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Abstract This paper deals with the partial solution of the energy eigenvalue problem for generalized symmetric quartic oscillators.
Algebraization of the problem is achieved by expressing the Schrödinger operator in terms of the generators of a nilpotent group,
which we call the quartic group. Energy eigenvalues are then seen to depend on the values of the two Casimir operators of the
group. This dependence exhibits a scaling law which follows from the scaling properties of the group generators. Demanding that
the potential gives rise to polynomial solutions in a particular Lie algebra element puts constraints on the four potential parameters,
leaving only two of them free. For potentials satisfying such constraints, at least one of the energy eigenvalues and the corresponding
eigenfunctions can be obtained in closed analytic form by pure algebraic means. With our approach, we extend the class of quasi-
exactly solvable quartic oscillators which have been obtained in the literature by means of the more common sl(2, R) algebraization.
Finally, we show how solutions of the generalized quartic oscillator problem give rise to solutions for a charged particle moving in
particular non-constant electromagnetic fields.

1 Introduction

Quantum anharmonic oscillators play a prominent role if one wants to model physical phenomena in molecular, atomic, nuclear
and particle physics. Therefore, a huge literature deals with solution methods for anharmonic oscillator problems. Whereas the
harmonic oscillator is exactly solvable in the sense that all its energy eigenvalues can be obtained by pure algebraic means and the
corresponding eigenfunctions are known in closed analytic form, this is not the case for anharmonic oscillators. Therefore, either
numerical methods and/or approximations have to be applied. An up-to-date exposition of approximate solution methods to quantum
anharmonic oscillators is given in Ref. [1]. But as it turns out, under some restrictions on the coefficients of (polynomial) anharmonic
oscillators, at least a finite portion of the energy eigenvalues and the corresponding eigenfunctions can be found by algebraic means.
The most prominent example is the one-dimensional Schrödinger operator with sextic anharmonic oscillator potential [2–5]

H(6) � − d2

dx2 + ax6 + bx4 + cx2 + d , a > 0 . (1)

The ansatz

ψ
(6)
N (x) � xk PN

(
x2)e− α

4 x
4− β

2 x
2

(2)

with PN
(
x2
)
, N ∈ N0, being an N th-order polynomial in x2 and k � 0, 1, depending on whether one is interested in parity-even or

parity-odd solutions, respectively, leads to an eigenvalue equation of the form

h(6)φ(y) � ε φ(y) (3)

for φ(y) � PN
(
x2
)
. If the potential parameters a, b, c and d are taken as appropriate functions of the parameters α, β, k and

N , which occur in ansatz (2), the second-order differential operator h(6) can be written as a second-degree polynomial in the
sl(2, R) generators J+

N , J 0
N and J−

N which act on the space of polynomials with degree less or equal to N [6]. As a consequence,
the eigenvalue problem (3) becomes a system of (N + 1) linear homogenous equations for the coefficients of PN

(
y � x2

)
and thus

(N +1) eigenvalues and corresponding eigenfunctions can be found by pure algebraic means. Note that the sextic oscillators solvable
in this way are (for fixed parity) a two-parameter family of functions depending on the two variables α and β which show up in the
exponential of ansatz (2).
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This kind of sl(2, R) algebraization, however, is not only restricted to the sextic anharmonic oscillator. It also works for any
(one-dimensional) Schrödinger operator which, by an appropriate change of coordinates and a gauge rotation, can be transformed
into an operator that is a second-degree polynomial in the sl(2, R) generators J+

N , J 0
N and J−

N . A systematic and comprehensive
investigation of one-dimensional (radial) Schrödinger operators which admit an sl(2, R) algebraization can be found in Ref. [6].
Interestingly, also the known exactly solvable potentials, like the harmonic oscillator or the Morse potential are amenable to this
kind of approach.

Unfortunately, the usual quartic anharmonic oscillator, i.e., a � 0 in Eq. (1), which is of much more physical interest than the
sextic oscillator, resists an sl(2, R) algebraization. It, however, has been recognized that at least one eigenvalue and the corresponding
eigenfunction can be obtained by algebraic means for the generalized (symmetric) quartic oscillator [7–10]

V gen
(4) (x) � V0 + A|x |+Bx2 + C |x |3+Dx4 , V0, A, B,C , D ∈ R, D > 0 , (4)

if the coefficients V0, A, B, C and D satisfy some restrictions. Note that this potential, unlike the sextic oscillator in Eq. (1), is a
non-analytic function at x � 0. Since the potential is symmetric, it has again even and odd solutions. Therefore, one can start to
apply sl(2, R) algebraization, let us say, for x > 0 in analogy to the sextic case [9, 10]. Inserting an ansatz of the form

ψ
(4)
N (x) � P̃N (x)e− 1

3 |x |3+α̃x2−β̃|x |, x > 0, (5)

with P̃N (x) an N th-order polynomial in x, into the energy eigenvalue equation for the generalized quartic oscillator (4) leads now
directly to an eigenvalue equation for P̃N (x) with a “ reduced Hamiltonian” h(4). Provided that the potential parameters V0, A, B, C
and D are appropriate functions of α̃, β̃ and N , h(4) can again be written as a second-degree polynomial in the sl(2, R) generators
J+
N , J 0

N and J−
N which act on the space of polynomials with degree less or equal to N . As a consequence, the eigenvalue problem

for h(4) becomes a system of (N + 1) linear homogenous equations for the coefficients of P̃N (x) and thus (N + 1) eigenvalues and
corresponding eigenfunctions can be found by algebraic means. Parity-even and parity-odd eigenfunctions of the quartic oscillator
eigenvalue problem on the whole real axis are then obtained by symmetric or antisymmetric continuation of the x > 0 solutions
to x < 0. Thereby, one has to satisfy Neumann (parity-even) or Dirichlet (parity-odd) boundary conditions at x � 0, since the
eigenfunctions and their first derivative should be continuous at x � 0. These boundary conditions, in general, depend on the energy
eigenvalue and relate the two parameters α̃ and β̃. As a consequence, one ends up with a class of generalized quartic oscillators
for which one knows just one energy eigenvalue and the corresponding parity-even or parity-odd eigenfunction. This class depends
on one free parameter (either α̃ or β̃). Without referring to the “hidden sl(2, R) symmetry”, Skála et al. [7] and Znojil [8] got the
same class of partially solvable generalized quartic oscillators by inserting ansatz (5) into the Schrödinger equation, extracting a
formal eigenvalue problem for the coefficients of P̃N (x) and relating the parameters α̃ and β̃ by means of the continuity of the
eigenfunctions and their first derivative at x � 0.

