
Eur. Phys. J. Plus         (2023) 138:827 
https://doi.org/10.1140/epjp/s13360-023-04462-8

Regular Art icle

Gold coated microstructures as a platform for the preparation
of semiconductor-based hybrid 3D micro-nano-architectures

Eduard V. Monaico1,a , Veaceslav V. Ursaki1,2,b , Ion M. Tiginyanu1,2,c

1 National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
2 Academy of Sciences of Moldova, 2001 Chisinau, Moldova

Received: 1 May 2023 / Accepted: 9 September 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract In this paper, three types of microstructures are argued as substrates for electrochemical deposition of Au nanodots. They
include: (a) aero-GaN consisting of hollow GaN microtetrapods, (b) microdomains of pores with a controlled design produced
by anodization of InP wafers, and (c) patterned microdomains composed of strips with alternating electrical conductivity in GaN
crystals grown by hydride vapor phase epitaxy. Uniform deposition of Au nanodots with controlled density is demonstrated by
using pulsed electroplating, the voltage pulse width and amplitude as well as the pause between pulses and the conductivity of
the substrate serving as adjustable parameters. The morphology of the produced hybrid microarchitectures was investigated by
scanning electron microscopy. The explored microstructures are proposed as platforms for the development of complex 3D hybrid
micro-nano-architectures via the vapor–liquid–solid deposition of various semiconductor nanowires with Au nanodots as catalysts.

1 Introduction

Various functional nanowires with bandgap covering the spectral range from near infrared (NIR) to ultraviolet (UV) have been grown
on a variety of semiconductor substrates by means of catalyst-assisted or self-catalyzed vapor–liquid–solid (VLS) processes. In the
catalyst-assisted processes, Au is the most frequently used catalyzer. As concerns the technologies applied in the VLS process, they
include molecular beam epitaxy (MBE), chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD),
metalorganic vapor phase epitaxy (MOVPE) or metal organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy
(HVPE).

InP and GaAs nanowires belong to semiconductor materials with the bandgap in the NIR spectral range. They have been produced
both with Au catalyst and by self-catalyzed VLS process on various substrates. InP nanowires have been grown with In droplets in
the self-catalyzed VLS process on Si substrates by MOCVD technology [1] and on InP substrates by MOVPE method [2]. With Au
catalyst, InP nanowires have been grown by MOVPE technology on InP [3], MoS2 [4], and quartz [5] substrates. InP nanowires have
also been grown by MBE with Au-In droplets as catalyst on Si substrates [6]. Apart from pure InP nanowires, InAs/InP quantum
rod nanowires were grown on Si substrate [7], InAs/InP quantum-disk nanowires were grown on InP substrates [8], and alternating
InAsP/InP heterostructure nanowires with multiple-quantum-dot structures were grown on InP substrates [9] with Au catalyst. InP
nanowire stems with InSb nanoflags have been grown with Au catalyst for quantum devices [10].

GaAs nanowires have been grown with Ga droplets in the self-catalyzed VLS process on Si substrates by MBE technology [11–13].
With Au catalyst, GaAs nanowires have been grown by HVPE technology on GaAs [14], by MOVPE technology on GaN [15], and by
MOCVD technology on SiN [16] substrates. Apart from pure GaAs nanowires, axial GaAs/Ga(As, Bi) heterostructures were grown
on Si substrates [17], GaAs/(InGa)As/GaAs axial double-heterostructure nanowires [18], core–shell GaAs-AlGaAs nanowires [19]
and GaAs/GaSb core–shell heterostructured nanowires [20] were grown on GaAs substrates, and InAs/GaAs core–shell nanowires
were grown on InAs substrates [21] with Au catalyst.

