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Abstract In this article, we present a novel approach under the Fibonacci wavelet and collocation technique which is computationally
efficient to obtain the solution of the model of CD4+T cells of HIV infection. A system of nonlinear ordinary differential equations
represents this mathematical model. We have approximated unknown functions and their derivatives using the operational matrix
of integration of Fibonacci wavelets to transform this model into a set of algebraic equations and then simplified using a suitable
method. It is anticipated that the proposed approach would be more efficient and suitable for solving a variety of nonlinear ordinary
and partial differential equations representing the model of medical, radiation, and surgical oncology, and drug targeting systems
that occur in medical science and engineering. Tables and graphs are included to show how the suggested wavelet method provides
enhanced accuracy for a wide range of problems. Relative data and computations are performed over MATLAB software.

1 Introduction

Several issues in daily living may be modeled mathematically. For instance, we developed a model to explain biological elements
like a human immunodeficiency virus infection (HIV). Viruses may enter any live cell in a variety of ways, infect nearly the whole
host cell, and evade immune detection. Separating viruses quickly and effectively is the eradication. As pathogens connect to pattern-
recognition receptors (PRRs), which trigger innate immune cell antiviral activities, natural immunity responses are triggered. This
provides a crucial first break on viral replication. Adaptive immunological responses trigger the immune system’s development of
effector cells. Perelson created a biological model of HIV infection in 1989 [1]. This model is a representation of the virus propagation
and includes three variables: The quantity of uncontaminated cells, infected cells, and free virus particles. Leukocytes, also known
as CD4+ T cells, are fundamental components of the human immune systems (HIS), which work to combat illnesses. Recent studies
show that numerical approximation becomes a great tool to handle different phenomena in neuroscience and technology such as
entropy optimization of hemodynamic peristaltic pumping [2], dynamism of a hybrid Casson nanofluid [3], and interaction between
compressibility and particulate suspension [4].

1.1 International report on HIV

The primary reason to take into account the HIV infection model is because AIDS has an impact on our health-related difficulties and
challenges. Around the world, there were 37.9 million people living with HIV, 23.3 million people receiving anti-HIV medication,
and 1.7 million people who had only recently contracted the disease, according to the UNAIDS 2018 report. In 2018, about 1
million people had been passed away from illnesses linked to AIDS [5]. It was also predicted that there will be roughly 38.4 million
HIV-positive people in the globe in 2021. There were 36.7 million adults and 1.7 million children (aged 15 and under). Moreover,
there were 54% of women and girls in 2021. AIDS-related diseases claimed the lives of almost 650,000 people worldwide. The
most affected nations by HIV are also plagued by other infectious illnesses, food shortages, and other critical issues. Throughout
the last few decades, a large number of researchers have worked in a deep on infection of HIV and tried to find out the ways to
prevent its infections in people. The modeling of HIV dynamics and its therapies, are of particular interest to those working in the
field of biomathematics. We may examine the impact of infection on society and the governing factors via the use of a mathematical
model. It is critical to developing models that depict HIV because of the numerous malignancies that have been associated with the
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presence of HIV. Numerical approaches are required to examine such a model. This motivates us to use wavelet methods to examine
this model.

Consider the following system of nonlinear ordinary differential equations of the form:

dX
dα

� a − bX + cX
(

1 − X+Y
Xmax

)
− ηZ X

dY
dα

� ηZ X − eY

dZ
dα

� leY − ζ Z

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

Which describes the biological model of HIV infection of the CD4+T cells under the initial conditions X (0) � 0.1, Y (0) � 0, and
Z (0) � 0.1.

Where the parameters of this model represent,

X (α) � Amount of assistant T cells in blood at α,

Y (α) � Infected amount of assistant T cells by HIV in blood,

Z (α) � Concentration susceptible free HIV particles in the blood,

a � Producing rate of assistant T cells which are not infected

b � Rate of uninfected assistant T cells at natural turnover

e � Death rate of uninfected assistant T cells

ζ � Free virus particles at natural turnover

ηZ X � HIV infection of healthy assistant T cells

Xmax � Maximum assistant T cells in the body(
1 − X + Y

Xmax

)
� Logistic development of the healthy CD4+ T cells.