Following Refs. [8] and [9, 10], we will call any quantum mechanical problem quasi-exactly solvable, if a finite portion of
the energy spectrum and its associated eigenfunctions can be found in closed analytic form by algebraic means. Some arguments
for adopting this rather general meaning of quasi-exact solvability are given in the appendix of Ref. [8]. The nice monograph by
Ushveridze [11] deals with a large class of quasi-exactly solvable models, but there non-analyticities like the one occurring in the
generalized anharmonic oscillator (4) (at x � 0) are precluded. In Ref. [6], quasi-exact solvability is somewhat stricter and essentially
characterized by sl(2, R) algebraization (in combination with certain analyticity properties of the potential). Some generalizations
of this Lie-algebraic setting, leading to wave functions that can be expressed in terms of exceptional orthogonal polynomials, can
be found in Refs. [12, 13].

In this paper, we are looking for quasi-exactly solvable quartic oscillators by applying a different kind of algebraization which
makes use of a nilpotent group that we will call the “quartic group” Q. Like irreducible representations of the (nilpotent) Heisenberg
group give rise to harmonic-oscillator-type Schrödinger operators, irreducible representations of the quartic group are connected with
generalized quartic oscillator problems [14]. This already implies a number of general properties of generalized quartic oscillators,
the most important being the structure and scaling properties of energy eigenvalues as functions of the Casimir invariants of the
quartic group. We are mainly interested in the class of symmetric quartic oscillators of form (4) which possess solutions that are the
product of a polynomial times an exponential, similar to Eq. (5). We call such solutions “ polynomial solutions” for short. Instead of
x we, however, consider these solutions rather as functions of X2, which is one of the generators of the quartic group. Our polynomial
ansatz fixes the parameters V0, A, B, C and D in V gen

(4) (x) in terms of four parameters and gives us simple recursion relations for
the polynomial coefficients. Three of these four parameters label the irreducible representation of Q, and the remaining parameter
fixes the strength of the linear potential term in the Schrödinger operator relative to the higher-order terms. The recursion relations
imply that this (relative) strength parameter is determined by the highest power occurring in the polynomial ansatz, and the three
remaining parameters are again restricted by the requirement that the solution and its first derivative are continuous at x � 0. In this
way, we end up with a two-parameter family of generalized quartic oscillators for which we know one energy eigenvalue and the
corresponding parity-even or parity-odd eigenfunction. For these two free parameters, one can take the two Casimir invariants of
the quartic group. The requirement that a parity-even solution and a parity-odd solution arise from one and the same potential puts
another constraint on the two open parameters and one ends up with a one-parameter family of generalized quartic oscillators for
which one now knows two energy eigenvalues with the corresponding eigenfunctions having even and odd parity, respectively.
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In Sect. 2, we briefly review how irreducible representations of the Heisenberg group are related to the harmonic oscillator problem
and it is indicated how reducible representations give rise to the Hamiltonian of a charged particle in a constant magnetic field and to
sub-Laplacian operators for the heat equation. The quartic group Q and its irreducible representations are then introduced in Sect. 3.
The generalized quartic oscillator Hamiltonian we are mainly interested in is specified in terms of generators of the quartic group, and
the algebra of these generators is exploited to derive scaling properties of the Hamiltonian and its eigenvalues and eigenfunctions.
Polynomial solutions of the generalized quartic oscillator are discussed in Sect. 4. General recursion relations for the polynomial
coefficients and the constraints for parity-even and parity-odd solutions are derived. Explicit expressions for energy eigenvalues
and corresponding eigenfunctions are given for polynomials of order 0, 1 and 2. Some results are also obtained for arbitrary order
N under the restriction that one of the Casimir invariants vanishes. The quasi-exactly solvable quartic oscillators obtained in this
section occur to be a superset of those already known from Refs. [7–10]. Section 5 introduces (non-constant) electromagnetic fields
associated with reducible representations of the quartic group. It is then demonstrated how solutions of the generalized quartic
oscillator give rise to solutions for particles moving in such electromagnetic fields. Section 6 summarizes our results and outlines
possible generalizations.

2 Review of the harmonic oscillator

The best known example of a relationship between a nilpotent group and an oscillator is that of the Heisenberg group and the
harmonic oscillator [14, 15]. The Heisenberg group is a nilpotent group that can be written as a matrix group with elements

(a, b1, b2) :�
⎡

⎣
1 a b2

0 1 b1

0 0 1

⎤

⎦, (6)

where a, b1, b2 ∈ R. Unitary irreducible representations are induced by (0, b1, b2) → e−i(β1b1+β2b2) [16, 17], where β1, β2 ∈ R

are irreducible representation labels:
(
Uβ1,β2
a,b1,b2

φ
)

(x) � e−i(β1b1+β2(b2+b1x))φ(x + a) , φ ∈ L2(R) . (7)

Lie algebra representations are generated by one-parameter subgroups:

(a, 0, 0) → X0 � i
∂

∂x
, (8a)

(0, b1, 0) → X1 � β1 + β2x , (8b)

(0, 0, b2) → X2 � β2 , (8c)

with commutation relations [X0, X1] � i X2, and all other commutators zero.
The harmonic oscillator Hamiltonian is a quadratic polynomial in Lie algebra elements:

H (β1,β2) �X2
0 + X2

1

�X+X− + X2, (9)

where X± � X0∓i X1
1. The harmonic oscillator eigenfunctions can be obtained with raising and lowering operators,[

H (β1, β2), X+
] � X2X+, acting on the ground state X−φ0 � 0.

Reducible representations of the Heisenberg group are obtained by inducing with the subgroup (0, 0, b2) → e−iβ2b2 , with Lie
algebra elements given by

X0 � i
∂

∂x
, (10a)

X1 � i
∂

∂y
+ β2x , (10b)

X2 � β2 , (10c)

and Hamiltonian Hβ2 � X2
0 + X2

1 � − ∂2

∂x2 +
(
i ∂
∂y + β2x

)2
. If a z direction is added, this gives the Hamiltonian for a particle in a

constant magnetic field with (dimensionless) strength β2 (see Sect. 5).
If Hβ2 is Fourier transformed in y, the harmonic oscillator results, a property exploited by Landau [18] (Chap. 15), to get

the eigenfunctions of a particle in an external constant magnetic field from eigenfunctions of the harmonic oscillator. Group
theoretically the Fourier transform decomposes the reducible representation of the Heisenberg group into a direct integral of
irreducible representations. A more detailed discussion of this connection will be given in Sect. 5.