GaP nanowires with the bandgap in the visible spectral range have been grown with Ga catalyst in the self-catalyzed VLS
process on Si substrates by MBE technology [22]. With Au catalyst, GaP nanowires have been grown by MOVPE [23] and by MBE
technologies [24] on Si substrates, as well as by MOVPE [25] and by solid-source sublimation method [26] on GaP substrates.
Apart from pure GaP nanowires, axial hybrid GaP/Si nanowires [27] and core–shell GaP/GaPN nanowires [28] were grown on GaP
substrates with Au catalyst.
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GaN, ZnO, and ZnS nanowire structures were grown for the UV spectral range applications. GaN nanowires were grown with
Ga droplets in the self-catalyzed VLS process on Si substrates using CVD technology [29]. With Ga-Au-In alloy catalyst, GaN
nanowires were grown by MOCVD on GaN and sapphire substrates [30]. With Ni catalyst, GaN nanowires were grown by CVD
on sapphire substrates [31]. HVPE technology was applied to grow GaN nanowires on Si substrates with either Au catalyst [32],
or with Ni-Au catalyst [33]. In addition to pure GaN nanowires, GaN/InGaN core/shell multiple quantum well (MQW) co-axial
heterostructure nanowires were grown on a variety of sapphire, silicone, copper, tungsten, glass, gallium nitride, and beryllium
oxide substrates [34]. ZnO nanowires were grown with Au catalyst by carbothermal reduction method on Si substrates [35, 36], by
vapor phase deposition [37] and by mist-CVD [38] on GaN substrates. In addition to pure ZnO nanowires, ZnO-ZnMgO core–shell
nanowires have been grown on sapphire with Au catalysts [39]. ZnS nanowires [40, 41] and ZnS nanotubes [42] were grown by
thermal evaporation of ZnS powder on Si substrates with Au catalysts. ZnS nanowires were also grown by MOCVD on GaAs
substrates with Au catalysts [43]. Apart from pure ZnS nanowires, ZnS/diamond-like carbon (DLC) core–shell heterostructure
nanowires [44] and ZnS/SiO2 core–shell nanowires [45] were fabricated on Si substrates with Au catalysts. GaN/ReS2, ZnS/ReS2

and ZnO/ReS2 core–shell nanowire heterostructures were produced by CVD on SiO2/Si wafers with Au catalysts [46].
The variety of semiconductor nanowire structures produced with Au catalyst-assisted VLS growth on various substrates, covering

a wide spectral range, constitutes a powerful platform for many applications in electronics, optoelectronics, photonics, energy,
photocatalysis, piezoelectric generators, sensors etc. At the same time, most of these nanostructures were prepared on flat substrates.
Deposition of semiconductor nanowire arrays on microstructures with controlled design and morphology, would result in more
complex micro-nano-structure assemblies, which are expected to enlarge even more their areas of applications.

The goal of this paper is to demonstrate some 3D microstructure platforms with Au nanodot coatings for subsequent growth of
semiconductor nanowires and other applications.

2 Methods and materials

Three basic types of substrates were used in this paper. The first one is composed of aero-GaN 3D structures obtained by transforming
the sacrificial ZnO tetrapods [47] into GaN microtubes in a HVPE process as described elsewhere [48].

The second type of substrates was prepared on crystalline 500-µm thick n-InP(100) wafers with a free electron concentration of
1.3×1018 cm−3 supplied by CrysTec GmbH, Germany. Anodization was performed using 3.5 M NaCl electrolyte in the potentiostatic
mode at applied voltage of U � + 6 V in a double electrochemical cell with three electrodes, where the InP wafer played the role
of working electrode, while an Ag/AgCl electrode and a Pt electrode served as reference and counter electrode, respectively.

Free-standing HVPE-grown 300-µm thick wurtzite-phase (0001)-orientated n-GaN single crystalline samples with the density of
threading dislocations in the range (1–2)×10 7 cm −2 acquired from SAINT-GOBAIN Crystals served as a third type of substrates.

Pulsed electrochemical deposition of Au was realized in a commercially available gold bath containing 5 g L−1 Au (DODUCO
GmbH, Germany) at temperature of 25 °C in a common two-electrode plating cell where the sample served as working electrode,
while a platinum wire was used as a counter electrode. The electrochemical etching and pulsed electroplating with controlled
parameters of pulse width (ton), pause between pulses (toff), and voltage pulse amplitude (U) were performed according to the
experimental setup and methodology described in detail in a recent paper [49]. In the case of electroplating on aero-GaN pellets,
half of the sample was immersed in plating electrolyte, while the electrical contact was realized on the other side by means of silver
paste.

The morphology (top view and cross-sectional view) of samples was investigated using TESCAN Vega TS 5130 MM scanning
electron microscope (SEM).

3 Results and discussions

3.1 Aero-GaN covered by Au nanodots

Various aeromaterials consisting of hollow microtetrapods, such as aero-GaN [48], aero-ZnS [50], aero-Ga2O3 [51], and aero-TiO2

[52] were developed previously on the basis of networks of ZnO microtetrapods produced by the flame transport approach [47].
Such networks of ZnO microtetrapods were used as sacrificial templates for the preparation of aero-GaN 3D structures [48].