In addition to the above notations, some particular values of the following parameters are also assumed as part of the model described
above. Let the infection rate is denoted by a real number k in the infected human body and the values of the parameters occurred
in this system as a � 0.1, b � 0.02, e � 0.3, c � 3, ζ � 2.4, η � 0.0027, Xmax � 1500, l � 9. At the initial stage of infection
of T cells, not all the CD4+T cells are completely infected but some of them are still unaffected and also some of the infected cells
are not capable to produce virus particles. η is the rate at which the virus particle infects uninfected T cells, and ηZ X denotes the
resulting amount of uninfected cells at that moment. Therefore, this total amount of infected cells is represented as a loss term in
(1). Bursting or lytics may be the reason for the death of the infected T cells irrespective of the natural death and some of them may
help to produce the virus particles. The death rate of infected T cells due to lytic is denoted by e. Further,Xmax denotes the maximum
number of T cells and the term 1 − X+Y

Xmax
acts as logistic growth of the T cells. This term is introduced to make sure that the total

number of infected and uninfected helper T cells.
Numerous numerical methods have been introduced to tackle the model of HIV-infected CD4+ T cells. For instance, the operational

matrix of Bessel polynomials [6], technique based on differential transform [1], homotopy method for HIV infection model [7],
LADM approach for HIV infection model [8], LSCA for HIV infection model [9], MDTM for fractional HIV infection model [10],
MVIM for HIV infection model [11], SLCM for HIV infection model [12], BCM for HIV infection model [13], etc.

1.2 Wavelets in numerical analysis

Recently, wavelet algorithms have been developed by a number of researchers to solve various kinds of linear and nonlinear
ordinary and partial differential equations (PDEs). Multiresolution analysis, density, orthogonality, and compact support are the
main features of the wavelets. Wavelet-based numerical approaches are widely used to solve differential equations due to their
simplicity and accuracy. Numerous mathematicians studied the Fibonacci wavelets to handle the differential and integral equations
[14] in order to gain advantages from the local property. Both nonlinear Hunter–Saxton equations [15] and time-fractional telegraph
equations [16] have seen extensive use of Fibonacci wavelets in numerical solutions. However, when we looked at the literature, we
found that there was not much information on utilizing the Fibonacci wavelets to solve the model of HIV-infected CD4+T cells. This
gave us the idea to introduce a numerical approach based on the Fibonacci wavelets for solving a system of differential equations
representing the HIV-infected CD4+ T cells.

Wavelet basis-based several approximation techniques also handle the other real-life application-based models of mathematical
form such as Sunil et al. [17] applied the Hermite wavelet operational matrix of integration to the fractional model of COVID-19
disease, Sara et al. [18] applied the Legurre wavelets fractional predator–prey population model, SG Venkatesh et al. [19] used
Legendre wavelet, and A Beler [20] used Legurre wavelet to handle HIV infection model recently. Also, we found some articles
based on wavelets like BWM (Bernoulli wavelet method) [21], numerical solution using Haar wavelet [22–24], MTF equations
using Hermite [25], etc.
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1.3 Features

– Discontinuity is a big problem in the mathematical models to study the natural behavior of any problems but the proposed scheme
is best suitable to handle such kind of issues.

– Window concept is used to work at the point of sharp edges and discontinuity to get more information about these types of
phenomena.

The main objective of this paper is to provide and discuss a Fibonacci wavelet collocation method (FWCM) to know about the
numerical and geometrical behavior of the nonlinear mathematical model with the help of the Fibonacci wavelet basis. The R-K
method, Haar wavelet method, Laplace Adomian decomposition method (LADM), LADM-Pade, the homotopy analysis approach,
differential transform method, multistep Adomian decomposition method, modified variational iteration method, Runge–Kutta, and
other semi-analytic techniques are only a few of the methods that have been previously described to handle this mathematical model.
The outcomes of the Fibonacci wavelets are also analyzed with number of these existing techniques. Even if the aforementioned
strategies were precise and efficient, FWCM provides a solution with a higher degree of precision. The findings in this paper are novel
and unpublished in the literature. Using this approach, complicated numerical methods are eliminated, and valuable information
on the model’s numerical behavior is produced. The suggested method also solves the problem with numerical computation. The
correctness and competence of the suggested method are demonstrated by contrasting our approach with the published work.