1 Here and in the following, we adopt a common convention and set � � 2m � 1, with m being the particle mass.
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Finally, the regular representation of the Heisenberg group (which is obtained by inducing with the identity element) can be used
to define a sub-Laplacian and solve a heat equation. The regular representation acts on elements of the Hilbert space L2(G), G � R

3

being the group manifold, as

(RgF)(h) �F(hg) , g, h ∈ G,
(
R(a,b1,b2)F

)
(x , y, z) �F(x + a, y + b1, z + b2 + b1x), (11)

with F ∈ L2(G). From this action, Lie algebra elements are given by

X0 � i
∂

∂x
, (12a)

X1 � i

(
∂

∂y
+ x

∂

∂z

)
, (12b)

X2 � i
∂

∂z
, (12c)

and the Hamiltonian, now called a sub-Laplacian, is

� �X2
0 + X2

1

� − ∂2

∂x 2 −
(

∂

∂y
+ x

∂

∂z

)2

. (13)

A great deal is known about sub-Laplacians of nilpotent groups (see Ref. [19], Chap. 6), and in fact, the (generalized) eigenfunctions
of � are obtained by Fourier transforming in both y and z to get to the harmonic oscillator Hamiltonian. The double Fourier transform
decomposes the regular representation into a direct integral of irreducible representations, connected with the harmonic oscillator.
Using this fact makes it possible to solve the heat equation, �p � ∂p

∂t , as first shown in Ref. [20]. Using this structure, it is also
possible to solve the heat equation directly, as shown in Ref. [21].

3 The quartic group

Just as the Heisenberg group is intimately related to the harmonic oscillator, so too a group we call the quartic group, Q, is intimately
related to the (generalized) quartic anharmonic oscillator. In this section, we discuss the properties of the quartic group. Its elements
are written as

(a, �b) � (a, b1, b2, b3) :�

⎡

⎢⎢
⎣

1 a a2

2 b3

0 1 a b2

0 0 1 b1

0 0 0 1

⎤

⎥⎥
⎦ , a, b1, b2, b3 ∈ R, (14)

with the group operation given by

(a, �b)
(
a′, �b ′) �

(
a + a′, b1 + b′

1, b2 + b′
2 + ab′

1, b3 + b′
3 + ab′

2 +
a

2
b′

1

)
, (15)

(a, �b)−1 �
(

−a, − b1, − b2 + ab1, − b3 + ab2 − a2

2
b1

)
. (16)

The Heisenberg group is a subgroup of Q as can be seen by setting the parameter b1 � 0.
The irreducible representations of Q can be obtained as induced representations [16, 17], induced by the subgroup (0, �b) →

π
�β (�b) :� e−i �β·�b, �β ∈ R

3. Then, a unitary irreducible representation is given by
(
U

�β
(a,�b)

φ
)

(x) �e
−i
[
β1b1+β2(b2+b1x)+β3

(
b3+b2x+b1

x2
2

)]

φ(x + a) , (17)

with (a, �b) ∈ Q, φ ∈ L2(R).
One parameter subgroups generate representations of the Lie algebra of Q:

(a, 0 0 0) → X0 � i
∂

∂x
, (18a)

(0, b1 0 0) → X1 � β1 + β2x + β3
x2

2
, (18b)

(0, 0 b2 0) → X2 � β2 + β3x , (18c)

(0, 0 0 b3) → X3 � β3, (18d)
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with commutation relations

[X0, X1] � i X2, [X0, X2] � i X3, (19)

and all other commutators zero.
From these commutation relations, it is seen that the Casimir operators are X3 and

C :� 2X1X3 − X2
2 . (20)

Hence, the irreps can be labeled by β3 and c :� 2β1β3 − β2
2 . Representations with the same values of the Casimir operators are

equivalent representations; they are obtained by computing π
�β ((a, �0)(0, �b)(−a, �0)) � π

�βa (0, �b), so that representations �βa are
equivalent to �β if

�βa �
⎛

⎝
β1 + aβ2 + 1

2a
2β3

β2 + aβ3

β3

⎞

⎠ . (21)

The automorphism group of the Lie algebra of Q, which preserves the commutation relations, is given by

αg(Xi ) � gi j X j (22)

with g �

⎡

⎢⎢
⎣

g00 g01 g02 g03

0 g11 g12 g13

0 0 g00g11 g00g12

0 0 0 g2
00g11

⎤

⎥⎥
⎦. (23)

Associated with the automorphism group is the scaling operator, defined by

(Stφ)(x) :� √
t φ(t x) , t > 0, φ ∈ L2(R); (24)

the factor
√
t makes the scaling operator unitary. The Lie algebra elements have definite scaling properties, namely

St X0S
−1
t � t−1X0, (25a)

St X1( �β)S−1
t � t−1X1

( �βt

)
, (25b)

St X2( �β)S−1
t � t−2X2

( �βt

)
, (25c)

St X3( �β)S−1
t � t−3X3

( �βt

)
, (25d)

with �βt :� (tβ1, t2β2, t3β3
)
. (25e)

With this background, we define the generalized quartic anharmonic oscillator Hamiltonian as

H
�β

α :� X2
0 + X2

1 + αX2 (26a)

� − ∂

∂x

∂

∂x
+

(
β1 + β2x +

β3

2
x2
)2

+ α(β2 + β3x). (26b)

With appropriate values of α and βi , this gives the usual quartic anharmonic oscillator Hamiltonian. The eigenvalue problem to be
solved is

H
�β

α φ
�β
n �En( �β)φ

�β
n . (27)

From the definition of the Hamiltonian, it follows that (see Eq. (21))

UaH
�β

α U
−1
a � H

�βa
α . (28)

Applied to the eigenvalue problem, this implies that

Uaφ
�β
n � φ

�βa
n (29)

and the eigenvalues are functions of the Casimir invariants only. Similarly,

St H
�β

α S−1
t � t−2H

�βt
α , (30)

from which it follows that

Stφ
�β
n � φ

�βt
n (31)
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and the eigenvalue

En( �β) � t−2En

( �βt

)
. (32)

Combining the invariance of the energy eigenvalues under both translation and scaling gives a functional equation of the form

En
(
t3β3, t4c

) �t2En(β3, c), (33)

3β3
∂En

∂β3
+ 4c

∂En

∂c
�2En ; (34)

where Eq. (34) is obtained by differentiating both sides of Eq. (33) with respect to t and then setting t to one. The solution of this
first order partial differential equation is given by

En �(β3)
2
3 en

(
c3

β4
3

)

, (35)

so that the energy eigenvalues for a given irrep are given by a function, en , whose argument is a ratio of powers of Casimir invariants.
We want to emphasize that this result is not just restricted to the quasi-exact soluble models we will discuss in the following, but
holds for any quartic oscillator Hamiltonian which has the structure (26).

