e

−
(

p
ploss

)2

, where, after our small adaptation,

ploss �
√
RB

1 +
√
RB

Rsub − 1

Rtot

m2
ec

2u0√
2e3B2/27

(37)

and RB � B2/B1 is the magnetic field jump at the subshock.
If we adapt, highly provisionally, the procedure previously applied to protons, we can postulate

�loss � −
7Rtot−Rloss
6RtotRloss

( p
ps

)s

( p
ps

)s + 1
+

2(Rtot − Rloss)

3RtotRloss

( p

ploss

)2
, (38)

where compression Rloss corresponds to momentum ploss. This gives

fe � fe,0

[
1 +

( p

ps

)s] 7Rtot−Rloss
2s(Rtot−Rloss)

e
−

(
p

ploss

)2

. (39)

This agrees with analytical approximation given by [51] for the test particle case, where Rtot � Rsub ≈ 4, Rloss � 1, which have
correct limits
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Fig. 3 Non-thermal proton and
electron spectra for injection
parameter ξ � 3.3 that match
thermal Maxwell distribution

f ∝
{
p−4 ifpinj ← p,

p1/2e
−

(
p

ploss

)2

if p → ploss.

Index s and momentum ps , depend on RB and Rtot (Rsub) [51], however, there is no general analytical expression for them.
Furthermore, for specific ps , particularly if Rtot > 4, there is a visible pile-up/bump in the spectrum in the cutoff region (see case
Rtot � 7 in [50]). Nevertheless, since for strong unmodified shocks we do not expect pronounced bumps, and for modified shock
the spectrum is already concave-up, we shall only incorporate exponential cutoff at ploss, so that

fe ≈ fe,0e
−

(
p

ploss

)2

, (40)

where for p > ploss we assumed fe, 0 � Kep f p, 0.

2.4.3 Results

The setup is similar as in [19, 36, 49] and for resonant modes it assumes Alfven-heating parameter ζ � 0.5 (between extremes
ζ � 0 – no heating, and ζ � 1—maximum heating i.e., complete waves damping), for non-resonant modes ι � 1, j � 3, shock
velocity u0 � 5000 km/s, ambient density n0 ∼ 0.1 cm−3, temperature T0 � 105 K, magnetic field B0 � 5.3775 μGa, Mach and
Alfven–Mach numbers M0 � MA � 135. We assumed that the injection parameter ξ (and thereby efficiency η), as well as the index
κ , is the same for protons and electrons.

In Figs. 3 and 4, we give the results for two cases: (κ → ∞, ξ � 3.3), and (κ � 5, ξ � 5). Both cases show strongly modified
shock/nonlinear DSA spectra. The former case gives the proton and electron spectra that match Maxwellians at pinj, while the
latter case gives spectra that match κ-distributions. In [36] we already noted that Eq. (9) generally gives higher efficiency when
compared to the case κ → ∞ for the same ξ (although this parameter for the κ-distribution is not uniquely defined, see [36]). This
means that in contrast to the Maxwellian-match situations where realistic ξ ∼ 3.5−4 [13, 26], to reach the test particle case for
κ–distribution-match, ξ must be much larger [36]. Efficiency η in the latter case depends on both ξ and κ .

For the case (κ → ∞, ξ � 3.3), the subshock compression is Rsub � 3.17, the total compressions is Rtot � 7.07, and consequently
Rprec � 2.23. Injection efficiency is η � 0.0011 and electron-to-proton ratio at high energies is Kep � 0.0011. For the case (κ � 5,
ξ � 5), the subshock compression, the total compression and the precursor compression are, respectively, Rsub � 3.01, Rtot � 7.48,
Rprec � 2.49, injection efficiency is η � 0.0010 and Kep � 0.0007.

A more careful treatment of subshock jump conditions and electron heating leads to higher electron-to-proton ratio Kep than in
our previous work [19]. This means that the observed ratio for primary (Galactic) CRs Kep ∼ 0.01 is more easily achievable in
these models. The Kep ratio is slightly lower for the κ–distribution case, for the practically same injection efficiency. In [35] we
showed that while the distribution behind the shock can be represented by the quasi-thermal κ–distribution, farther downstream
index κ increases, the distribution at high momenta becomes steeper, and the (thermal) spectrum tends to Maxwellian. This may
also happen with time, during the course of evolution of SNRs, so that the κ–distribution may be relevant only in the early stages
when we still have a non-equilibrium plasma.

Also, in contrast to previous calculations that considered only resonant instabilities [19, 36], we included Bell’s instabilities that
actually prevail at us � 5000 km/s. Since the CR energy density in the precursor dominates over magnetic field and thermal gas
energies, this does not affect the shape of the spectrum and overall parameters as much as the subshock jump condition (with electron
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Fig. 4 Non-thermal proton and
electron spectra for injection
parameter ξ � 5 that match
quasi-thermal κ–distribution with
index κ � 5. Solid lines show
κ-distributions and non-thermal
distributions that join at injection
momenta pinj. Maxwellians with
the same downstream
temperatures (Tp and Te) are
shown with dashed lines

heating), but may be important in practical applications of CR astrophysics, dealing with magnetic field, e.g., in modeling of gamma
or synchrotron radio emission of astrophysical sources.

3 Conclusion

In this paper we gave an overview of nonlinear DSA, based on Blasi’s semi-analytical model, while incorporating some add-ons,
in addition to corrections for escaping flux of protons and synchrotron losses of electrons, that should be important for obtaining
more realistic protons and electrons non-thermal spectra. We started by assuming a quasi-thermal κ-distribution at low energies
[35], that through matching condition at the injection momentum provides different recipe for calculating injection efficiency η.
This recipe generally gives higher efficiency when compared to the Maxwellian for the same injection parameter ξ [36]. We treated
more carefully than in previous work the jump conditions at the subshock, included electron heating, resonant and, additionally,
non-resonant magnetic field instabilities [37].

Since these instabilities should be dominant for shock velocities us > 1000−2000 km/s, their inclusion, as well as correct
estimate of electron-to-proton ratio at high energies Kep, are extremely important for e.g., the evolution of young SNRs and their
synchrotron radio emission modeling (see e.g., [43]). To this end, it is crucial to address the questions how injection efficiencies of
both protons and electrons, downstream electron-to-proton temperature ratio, and consequently CR electron-to-proton ratio at high
energies, change with shock velocity. Along with better theoretical understanding of injection and acceleration processes, some
answers may hopefully be provided by PIC simulations.
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16. V. Zeković, Resonant micro-instabilities at quasi-parallel collisionless shocks: cause or consequence of shock (re)formation. Phys. Plasmas 26(3),

032106 (2019). https://doi.org/10.1063/1.5050909
17. J. Park, D. Caprioli, A. Spitkovsky, Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev.

Lett. 114(8), 085003 (2015). https://doi.org/10.1103/PhysRevLett.114.085003
18. F. Guo, J. Giacalone, The acceleration of electrons at collisionless shocks moving through a turbulent magnetic field. Astrophys. J. 802(2), 97 (2015).

https://doi.org/10.1088/0004-637X/802/2/97
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