Following is an overview of this article: We explain the characteristics of the Fibonacci wavelets and the approximation of a
function using the Fibonacci wavelet basis in Sect. 2. Section 3 presents a fundamental concept for generating the operational matrix
of integration, while Sect. 4 provides convergence analysis of the method. In Sect. 5, we discuss how to use the Fibonacci wavelets
and approximation of a function to represent FWCM based solution of the mathematical model. By applying the Fibonacci wavelet
method described in this article is applied to the HIV-infected CD4+ T cells model and outcomes are compared in Sect. 6 as well.
In Sect. 7, an overall conclusion is drawn.

2 Fibonacci wavelets and function approximation

Wavelets are the family of functions generated by the translation and dilation of a given function recognized as the mother wavelet.
When the translation and dilation parameters x and y vary continuously, we obtain the following family of continuous wavelets:

ϕx,y(α) � |x |−1/2ϕ

(
α − y

x

)
, ∀x, y ∈ R, x �� 0. (2)

If we choose x � x−θ
0 , y � ωx−θ

0 y0, x0 > 1, y0 > 1, and ω and θ are positive integers, the discrete wavelet family is introduced as,

ϕθ,ω(α) � |x0| θ
2 ϕ

(
xθ

0 α − ωy0
)
,

where ϕθ,ω(α) is the wavelet basis in L2(R). Further wavelets family ϕθ,ω(α) represents an orthonormal basis for the fixed values
of x0 � 2 and y0 � 1.

2.1 Fibonacci wavelets

Fibonacci wavelets ϕω,r (α) � ϕ(θ, ω̂, r, α) have four arguments; ω̂ � ω − 1, ω � 1, 2, 3, . . . , 2θ−1 for θ ∈ N. Variable r is defined
to be the degree of Fibonacci polynomials, and α is the normalized time parameter. These wavelets are defined on [0, 1](see [26–28]).
Therefore,

ϕω,r (α) �
{

2
θ−1

2√
Cr

Fr
(
2θ−1α − ω̂

)
, ω̂

2θ−1 ≤ α < ω̂+1
2θ−1 ,

0, Otherwise
(3)

with

Cr �
∫ 1

0
(Fr (α))2dα.

Here, r � 0, 1, . . . , μ − 1, is the degree of the well-known Fibonacci polynomial Fr (α) and the positive integer θ indicates the
maximum resolution level while ω � 1, 2, . . . , 2θ−1 is for the translation parameter.

The solution of the following recurrence equation gives Fibonacci polynomials. So for every α ∈ R
+:

Fr+2(α) � αFr+1(α) + Fr (α), ∀r ≥ 0,

with
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F0(α) � 1, F1(α) � α.

Moreover, the following confined formula may also be used to define them:

Fr−1(α) � ar − br

a − b
, ∀r ≥ 1,

where a and b are such that they are satisfying the equation
(
λ2 − αλ − 1

) � 0 of the recursion when solved for λ. Furthermore,
polynomial expansion of the Fibonacci wavelets can also be written as [28]:

Fr (α) �
r
2∑

i�0

(
r − i
i

)
αr−2i , ∀r ≥ 0,

3 Operational integration matrix

Following is the family of the Fibonacci wavelet basis at θ � 1:

ϕ1,0(α) � 1,

ϕ1,1(α) � √
3α

ϕ1,2(α) � 1

2

√
15

7

(
1 + α2),

ϕ1,3(α) �
√

105

239
α
(
2 + α2)

ϕ1,4(α) � 3

√
35

1943

(
1 + 3α2 + α4),

ϕ1,5(α) � 3

4

√
385

2582
α
(
3 + 4α2 + α4)