4 Quasi-exact solutions of generalized quartic anharmonic oscillators

In this section, we exhibit solutions for generalized symmetric quartic anharmonic oscillators, Eq. (4), which can be written as V �(
X2

1 + αX2
)

(see Eq. (26)), where the operators X1 and X2 are given in Eq. (18). Comparing the potential in Eq. (4) with the potential(
X2

1 + αX2
)

gives

A � 2β1β2 + αβ3, B � (β1β3 + β2
2

)
, C � β2β3,

D � β2
3

4
and V0 � β2

1 + αβ2

(36)

for x > 0. For x < 0, one has to replace β1 → −β1 and β3 → −β3. The requirement of quasi-exact solvability leads then
to restrictions for the choice of the potential parameters α, β1, β2 and β3. That the solutions for the quartic oscillator are more
complicated than those for the sextic oscillator arises from the asymptotic behavior of the two potentials. Whereas a normalizable
solution of the sextic oscillator goes asymptotically as e−γ x4

for x → ±∞, the asymptotic behavior of a normalizable quartic
oscillator solution is rather e−γ̃ x3

for x → +∞ and eγ̃ x3
for x → −∞. Here, γ > 0 and γ̃ > 0 are some appropriate constants

depending on the strength of the sextic and quartic potential terms, respectively. Thus, it will be necessary to find normalizable
solutions separately for x > 0 and x < 0 in case of the quartic oscillator and then join them smoothly at x � 0.

In Ref. [8], solutions for a potential of form (4) were found in the case of V0 � 0 and D � 1. Since X3 � β3 is a Casimir
invariant in our approach, we will not follow Ref. [8] and set D � 1, but instead let β3 have any positive or negative real value. Here
it should be noted that the requirement of quasi-exact solvability (and continuity of the solutions) in Ref. [8] relates the potential
strengths A, B and C so that they can finally be expressed in terms of only one free parameter. On the other hand, as we will see in
the following, quasi-exact solvability will only restrict the parameters α and β2 (or β1) in our case, leaving still two parameters free.

Our goal is to find solutions of the one-dimensional Schrödinger Eq. (27) for Hamiltonians containing a potential of form (4).
Phrased in our algebraic language, the Hamiltonian is written as

H
�β

α �

⎧
⎪⎪⎨

⎪⎪⎩

X2
0 + X2

1 + αX2 �− ∂2

∂x2 +
(
β1 + β2x + β3

2 x2
)2

+ α(β2 + xβ3), x > 0 ,

X̃2
0 + X̃2

1 + α X̃2 �− ∂2

∂x2 +
(
−β1 + xβ2 − β3

2 x2
)2

+ α(β2 − xβ3), x < 0 .

(37)

In order to get a spatially symmetric potential V (x) � V (−x), one has to employ different representations Xi and X̃i of the quartic
algebra. These representations differ just by the sign of β1 and β3. Changing the sign of β1 and β3 when going from x > 0 to x < 0
is obviously equivalent to taking |x| for x ∈ R in potential terms containing odd powers of x and leaving β1 and β3 untouched. Note
that the representations of the quartic algebra used for x > 0 and x < 0 agree in the value c of the Casimir C, but differ in the
value β3 of the Casimir X3. They are therefore inequivalent. This, however, does not affect the scaling behavior (35) of the energy
eigenvalues, since scaling is determined only by even powers of β3.

Since both, Xi and X̃i , satisfy the same algebra, the following considerations, which we make for x > 0, will immediately apply
to x < 0 with Xi replaced by X̃i or, equivalently, β1 and β3 by −β1 and −β3, respectively. Let us consider solutions of the form

�>(x) � p(x)e∓ ∫ dx X1 with
∫

dx X1 � β1x +
β2

2
x2 +

β3

6
x3 for x > 0 . (38)
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Here and in what follows, the upper (minus) sign in the exponential has to be taken for β3 > 0, the lower (plus) sign for β3 < 0.
The integration constant in

∫
dx X1 has been omitted, since it can be absorbed into the (unknown) function p(x). The first two

x-derivatives of �(x) are

� ′
>(x) �[p′(x)∓p(x)X1

]
e∓ ∫ dx X1 , (39)

� ′′
>(x) �[p′′(x)∓2p′(x)X1 + p(x)

(
X2

1∓X2
)]
e∓ ∫ dx X1 . (40)

The Schrödinger equation then to be solved for x > 0 is

−p′′(x)±2X1 p′(x) + [(±1 + α)X2 − E] p(x) � 0 . (41)

As with the sextic oscillator we assume that p is a polynomial. However, unlike the sextic oscillator, we assume p to be a polynomial
in the Lie algebra element X2,

p(x) �
N∑

n�0

an X
n
2 (x) , (42)

so that p′(x) �∑ n an X
n−1
2 X3 and p′′(x) �∑ n(n − 1) an X

n−2
2 X2

3. Substituting into Eq. (41) gives

−
N∑

n�2

an n(n − 1) X2
3 Xn−2

2 ±
N∑

n�1

an n 2X1X3 Xn−1
2

+ (±1 + α)
N∑

n�0

an X
n+1
2 − E

N∑

n�0

an X
n
2 � 0 . (43)

Now, we express 2X1X3 by means of the Casimir invariant C � 2X1X3 − X2
2 (see Eq. (20)) so that the energy and coefficients in

the polynomial become functions of Casimir invariants only. Equation (43) thus becomes (after appropriate renaming of summation
indices):

−
N−2∑

n�0

an+2 (n + 2)(n + 1) X2
3 Xn

2±
N−1∑

n�0

an+1 (n + 1)C Xn
2

±
N+1∑

n�2

an−1 (n − 1) Xn
2 + (±1 + α)

N+1∑

n�1

an−1 Xn
2 − E

N∑

n�0

an X
n
2 � 0 . (44)

Demanding that the coefficient of Xn
2 , 0 ≤ n ≤ N + 1, should vanish, one ends up with a four-term recursion relation for the ans:

−(n + 2)(n + 1) β2
3 an+2±(n + 1) c an+1 − E an + (α±n) an−1 � 0 . (45)

Here, we have used the abbreviation c � 2β1β3 − β2
2 for the value of the Casimir C. The recursion relation has to be understood

such that an � 0 if n < 0 or n > N . For n � N + 1, the recursion relation allows for a nonzero value of aN only if α + N + 1 � 0;
for a given N, this implies that

α � ∓(N + 1) . (46)

Writing out the recursion relation for n � 0, 1, 2, . . . N gives N + 1 linear equations for the coefficients an . Putting this system of
equations in matrix form, one ends up with an eigenvalue problem

M �a � E �a (47)

with the (N +1)-dimensional coefficient vector �a � (a0, a1, a2, . . . , aN )T and the tridiagonal (N +1)× (N +1) Matrix M � (Mnm)
with matrix elements

Mn(n−1) �∓(N + 1 − n) ,

Mn(n+1) �±c(n + 1) ,

Mn(n+2) � − β2
3 (n + 2)(n + 1) . (48)

All other matrix elements vanish. In order to obtain a non-trivial solution for �a, the eigenvalues E are to be determined such that

det(M − E I) � 0 . (49)

These eigenvalues depend then only on the values of the Casimirs X3 and C.
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The solutions for x < 0 are found in the same way. One just has to replace Xi by X̃i . With the ansatz

�<(x) � p̃(x)e∓ ∫ dx X̃1 , (50)

assuming p̃(x) to be a polynomial in X̃2,

p̃(x) �
N∑

n�0

an X̃
n
2 (x) . (51)

The coefficients an are seen to again satisfy the recursion relations (45), implying further that Eq. (49) leads to the same energy
eigenvalues for x > 0 and x < 0. The reason is that the representations of the quartic algebra used for x > 0 and x < 0 are
characterized by the same value of the Casimir C and differ only in the sign of β3. β3, however, enters quadratically into the
recursion relations.