As previously shown, Au nanodots can be deposited on semiconductor substrates by pulsed electroplating [49], and the deposition
is controlled by the conductivity of the substrate, the applied cathodic voltage and the width of voltage pulses. The mechanism of
pulsed electrochemical deposition of metal nanodots (the so-called “hopping electrodeposition”) is governed by the Schottky barrier
height at the interface of the metallic nanodot with the semiconductor template [53]. The size of the metal nanodots after their
nucleation is controlled by the number of applied voltage pulses. However, it is limited by the height of the Schottky barrier. For
instance, for a GaP template with the free electron concentration of 2×1017 cm−3 the limit diameter of Au dots was found to be
around 20 nm [53]. After reaching this threshold size, a new nanodot is nucleated, and the deposition process continues until the
entire surface of the semiconductor template is covered by a monolayer of self-assembled Au nanodots. It was also found that the
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Fig. 1 a SEM image (registered
using a detector with
backscattered electrons) of a
hollow GaN microtetrapod from
the aero-GaN sample. b SEM
image of a hollow GaN
microtetrapod covered by Au
nanodots. The parameters of
electroplating: ton � 50 µs; toff �
1 s; U � − 15 V, tdep � 120 s

density of the deposited Au nanodots on semiconductor nanostructures under identical electroplating conditions is determined by
the conductivity of the nanostructure, and it was proposed to use the gold electroplating as a tool for assessing the conductivity of
semiconductor nanostructures [54].

SEM image of a GaN hollow microtetrapod extracted from the aero-GaN material produced as described elsewhere [48] is shown
in Fig. 1a. The gold electroplating on such a microtetrapod with 50 µs pulse width resulted in its coating with Au nanodots, as shown
in Fig. 1b. One can see that the density of Au nanodots deposited in the region where the microtetrapod arms intersect is higher,
indicating the higher electrical conductivity of this region as compared to the conductivity of the microtetrapod arms. The deposited
Au nanodots on these microstructures may serve as catalyst nucleation sites for the growth of nanowires with a given composition,
which are expected to grow out from the surface of the microtetrapod arm. Thus, a complex micro-nano-architecture composed of
two constituent components with different chemical compositions can be formed, namely of microtetrapods covered by an array of
nanowires.

3.2 Porous microdomains prepared by design for metal deposition

The microdomains of pores with a controlled design represent another platform for the metal-assisted fabrication of complex micro-
nano-architectures. It is known that two main types of pores are generated by anodization of semiconductor substrates, namely of
pores growing in crystallographic directions, and of those growing in the directions of current lines. The latter ones are always
oriented in a direction perpendicular to the equipotential lines inside the anodized sample, irrespective of the crystallographic
orientation [55]. When the surface of the substrate subjected to anodization is covered by a mask with a special design, the current
line-oriented pores start to grow on the surface of the substrate non-covered by the mask, which is exposed to the electrolyte. They
are initially oriented perpendicularly to the substrate surface, but later on their growth is deflected under the mask in the direction
parallel to the substrate surface [56]. The equipotential lines inside the anodized sample and, respectively, the configurations of the
pore microdomains formed under the mask are determined by the design of the mask, as shown in Fig. 2a for a square mask. The
different shape of the porous design at the corner marked with an asterisk in Fig. 2a as compared to the other three corners is due
to the worse adhesion of the photoresist mask at this corner. The technological route for growing pores parallel to the top surface of
the substrate was previously applied to InP and ZnSe templates [55, 57].

More complex designs of the microdomains of pores are produced with masks containing holes [58], as shown in Fig. 2b. A
sulfur doped n-InP wafer with the thickness of 500 µm and electron concentration of 1.3×1018 cm−3, was covered by a positive
photoresist AZ 1505 with the thickness of 1 µm and the shape shown in Fig. 2b (left). It was subsequently subjected to anodization
in darkness at room temperature in an aqueous 3.5 M NaCl solution. Two types of pore arrays are generated during anodization. One
array of pores propagated under the photoresist mask from its edge in the direction of the round hole, as marked by bold arrows in
Fig. 2b (right). Another array of pores started to propagate in the radial direction of the open hole in the photoresist mask as marked
by narrow arrows. This second array of pores was later on deflected in the direction of the first arrays of pores due to their interaction.
It is known that the current-line oriented pores cannot intersect each other, in contrast to the crystallographically-oriented pores
[55]. An interesting design of the pore domain is formed as a result of this interaction, as shown in Fig. 2b (right). This design with
two pore arrays formed in the same porous micro-domain is especially important for microfluidic applications, since the entrance
in the first array of pores is at the edge of the photoresist mask, while the entrance in the second arrays of pores is situated in the
round hole of the mask.