ϕ1,6(α) � 3

√
5005

1268209

(
1 + 6α2 + 5α4 + α6),

ϕ1,7(α) � 3

√
5005

2827883
α
(
4 + 10α2 + 6α4 + α6),

ϕ1,8(α) � 3

2

√
85085

28195421

(
1 + 10α2 + 15α4 + 7α6 + α8),

ϕ1,9(α) � 3

√
1616615

5016284989
α
(
5 + 20α2 + 21α4 + 8α6 + α8),

ϕ1,10(α) � 3

√
1616615

11941544471

(
1 + 15α2 + 35α4 + 28α6 + 9α8 + α10),

where,

ϕ10(α) � [
ϕ1,0(α), ϕ1,1(α), ϕ1,2(α), ϕ1,3(α), ϕ1,4(α), ϕ1,5(α), ϕ1,6(α), ϕ1,7(α), ϕ1,8(α), ϕ1,9(α)

]T
.

Now integrate each member of the aforementioned vector with respect to α limit from 0 to α and then express them as a linear
combination of Fibonacci wavelet basis we get;
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∫ α

0
ϕ1,0(α)dα �

[
0 1√

3
0 0 0 0 0 0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,1(α)dα �

[
−

√
3

2 0
√

7
5 0 0 0 0 0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,2(α)dα �

[
0

√
5

6
√

7
0

√
239
42 0 0 0 0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,3(α)dα �

[
−

√
105

2
√

239
0 7

2
√

239
0 −

√
1943

4
√

717
0 0 0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,4(α)dα �

[
0 0 0

√
717

5
√

1943
0 4

√
2582

5
√

21373
0 0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,5(α)dα �

[ √
385

4
√

2582
0 0 0

√
21373

24
√

2582
0

√
1268209

24
√

33566
0 0 0

]
ϕ10(α),

∫ α

0
ϕ1,6(α)dα �

[
0 0 0 0 0 4

√
33566

7
√

1268209
0

√
2827883

7
√

1268209
0 0

]
ϕ10(α),

∫ α

0
ϕ1,7(α)dα �

[
− 3

√
5005

4
√

2827883
0 0 0 0 0

√
1268209

8
√

2827883
0

√
28195421

4
√

48074011
0
]
ϕ10(α),

∫ α

0
ϕ1,8(α)dα �

[
0 0 0 0 0 0 0

√
48074011

18
√

28195421
0

√
5016284989

18
√

535712999

]
ϕ10(α),

∫ α

0
ϕ1,9(α)dα �

[
−3

√
323323

25081424945 0 0 0 0 0 0 0
√

535712999
5
√

5016284989
0
]
ϕ10(α),

Hence,
∫ α

0
ϕ(α)dα � P10×10ϕ10(α) + P(α), (4)

where

P10×10 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1√
3

0 0 0 0 0 0 0 0

−
√

3
2 0

√
7
5 0 0 0 0 0 0 0

0
√

5
6
√

7
0

√
239
42 0 0 0 0 0 0

−
√

105
2
√

239
0 7

2
√

239
0

√
1943

4
√

717
0 0 0 0 0

0 0 0
√

717
5
√

1943
0 4

√
2582

5
√

21373
0 0 0 0

−
√

385
4
√

2582
0 0 0

√
21373

24
√

2582
0

√
1268209

24
√

33566
0 0 0

0 0 0 0 0 4
√

33566
7
√

1268209
0

√
2827883

7
√

1268209
0 0

− 3
√

5005
4
√

2827883
0 0 0 0 0

√
1268209

8
√

2827883
0

√
28195421

4
√

48074011
0

0 0 0 0 0 0 0
√

48074011
18

√
28195421

0
√

5016284989
18

√
535712999

−3
√

323323
25081424945 0 0 0 0 0 0 0

√
535712999

5
√

5016284989
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

P(α) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0√

11941544471
10

√
5016284989

ϕ1,10(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, we can obtain the same operational matrices for multiple values of μ and θ .
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4 Convergence analysis