The final step is now to match the solutions for x > 0 and x < 0 at x � 0. To do this, we notice first that the eigenfunctions must
have definite parity properties, since our potential is spatially symmetric, V (x) � V (−x). One can see immediately that

�(x) �

⎧
⎪⎪⎨

⎪⎪⎩

(∑N
n�0an X

n
2

)
e∓ ∫ dx X1 x > 0

±
(∑N

n�0an X̃
n
2

)
e∓ ∫ dx X̃1 x < 0

(52)

is a parity-even/parity-odd (upper/lower sign) function which solves the Schrödinger equation for x > 0 and x < 0, if E is a zero of
the characteristic polynomial (49) and �a is a solution of Eq. (47). In order to be a solution of the Schrödinger equation on the whole
real line, �(x) has to satisfy the continuity conditions

lim
ε→0+

�(ε) � lim
ε→0+

�(−ε) und lim
ε→0+

� ′(ε) � lim
ε→0+

� ′(−ε) . (53)

In the parity-even case, �(x), as defined in Eq. (52), is already continuous at x � 0. Continuity of the derivative at x � 0 leads to
the condition

a0β1∓
N∑

n�1

an (nβ3∓β1β2) βn−1
2 � 0 . (54)

In the parity-odd case, the derivative of �(x), as defined in Eq. (52), is already continuous at x � 0. Continuity of �(x) at x � 0
leads to the condition

N∑

n�0

an βn
2 � 0 . (55)

These continuity conditions relate the three βs. As it turns out, apart from the N � 0 even parity and N � 1 odd parity cases, it
is most convenient to fix β2 and leave β1 and β3 as free parameters. Equivalently, one could also parameterize the potential by the
values of the two Casimirs β3 and c, respectively.

In principle, this solves our problem. We are able to find at least one energy eigenvalue of the Hamilton operator (37) with the
corresponding eigenfunction having form (52). The formal procedure would be the following: First one has to solve the characteristic
Eq. (49) to determine energy eigenvalues. These energy eigenvalue(s) are then inserted into Eq. (47) to determine the coefficients an
(apart from one which provides the normalization of the wave function). Finally, the continuity condition (54) or (55) is employed
to fix β2 such that the resulting parity-even or parity-odd solution solves the Schödinger equation on the whole line.

In the following, we will give examples for β3 > 0, starting with the simplest case N � 0. We then proceed to N � 1, 2 and
even try to find solutions for general N . At the end of this section, we will also comment on the β3 < 0 case.

N � 0 (α � −1):
In the N � 0 case the parity-even function (52) can be written in the compact form

�0(x) � a0 e
−
(
β1|x |+ β2

2 x2+ β3
6 |x |3

)

. (56)

This function is an E � 0 solution. The continuity condition (54) implies then that β1 � 0. There is no non-trivial parity-odd solution
in this case, since the continuity condition (55) would immediately imply that a0 � 0. In the parity-even case, we are thus left
with β2 and β3 as free parameters. β3 is positive, β2 can be either positive or negative. For β3 > 0 , the slope of the potential in
the limit x → 0± is ∓β3/2. Therefore, it is at least a double-well potential, but can even be more complicated as shown in Fig. 1.
The corresponding E � 0 eigenfunctions are also plotted in Fig. 1. Since they do not exhibit a node, they are ground-state wave
functions. For the energy eigenvalue E � 0, the scaling behavior (35), which describes the dependence of E on the parameters βi

is trivially satisfied.
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Fig. 1 The potential
(
X2

1 + αX2

)
for α � −1, β1 � 0, β2 � 0.3, β3 � 0.6 (left figure) and α � −1, β1 � 0, β2 � −1.5, β3 � 1 (right figure) along with

the corresponding (even parity) ground-state wave functions �0. Potential and wave functions are plotted as functions of y � arctan x . The normalization

a0 of the wave function has been chosen such that
∫ π/2
−π/2 dy �2

0 (x(y)) � 1

Fig. 2 The potential
(
X2

1 + αX2

)
for α � −2, β1 � 0.7, β3 � 0.1 (left figure) and α � −2, β1 � −0.7, β3 � 0.1 (right figure) along with the corresponding

(even parity) wave functions �+
1 . β2 is fixed acoording to Eq. (58). Potential and wave functions are plotted as functions of y � arctan x . The normalization

a1 of the wave function has been chosen such that
∫ π/2
−π/2 dy �+

1
2(x(y)) � 1

N � 1 (α � −2):
In the N � 1 case, the parity-even function

�+
1 (x) � (a0 + a1(β2 + β3|x |))�0(x) , (57)

with a0 � −E a1 solves the Schrödinger equation for

E � β2
1 − β3

2β1
if β2 � β2

1 +
β3

2β1
. (58)

Potentials and corresponding wave functions �+
1 for two parameter sets are plotted in Fig. 2. The derivative of the potential in the

limit x → 0± is ∓2(β3 − β1β2). With β2 given by Eq. (58), it becomes ±(2β3
1 − β3

)
. This means that one obtains a potential of

the anharmonic oscillator type for
(
2β3

1 − β3
)

> 0 (minimum at x � 0) and a double well for
(
2β3

1 − β3
)

< 0 (local maximum at
x � 0). Interestingly, the corresponding wave function �+

1 is a ground-state wave function (no node) for the anharmonic oscillator,
whereas it is the wave function of a second excited state (two nodes) for the double well.2

Expressing the energy eigenvalue (58) in terms of the Casimirs, as in Eq. (35), to exhibit its scaling behavior, it takes on the form

E � β
2
3

3 e

(
c3

β4
3

)

with e(ξ ) � ± (−ξ )
1
6 . (59)

where “+” has to be taken for E > 0 and “−” for E < 0.