Another interesting feature of this microdomain of pores is related to the fact that it is buried under the surface of the semiconductor
wafer at a deepness of the order of the surface depletion region, i.e., from several tens to several hundreds of nanometers, depending
on the conductivity of the anodized substrate [56]. Since this region is depleted from charge carriers, its resistivity is high, and metal
deposition does not occur on it upon electroplating. On the other side, the distance between pores is larger, and these regions in
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Fig. 2 a Top view SEM image of
the porous domain formed in an
InP substrate under the square
photoresist mask after
electrochemical etching. b SEM
image of the anodized InP
substrate using a photoresist mask
with an open hole. Inset in (b) is
the enlarged view of a region of
the sample surface after pulsed
electroplating: ton � 10 µs; toff �
1 s; U � − 12 V, tdep � 100 s.
SEM images after electrochemical
etching are reproduced from
Physica Status Solidi—Rapid
Research Letters 2300039. https://
doi.org/10.1002/pssr.202300039.
Copyright © 2023 with permission
from John Wiley and Sons [58]

between pores are conductive. As a result, arrays of Au nanodots are deposited on these conductive regions during electroplating,
as shown in the inset of Fig. 2b. The density of the Au nanodots in the array is controlled by the number of applied pulses during
electroplating. Apart from that, Au nanodots can also be deposited inside the pores of the porous domain, and their density can be
varied from rare nanodots to monolayers of self-assembled Au nanodots forming metal nanotubes inside the pores. Such a kind of
metal nanotubes has been previously deposited in different porous templates [55, 57, 59]. As mentioned above, these Au nanodots
can serve as catalyst nucleation sites for the growth of nanowires with various chemical compositions, forming another type of
complex micro-nano-structures.

3.3 Patterned GaN substrates for the deposition of Au nanodots

GaN substrates grown by HVPE technology can also serve as a platform for the deposition by design of semiconductor nanowires.
It was previously found that the HVPE grown GaN crystals are micro-structured both along the surface and in the bulk. In spite of
advantages of the HVPE growth, such as high growth rate (> 100 µm/h) and relatively high material purity, producing material with
uniform conductivity throughout the bulk is still a challenge. The formation of V-shaped defects or pits during the HVPE growth of
GaN was found to lead generally to the generation of extended inhomogeneities upon subsequent overgrowth [60].

Pyramidal-type microstructures have been better evidenced in the HVPE grown GaN as a result of anodization of the as-grown
material [60, 61], and a model has been proposed to explain their formation [60]. It was demonstrated that these pyramids consist
of layers with alternating high and low conductivity [60–62], and these features result in the formation of concentric rings with
alternating conductivity at the surface of the material, as shown in Fig. 3a. These circular microdomains are suitable for the deposition
of metallic nanodots on rings with higher conductivity, as shown in Fig. 3b. The deposited nanodots can be further used for the
growth of nanowires from other semiconductor materials, thus resulting in the fabrication of complex micro- nano-architectures
similar to those produced on porous InP microdomains.

The cleavage of the electrochemically etched sample shown in Fig. 3c demonstrates the conductivity modulation in the bulk of
the material, while the image in Fig. 3d demonstrates the electrochemical deposition of Au nanodots on a freshly cleaved as-grown
HVPE GaN substrate.

Figure 4 demonstrates possibilities for controlling the density of the deposited Au nanodots on a GaN substrate grown by HVPE
from isolated nanodots to concentric dense gold rings.
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Fig. 3 a Top-view SEM image
(registered using a detector with
backscattered electrons) of the
as-grown HVPE GaN
free-standing substrate revealing
alternating concentric rings with
different electrical conductivities.
The dark regions exhibit higher
conductivity. b gold nanodots
electroplated for 100 s on the
surface of the HVPE as-grown
GaN substrate at 50 µs pulse
width, 1 s pause between the
pulses, and pulse
amplitude—15 V.
c cross-sectional SEM view of
HVPE GaN substrate after
electrochemical etching in 1 M
HNO3 at 25 V for 10 min. d The
electrochemical deposition of Au
nanodots on freshly cleaved
as-grown HVPE GaN substrate
demonstrating the nonuniformity
of doping during the HVPE
growth

Fig. 4 Dependence of Au
deposition on the electroplating
conditions: a ton � 50 µs; toff �
1 s; U � − 15 V, tdep � 100 s;
b at longer duration of
electroplating tdep � 1200 s;
c enlarged SEM image from (b)
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4 Conclusions

The results of this study demonstrate possibilities for depositing arrays of Au nanodots with controlled density on various microstruc-
tured semiconductor substrates. The density of nanodots is determined by the parameters of pulsed electroplating, such as the
voltage pulse amplitude and width, the pause between pulses, as well as by the conductivity of the substrate. Networks of hollow
GaN microtetrapods constituting the aero-GaN, microdomains of pores with a controlled design produced by anodization of InP
substrates, and patterned microdomains composed of strips with alternating electrical conductivity inherent to HVPE-grown GaN
are among microstructures demonstrated in this study. The self-assembled Au nanodots can serve as catalyst nucleation sites for
the growth of nanowires with various chemical compositions, as previously demonstrated using different technological approaches,
thus forming complex 3D micro-nano-architectures promising for photocatalytic [51, 63] and other applications.
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