Theorem 1 Let H be a Hilbert space and W be a closed and finite dimensional subspace of H such that dimW < ∞ and
{w1, w2, . . . , wn} is any basis for W. Let h be an arbitrary element in H and h0 be the unique best approximation to h out of W.
Then, [25]

‖h − h0‖2 � Gh .

where Gh �
(
Z̃(h,w1,w2,...,wn)

Z̃(h,w1,w2,...,wn)

) 1
2
and Z̃ is introduced in as follows [25]:

Z̃(h, w1, w2, . . . wn) �

∣∣∣∣∣∣∣∣

〈h, h〉 〈h, w1〉 . . . 〈h, wn〉
〈w1, h〉 〈w1, w1〉 . . . 〈w1, wn〉

. . . . . . . . . . . .

〈wn, h〉 〈wn, w1〉 . . . 〈wn, wn〉

∣∣∣∣∣∣∣∣
. (5)

Theorem 2 Suppose y ∈ L2[0, 1], y : [0, 1] → R, and I � span
{
ϕ1,0(α), ϕ1,1(α), . . . , ϕ2θ−1,μ−1(α)

}
. If CTϕ(α) is the best

approximation of y out of I , and we use Eq. (4) for approximation of integration y, then the error bound is given by:∥∥∥∥
∫ α

0
y
(
α′)dα′ − CT Pϕ(α)

∥∥∥∥
2

≤ Gy + γy . (6)

Where,

γy � μ1

2θ−1μ

2θ−1∑
ω�1

∣∣cω,μ−1
∣∣, with μ1 � max

α∈[0,1]

∣∣ϕω,μ−1
∣∣, ω � 1, . . . , 2θ−1.

Theorem 3 Let L2[0, 1] be the Hilbert space generated by the Fibonacci wavelet basis. Let U (α) be the continuous bounded
function in L2[0, 1]. Then, the Fibonacci wavelet expansion of U (α) converges to it.

U (α) �
∞∑
i�1

∞∑
j�0

di, jϕi, j (α). (7)

where, di, j � 〈U (α), ϕi, j (α)〉, and 〈, 〉 represents inner product and ϕi, j (α) are orthogonal functions on [0, 1]. Now,

di, j �
∫ 1

0
U (α)ϕi, j (α)dα

di, j �
∫ 1

0
U (α)

2
θ−1

2√
Cr

Fr
(
2θ−1α − ω + 1

) × ϕi, j (α)dα

where I �
[

ω−1
2θ−1 , ω

2θ−1

]
and Cr � ∫ 1

0 (Fr (α))2dα.

Put 2θ−1α − ω + 1 � ϑ then,

di, j � 2
θ−1

2√
Cr

∫ 1

0
U

(
ϑ − 1 + ω

2θ−1

)
Fr (ϑ)

dϑ

2θ−1 ,

di, j � 2
−
(

θ−1
2

)

√
Cr

[∫ 1

0
U

(
ϑ − 1 + ω

2θ−1 , α

)
Fr (ϑ)dϑ

]
.

Now using the generalized form of mean value theorem to integrals,

di, j � 2
−
(

θ−1
2

)

√
Cr

U

(
ξ − 1 + ω

2θ−1

)
×

[∫ 1

0
Fr (ϑ)dϑ

]
,

where ξ ∈ (0, 1) and choose
∫ 1

0 Fr (ϑ)dϑ � ε, then

di, j � ε2
−
(

θ−1
2

)

√
Cr

U

(
ξ − 1 + ω

2θ−1

)
,∀ξ ∈ (0, 1).

Therefore,

∣∣di, j
∣∣ �

∣∣∣∣∣∣
ε2

−
(

θ−1
2

)

√
Cr

∣∣∣∣∣∣

∣∣∣∣U
(

ξ − 1 + ω

2θ−1

)∣∣∣∣,
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Since U is bounded by M,

∣∣di, j
∣∣ ≤

|ε|
∣∣∣∣2

−
(

θ−1
2

)∣∣∣∣M
∣∣√Cr

∣∣ .