2 We have checked our results numerically by means of Mathematica using the build-in function NDEigensystem with Dirichlet boundary conditions.
To do this, we have transformed the real line −∞ < x < ∞ to the finite interval −π

2 ≤ y ≤ π
2 by setting x � tan y. The numerical values for the energies

agree with our analytical results up to 6 digits. For the double well, e.g., Mathematica gives E0 � −0.732365, E1 � −0.366215 and E2 � 0.561429.
E2 is in perfect agreement with our analytical result.
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Fig. 3 The potential
(
X2

1 + αX2

)
for α � −2, β1 � 0, β2 � 0.3, β3 � 0.6 (left figure) and α � −2, β1 � 0, β2 � −1.5, β3 � 1 (right figure) along with

the corresponding (odd parity) wave functions �−
1 . Potential and wave functions are plotted as functions of y � arctan x . The normalization a1 of the wave

function has been chosen such that
∫ π/2
−π/2 dy �−

1
2
(x(y)) � 1

The N � 1 parity-odd solution, corresponding to the energy eigenvalue

E � β2 , (60)

is

�−
1 (x) � sign(x) �+

1 (x) , (61)

with sign(x) denoting the sign function. Continuity at x � 0 implies that β1 � 0 so that β2 and β3 > 0 are left as free parameters. In
Fig. 3, we plot the potential together with the E � β2 eigenfunctions for the two sets of parameters which we have already used in
the N � 0 even parity case. The slope of the potential for x → 0± is ∓2β3 , and thus, the potential has a local maximum at x � 0.
Both eigenfunctions exhibit one node which means that they represent the lowest lying odd parity state and hence the first excited
state of the spectrum.

It is easily checked that E � β2 exhibits the same scaling behavior (cf. Eq. (59)) as the N � 1 parity-even solution.
N � 2 (α � −3):
Also for N � 2 the energy eigenvalue Eq. (49) together with the continuity conditions (54) and (55) for parity-even and parity-odd

solutions, respectively, can be solved analytically. In the parity-even case, one finds two pairs (E , β2) of real solutions for the energy
eigenvalue Eq. (49) and the continuity condition (54), namely

E �2
β3

1 − 3β3∓
√

β6
1 − 6β3

1β3 + 4β2
3

5β1
,

β2 �
7β3

1 + 4β3 ±3
√

β6
1 − 6β3

1β3 + 4β2
3

10β1
. (62)

The condition
(
β6

1 − 6β3
1β3 + 4β2

3

) ≥ 0 guarantees that E and β2 are real. The (even parity) eigenfunction corresponding to the
energy eigenvalue E is

�+
2 (x) � (a0 + a1(β2 + β3|x |) + a2(β2 + β3|x |)2)�0(x) (63)

with a0 � (
E2/2 − β2

2 + 2β1β3
)
a2 and a1 � −Ea2. Note that one has to take either the upper or the lower sign for the roots in

Eq. (62).
On the other hand, there is just one real solution of the energy eigenvalue Eq. (49) and the continuity condition (55) in the

parity-odd case, namely

E � 4β2
1 and β2 � 4β3

1 + β3

2β1
(64)

giving rise to the eigenfunction �−
2 (x) � sign(x)�+

2 (x).
The interesting point is now that β2 in Eqs. (62) and (64) can be made equal, if

β3 � 4

7

(
2 ± 3

√
2
)
β3

1 . (65)
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Fig. 4 The potentials (X2
1 + αX2) for α � −3, β1 � 0.4, β3 � 4

7

(
2 + 3

√
2
)
β3

1 and β2 chosen according to Eqs. (62) and (64) along with the corresponding

even and odd parity wave functions �+
2 (left figure) and �−

2 (right figure), respectively. Potential and wave functions are plotted as functions of y � arctan x .

The normalization a2 of the wave function has been chosen such that
∫ π/2
−π/2 dy �±

2
2
(x(y)) � 1

In order that β3 > 0, one has to take the upper sign if β1 > 0, otherwise the lower sign. This means that this particular choice of β3

gives rise to a potential (which still contains β1 as free parameter), for which we know two energy eigenvalues with corresponding
parity-even and parity-odd eigenfunctions, respectively. This situation is plotted in Fig. 4, where the energies given in Eqs. (62)
and (64) for β1 � 0.4 represent the ground state and first excited state with corresponding even and odd parity eigenfunctions. For
β1 � −0.4 , one would get the second and third excited state of the corresponding potential.

For N � 2 the energy eigenvalue Eq. (49) reads

E3 + 4cE + 4β2
3 � 0 . (66)

Writing the solution of this cubic equation in form (35), one can read off the scaling behavior of the energy eigenvalues:

E �β
2/3
3 e

(
c3

β4
3

)

with

e(ξ ) � 25/3ξ1/3

3

(
1 −

√
1 + 16

27ξ

)1/3 − 21/3

(

1 −
√

1 +
16

27
ξ

)1/3

. (67)

Note that this holds for the parity even, Eq. (62), as well as for the parity-odd solution, Eq. (64), since the energy eigenvalue Eq. (49)
just depends on the values c and β3 of the Casimirs.

N > 2:
From what we have seen, it becomes more and more complicated with increasing N to find analytic solutions (E , β2) of the

energy eigenvalue Eq. (49) and the continuity condition (54) or (55) for the corresponding eigenfunctions. Surprisingly, it is possible
(by means of Mathematica) to find solutions for N � 3, but the expressions for E and β2 in terms of β1 and β3 tend to become
rather lengthy, in particular for the parity-even case. Thus, one may consider putting some restrictions on the potential parameters
βi so that the energy eigenvalue equation and the continuity conditions become simpler. Looking at the recursion relation (45), an
obvious simplification is achieved if we demand that the value of the Casimir C vanishes, i.e. c � 0. In this case, the four-term
recursion relation is reduced to a three-term recursion relation and the (N + 1)× (N + 1)-matrix M in Eq. (47) becomes a bidiagonal
matrix. One can see now that

M �a � �0 , (68)

with M given by Eq. (48) (c � 0), has a non-trivial solution �a �� �0, if N �� 2 + 3k, k ∈ N0. This means that E � 0 is an eigenvalue
for the allowed values of N , provided that the corresponding eigenfunctions satisfy either of the continuity conditions (54) or (55),
respectively. The wave-function coefficients an are most easily calculated by means of the downward recursion relation

an−3 � − n(n − 1)

N − n + 3
β2

3 an , (69)

starting with n � N . Equation (69) follows immediately from Eq. (45) by taking c � E � 0, α � −(N + 1). It is also understood

that an � 0 for n < 0. The condition c � 0 implies that β1 � β2
2

2β3
. The parity-even continuity condition (54) or the parity-odd

continuity condition (55) restrict finally the possible values of the potential parameter β2, leaving only β3 �� 0 as free parameter.
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Table 1 Possible choices of the
potential parameter β2 which give
rise to a generalized quartic
potential with E � 0 energy
eigenvalue in the case of c � 0(

β1 � β2
2

2β3

)

N Parity even Parity odd

0 0 ×
1 21/3β

2/3
3 0

2 × ×
3 0 , 2β

2/3
3

21/3β
2/3
3

4 21/3
(

3 ± √
7
)1/3

β
2/3
3

0 , 2β
2/3
3

5 × ×

6 0 ,
(

11 ± √
51
)1/3

β
2/3
3

(
5 ± √

15
)1/3

β
2/3
3

7 × 0 ,
(

7 ± √
21
)1/3

β
2/3
3

8 × ×
9 0 ×
10 × 0

Fig. 5 The potential (70) for N � 0, 1, 3, 4, 6, 7, 9, 10 (left) along with the corresponding E � 0 wave functions (right). Potentials become deeper and
the number wave-function nodes increases with increasing N . Potential and wave functions are plotted as functions of y � arctan x . The normalization of

the wave functions has been chosen such that
∫ π/2
−π/2 dy �+

N
2(x(y)) � 1

One can easily check that solutions of Eq. (68) satisfy either of the continuity conditions (54) or (55) automatically, if β1 � β2 � 0
and N � 3k or N � 3k + 1, k ∈ N0, respectively. A further check with Mathematica shows that at least one of the continuity
conditions has a real solution for β2 �� 0, if N � 1, 3, 4, 6, 7. For (the allowed) N > 7 , the continuity conditions are only satisfied
by setting β1 � β2 � 0. The possible choices of β2, up to N � 10, which lead to an E � 0 eigenvalue in the case of vanishing
Casimir c � 0 are summarized in Table 1.

Let us now consider the case β1 � β2 � 0, β3 � 2, α � −(N + 1) which has been discussed in some detail in Ref. [7]. This
choice of parameters leads to the potentials

VN (x) � −2(N + 1)|x |+x4 , N � 3k, 3k + 1 , k � 0, 1, 2, 3, .. (70)

These are double-well potentials of increasing depth which are plotted in Fig. 5 along with the corresponding wave functions for
N � 0, 1, 3, 4, 6, 7, 9, 10. What happens is that for N � 0 the E � 0 eigenfunction corresponds to the (parity-even) ground state.
For N � 1 the depth increases, the ground state goes down and the first (parity-odd) excited state (with 1 node) now lies at E � 0.
With increasing N , the potential becomes deeper and deeper and the number of wave function nodes of the zero energy solution
increases. By making the potential deeper, the energy levels go down and at the allowed values of N one of the (excited) levels just
crosses E � 0. This also leads to the observed alternating pattern of parity-even and parity-odd E � 0 eigenfunctions. Our findings
for the potential (70) and corresponding E � 0 wave functions agree with those in Ref. [7].

Let us finally consider the β3 < 0 case. A closer inspection of the β3 < 0 case now reveals that the polynomial ansatz (52) (with
the lower sign) just provides the same class of quasi-integrable potentials as the β3 > 0 case. There is a one-to-one correspondence
between the β3 > 0 and the β3 < 0 cases which just consists in reversing the sign of all the potential parameters. The replacement
(β1, β2, β3, α) → (−β1, −β2, −β3, −α) does not change the potential (see, e.g., Eqs. (4) and (36)) and hence neither the energy
spectrum nor the shape of the energy eigenfunctions. In the functional form of the energy eigenfunctions (52), the sign change of
the potential parameters is accompanied by a sign change of the coefficients an , n odd, which can be traced back to Eq. (48).
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5 The electromagnetic field related to the quartic anharmonic oscillator

Associated with every oscillator given by some nilpotent group is an electromagnetic field problem (see Ref. [19], Chap. 7; also
Ref. [15]). By inducing with the subgroup (0, 0, b2, b3) → e−i(β2b2+β3b3) [16, 17], one ends up with a reducible representation of
the quartic group. The resulting generators are now given by

(a, 0 0 0) → X0 � i
∂

∂x
, (71a)

(0, b1 0 0) → X1 � i
∂

∂y
+ β2x + β3

x2

2
, (71b)

(0, 0 b2 0) → X2 � β2 + β3x , (71c)

(0, 0 0 b3) → X3 � β3, (71d)

with Hamiltonian

H (β2,β3)
α �X2

0 + X2
1 + αX2

� − ∂2

∂x2 +

(
i

∂

∂y
+ β2x + β3

x2

2

)2

+ α(β2 + xβ3). (72)

By adding a kinetic energy term P2
z for a particle which moves freely in z direction, one ends up with the Hamiltonian

Hem :� H (β2,β3)
α ⊗ Iz ⊕ Ix y ⊗ P2

z

− ∂2

∂x2 +

(
−i

∂

∂y
− β2x − β3

x2

2

)2

− ∂2

∂z2 + α(β2 + β3x) , (73)

where Ixy and Iz are unity operators acting on the (x, y) and z coordinates, respectively. This Hamiltonian describes a particle in an
electromagnetic field

�E(�r ) �
⎛

⎝
−αβ3

0
0

⎞

⎠ , �B(�r ) �
⎛

⎝
0
0

β2 + β3x

⎞

⎠ , (74)

the corresponding electrodynamical potential being

(
Aμ(�r )

) �
(

α(β2 + β3x), 0, β2x + β3
x2

2
, 0

)
. (75)

This means that starting with the quartic group instead of the Heisenberg group allows us to study not just the case of a charged
particle in a constant magnetic field, but gives rise to a more general electromagnetic field configuration. The energy eigenvalue
problem for Hem,

[

− ∂2

∂x2 +

(
−i

∂

∂y
− β2x − β3

x2

2

)2

− ∂2

∂z2 + α(β2 + β3x)

]


E (x , y, z)

� E 
E (x , y, z) , (76)

can now be related to the (one-dimensional) quartic oscillator problem by switching to a mixed configuration–momentum-space
representation, which is obtained by means of a Fourier transformation in the y and z variables:


̃E
(
x , py , pz

) � 1

2π

∫
dy dz e−i py y−i pz z 
E (x , y, z) . (77)

This mixed wave function satisfies a differential equation in the x variable which has the form
[

− ∂2

∂x2 +

(
py − β2x − β3

x2

2

)2

+ p2
z + α(β2 + β3x)

]


̃E
(
x , py , pz

)

� E 
̃E
(
x , py , pz

)
. (78)

With λ � E − p2
z and β1 � −py , this is just the eigenvalue problem (27) for the generalized quartic oscillator. This means that,

knowing a solution 
E (x , y, z) of the electromagnetic field eigenvalue problem (76), its Fourier transformation 
̃E (x , py , pz) in
the y and z variable (see Eq. (77)) gives rise to a solution �λ(x) of the anharmonic oscillator problem by setting

�λ(x) � 
̃E
(
x , py , pz

)
with β1 � −py , λ � E − p2

z and py , pz fixed . (79)
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Note that each py is associated with a different anharmonic oscillator problem. The electromagnetic field problem corresponds to a
reducible representation of the quartic algebra, the quartic oscillator problem rather to an irreducible one. The Hamiltonian of the
electromagnetic problem is a direct integral of Hamiltonians H (β1, β2, β3)

α for the (one-dimensional) quartic oscillator problem, i.e.,

Hem �H (β2,β3)
α ⊗ Iz ⊕ Ix y ⊗ P2

z

�
(∫ ⊕

R

dpy H
(β1�−py ,β2,β3)
α

)
⊗ Iz ⊕ Ix y ⊗ P2

z . (80)