Which implies that the series expansion of U (α) converges uniformly as the series
∑∞

i�1

∑∞
j�0

di, j is absolutely convergent .

5 Methodology

In this section, we would like to give a methodology in order to find an approximate solution for the HIV infection model of CD4+ T
cells based on the Fibonacci wavelets. Assume that,

dX

dα
�RTϕ(α) (8)

dY

dα
�STϕ(α) (9)

dZ

dα
�T Tϕ(α) (10)

where, RT � [
r1,0, . . . r1,μ−1, r2,0, . . . r2,μ−1, r2θ−1,0, . . . r2θ−1,μ−1

]
,

ST � [
s1,0, . . . s1,μ−1, s2,0, . . . s2,μ−1, s2θ−1,0, . . . s2θ−1,μ−1

]
,

T T � [
t1,0, . . . t1,μ−1, t2,0, . . . t2,μ−1, t2θ−1,0, . . . t2θ−1,μ−1

]
,

and, ϕ(α) � [
ϕ1,0(α), . . . ϕ1,μ−1(α), ϕ2,0(α), . . . ϕ2,μ−1(α), ϕ2θ−1,0(α), . . . ϕ2θ−1,μ−1(α)

]
.

Integrate (8), (9), and (10) concerning ‘α’ from ‘0’ to ‘α.’ We get

X (α) � X (0) +
∫ α

0
RTϕ(α)dα

Y (α) � Y (0) +
∫ α

0
STϕ(α)dα

Z (α) � Z (0) +
∫ α

0
T Tϕ(α)dα

Similarly, express the initial conditions using ϕ(α) in terms of known vectors D, E, and F. Therefore use (4) to obtain;

X (α) � DTϕ(α) + RT [Pϕ(α) + P(α)]

Y (α) � ETϕ(α) + ST [Pϕ(α) + P(α)]

Z (α) � FTϕ(α) + T T [Pϕ(α) + P(α)]

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

. (11)

Now, substitute equations (8), (9), (10), and (11) in (1). We get,

RTϕ(α) − a + b
(
DT ϕ(α) + RT [Pϕ(α) + P(α)]

) − c
(
DTϕ(α) + RT [Pϕ(α) + P(α)]

)
(

1
Xmax

)(
Xmax − DT ϕ(α) + RT [Pϕ(α) + P(α)] + ETϕ(α) + ST [Pϕ(α) + P(α)]

)·
+η

(
FTϕ(α) + CT [Pϕ(α) + P(α)]

)(
DTϕ(α) + RT [Pϕ(α) + P(α)]

) � 0

STϕ(α) + η
(
FTϕ(α) + T T [Pϕ(α) + P(α)]

)(
DTϕ(α) + RT [Pϕ(α) + P(α)]

)

+e
(
ETϕ(α) + ST [Pϕ(α) + P(α)]

) � 0.

T Tϕ(α) − le
(
ETϕ(α) + ST [Pϕ(α) + P(α)]

)
+ ζ

(
FTϕ(α) + T T [Pϕ(α) + P(α)]

) � 0·

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
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Table 1 Comparison of the FWCM with several other existing methods for X

α Fibonacci wavelet at μ � 10 Analytical solution Runge–Kutta Haar wavelet at J � 5 LADM [29] LADM-Pade [29]

0.0 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000

0.1 0.1463604337314 0.1463590954390 0.1463590819784 0.1464175305555 0.1463590767342 0.1463590766244

0.2 0.2088161083119 0.2088080635351 0.2088080845252 0.2088998615066 0.2088073298445 0.2088072731333

0.3 0.2929573630618 0.2929294113660 0.2929294121750 0.2930706066095 0.2929159946833 0.2929137862375

0.4 0.4063178006103 0.4062403736489 0.4062405377477 0.4064543676649 0.4061358315487 0.4061052625432

0.5 0.5590513394936 0.5588631040412 0.5588633525856 0.5591827244497 0.5583427110663 0.5581020599255

0.6 0.7648462237305 0.7644235436246 0.7644238855225 0.7648968622088 0.7624762220221 0.7611467713422