Correspondingly, the eigenfunctions of the electromagnetic field problem can be decomposed into eigenfunctions of the anharmonic
oscillator problem


E (x , y, z) � 1

2π

∫
dpy dpz e

ipy y+i pz z
̃E
(
x , py , pz

)
,

� 1

2π

∫
dpy dpz e

ipy y+i pz z�λ(x) δ
(
λ − E + p2

z

)
, (81)

with β1 � −py . Note that λ � λ
(
α, β1 � −py , β2, β3

)
is a function of the integration variable py . Equation (81) shows how

eigenfunctions and eigenvalues of the one-dimensional anharmonic oscillator problem and a corresponding three-dimensional
electromagnetic field problem are related, provided that the boundary conditions in x direction are the same. Since [Hq , Py] �[
Hq , Pz

] � 0, one can look for simultaneous eigenfunctions of Hem, Py and Pz . These are then obviously of the form (see Eq. (81))


Epy pz (x , y, z) � 1

2π
eipy y+i pz z�λ(x) with β1 � −py and λ � E − p2

z . (82)

Here, the plane waves have been normalized to a pure delta function.
Up to this point, our considerations hold for general electromagnetic fields of form (74). Using the quartic oscillator solutions

derived in Sect. 4 for constructing special solutions of the electromagnetic field problem by means of Eq. (81) or Eq. (82), one must
take into account that quasi-integrability puts constraints on either β1 or β2. For the N � 0 parity-even and the N � 1 parity-odd
cases, one has β1 � 0, which means that only py � β1 � 0 solutions of the electromagnetic field problem can be constructed from
the known quartic oscillator solutions. For the other cases, β2 becomes a function of β1 and β3 which has to be taken care of in
Eq. (81) or Eq. (82).

6 Summary and outlook

It is known from previous work [7–10] that the energy eigenvalue problem for the generalized symmetric quartic anharmonic
oscillator, given in Eq. (4), is quasi-exactly solvable. One energy eigenvalue and the corresponding parity-even or parity-odd
eigenfunction can be calculated by algebraic means. The deeper reason is that this quartic oscillator problem admits an sl(2, R)
algebraization like the sextic oscillator [6], as shown in Refs. [9, 10].

In the present work, we have attempted another kind of algebraization by means of a nilpotent group, the quartic group Q. We
have shown that certain generalized quartic oscillator problems can be associated with irreducible representations of the quartic
group by expressing the corresponding Hamiltonian in terms of generators of the quartic group (see Eq. (26)). In this way, the
potential parameters in Eq. (4) become functions of the three irreducible representation labels β1 , β2 , β3 and a further parameter α

which essentially fixes the relative strength of the linear potential term as compared to the higher-order terms. For general quartic
oscillator Hamiltonians of this kind, which include, e.g., also the usual quartic oscillator, we were able to derive the structure and
scaling properties of energy eigenvalues as functions of the Casimir invariants of the quartic group.

In the sequel, we have looked for generalized symmetric quartic oscillators (4) which give rise to parity-even and parity-odd
polynomial solutions of form (38) with the polynomial being a function of the generator X2 rather than x. For the quartic oscillator (4),
the solutions for x > 0 and x < 0 have to be treated separately and the corresponding Hamiltonians belong to irreducible
representations which differ in the sign of the parameters β1 and β3. With a polynomial ansatz of order N , the Schrödinger equation
reduces to an (N + 1)-dimensional algebraic eigenvalue equation for the polynomial coefficients, provided that the relative strength
parameter takes the integer value α � ∓(N + 1) (depending on whether β3 ≷ 0). One of the β-parameters becomes a function of the
other two βs, if the x > 0 and x < 0 solutions are smoothly matched at x � 0 such that one ends up with a parity-even or parity-odd
energy eigenfunction. Since the continuity condition at x � 0 depends on the energy eigenvalue, we have finally obtained a class
of generalized symmetric quartic oscillators which is parameterized by the discrete parameter α and two continuous parameters for
which one can take the values of the two Casimir invariants of the quartic group. For this class of anharmonic oscillators, one knows
one energy eigenvalue with the corresponding parity-even or parity-odd eigenfunction. For N � |α − 1|≥ 2 , it was even possible to
satisfy the continuity condition for parity-even and parity-odd solutions at the same time by appropriately fixing two of the three βs
in terms of the remaining one. In this way we got a one-parameter family of symmetric quartic oscillators for which one now knows
two energy eigenvalues, one belonging to a parity-even and one to a parity-odd eigenfunction, respectively. Explicit expressions for
energy eigenvalues and corresponding eigenfunctions in terms of the free β parameter(s) have been derived for N � 0 , 1 , 2. These
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cases were discussed in some detail and the scaling law of the energy eigenvalues in terms of the Casimir invariants, which is derived
in Sect. 3, has been verified. Under the simplifying assumption that the eigenvalue c � 2β1β3 − β2

2 of one of the Casimirs becomes
zero, we were able to find sets of potential parameters for N > 2 which give rise to an E � 0 solution of the energy eigenvalue
problem. The one-parameter family of potentials determined by the parameter set β1 � β2 � 0, β3 ≷ 0, e.g., provides an E � 0
eigenvalue, if N �� 2 + k, k ∈ N0. The coefficients of the corresponding eigenfunctions are given by a simple two-term recursion
relation. Furthermore, we saw that generalized quartic oscillator potentials with c � 2β1β3 − β2

2 � 0, β2, β1 �� 0 and E � 0
energy eigenvalue exist only for N � 0, 1, 3, 4, 6, 7. The class of quasi-exactly solvable generalized quartic oscillator potentials
which we found by means of our approach covers those already known from Refs. [7–10], but includes also new ones, e.g. those
for which one can calculate two eigenvalues with corresponding even and odd parity eigenfunction. Also, the potentials which we
found for c � 0, β2, β1 �� 0 and N > 2 which provide an E � 0 energy eigenvalue are, to the best of our knowledge, new. Finally,
we have shown how reducible representations of the quartic group give rise to Hamiltonians describing the movement of a charged
particle in certain non-constant electromagnetic fields and how solutions of the quartic oscillator can be used to find solutions of the
corresponding electromagnetic field problem.

All of these ideas can be generalized to higher power polynomial potentials, such as the (generalized) sextic anharmonic oscillator.
For the sextic oscillator, there is a corresponding sextic nilpotent group, whose irreducible representations can be used to write the
sextic anharmonic oscillator Hamiltonian in terms of sextic Lie algebra elements. Quasi-exactly solvable sextic oscillators obtained
by means of sl(2, R) algebraization provide either positive or negative-parity algebraic solutions. It will be interesting to see whether
our kind of approach leads also to quasi-exactly solvable (generalized) sextic oscillators for which part of the parity-even as well as
parity-odd eigenfunctions can be calculated by algebraic means. This will be the focus of future investigations.
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