0.7 1.0421599164497 1.0412603282587 1.0412608078360 1.0419569015502 1.0352712974845 1.0295183448456

0.8 1.4158891049844 1.4140461662432 1.4140468253655 1.4149122238159 1.3980828630585 1.3773198590566

0.9 1.9196318348832 1.9159602830465 1.9159611979814 1.9166641235351 1.8778035035674 1.8129744009876

1.0 2.5987560978792 2.5915957524456 2.5915948088777 2.5922241210937 2.5078741510885 2.3291697610879

Table 2 Comparison of the FWCM with several other existing methods for Y

α Fibonacci wavelet at μ � 10 Analytical solution Runge–Kutta Haar wavelet at J � 5 LADM [29] LADM-Pade [29]

0.0 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000

0.1 0.0000028650534 0.0000028649198 0.0000028649252 0.0000028674043 0.0000028649189 0.0000028649189

0.2 0.0000060333063 0.0000060327036 0.0000060327021 0.0000060368541 0.0000060327069 0.0000060327072

0.3 0.0000094726054 0.0000094713566 0.0000094713552 0.0000094773870 0.0000094714323 0.0000094714472

0.4 0.0000131605805 0.0000131583444 0.0000131583407 0.0000131664732 0.0000131589100 0.0000131591617

0.5 0.0000170825079 0.0000170787402 0.0000170787355 0.0000170891907 0.0000170813741 0.0000170841716

0.6 0.0000212299890 0.0000212237911 0.0000212237850 0.0000212367950 0.0000212329817 0.0000212683688

0.7 0.0000255997839 0.0000255898231 0.0000255898156 0.0000256056241 0.0000256161463 0.0000254183417

0.8 0.0000301931955 0.0000301774286 0.0000301774195 0.0000301963391 0.0000302427015 0.0000300691867

0.9 0.0000350153871 0.0000349908913 0.0000349908805 0.0000350132468 0.0000351358962 0.0000348647969

1.0 0.0000400756072 0.0000400378278 0.0000400378146 0.0000400630524 0.0000403332185 0.0000398736542

Hence using the grid points αi � 2i−1
2μ

, i � 1, 2, . . . , μ collocate each equation in (12) to get a system of 3μ number of nonlinear
algebraic equations as:

RTϕ(αi ) � a − b
(
DTϕ(αi ) + RT

[
Pϕ(αi ) + P(αi )

])
+ c

(
DTϕ(αi ) + RT

[
Pϕ(αi ) + P(αi )

])
(

1
Xmax

)(
Xmax − DTϕ(αi ) + RT

[
Pϕ(αi ) + P(αi )

]
+ ETϕ(αi ) + ST

[
Pϕ(αi ) + P(αi )

])·
−η

(
FTϕ(αi ) + T T

[
Pϕ(αi ) + P(αi )

])(
DTϕ(αi ) + RT

[
Pϕ(αi ) + P(αi )

])

−e
(
ETϕ(αi ) + ST

[
Pϕ(αi ) + P(αi )

])
.

STϕ(αi ) � −k
(
FTϕ(αi ) + T T

[
Pϕ(αi ) + P(αi )

])(
DTϕ(αi ) + RT

[
Pϕ(αi ) + P(αi )

])

T Tϕ(αi ) � le
(
ETϕ(αi ) + ST

[
Pϕ(αi ) + P(αi )

]) − ζ
(
FTϕ(αi ) + T T

[
Pϕ(αi ) + P(αi )

])·

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (13)

This system of 3μ number of algebraic equations can be solved using fsolve command in MATLAB. Finally, substitute these values
of the Fibonacci wavelet coefficients into (11) to get the Fibonacci wavelet solution (FWCM) of the discussed HIV infection model
of CD4+T cells.
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Table 3 Comparison of the FWCM with several other existing methods for Z

α Fibonacci wavelet at μ � 10 Analytical solution Runge–Kutta Haar wavelet at J � 5 LADM [29] LADM-Pade [29]

0.0 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000 0.1000000000000

0.1 0.0786630531246 0.0786631825201 0.0786631763321 0.0786747964168 0.0786631771622 0.0786631770757

0.2 0.0618796342202 0.0618798440184 0.0618798433073 0.0618872437681 0.0618799530567 0.0618799602595

0.3 0.0486781152728 0.0486784909571 0.0486784889977 0.0486829421885 0.0486803130909 0.0486806266335

0.4 0.0382942836800 0.0382948815020 0.0382948878764 0.0382973184821 0.0383081804755 0.0383132488366

0.5 0.0301269956891 0.0301278673029 0.0301278739346 0.0301335302519 0.0301895642466 0.0302409705361

0.6 0.0237033621620 0.0237045441571 0.0237045501402 0.0239030930242 0.0239198160879 0.0243917434987

0.7 0.0186513663883 0.0186529155941 0.0186529209061 0.0193062210455 0.0192699954285 0.0445826889163

0.8 0.0146784395452 0.0146803591209 0.0146803637634 0.0142131736502 0.0162123434366 0.0099672189344

0.9 0.0115542590533 0.0115566903957 0.0115566944064 0.0115583240985 0.0149648655605 0.0069108403314

1.0 0.0090982859450 0.0091008452186 0.0091008450579 0.0093183517456 0.0160550223855 0.0033050764474

Table 4 Comparison of the
FWCM solution with some other
existing method solution

X (α), Y (α) α LWM [19] HPTM [30] OBCM [31] QL [32] FWCM
solution at

Z (α) N � 8 N � 50 N � 10

X (α) 0.2 0.20881 0.20881 0.21293 0.20881 0.20881

0.4 0.40612 0.40614 0.41101 0.40624 0.40631

0.6 0.76415 0.76248 0.77578 0.76442 0.76486

0.8 1.39777 1.39808 1.43475 1.41405 1.41588

1 2.55715 2.50787 2.74322 2.59160 2.59875

Y (α) 0.2 6.03270 ×10−6 6.03271 ×10−6 5.90368 ×10−6 6.03270 ×10−6 6.03270 ×10−6

0.4 1.31678 ×10−5 1.31589 ×10−5 1.29974 ×10−5 1.31583 ×10−5 1.31583 ×10−5

0.6 2.11263 ×10−5 2.12330 ×10−5 2.12334 ×10−5 2.12237 ×10−5 2.12238 ×10−5

0.8 2.99814 ×10−5 3.02427 ×10−5 3.02700 ×10−5 3.01774 ×10−5 3.01774 ×10−5

1 3.28765 ×10−5 3.02427 ×10−5 3.9430 ×10−5 4.00378 ×10−5 4.00378 ×10−5

Z (α) 0.2 0.06188 0.06188 0.06160 0.06188 0.06187

0.4 0.03832 0.03831 0.03811 0.03829 0.03829

0.6 0.02381 0.02392 0.02363 0.02370 0.02370

0.8 0.01621 0.01621 0.01462 0.014680 0.01468

1 0.01605 0.01606 0.00611 0.00811 0.00910

Table 5 Error variation for X and at different values of μ

α Analytical
solution

Fibonacci wavelet
at μ � 6

Fibonacci wavelet
at μ � 10

Haar wavelet at J
� 5

AE at μ � 6 AE at μ � 10 AE in Haar
solution

0.0 0.1000000000000 0.0999999999999 0.1000000000000 0.1000000000000 0 0 0

0.2 0.2088080635351 0.2085328226208 0.2088161083119 0.2088998615066 2.752409 × 10−4 8.044776 × 10−6
9.179714 ×10−5

0.4 0.4062403736489 0.4057913408051 0.4063178006103 0.4064543676649 4.490328 × 10−4 7.742696 × 10−5 2.139940 × 10−2

0.6 0.7644235436246 0.7639107503128 0.7648462237305 0.7648968622088 5.127933 × 10−4 4.226801 × 10−4 4.733185 × 10−4

0.8 1.4140461662432 1.4141670163243 1.4158891049844 1.4149122238159 1.208500 × 10−3 1.842938 × 10−3 8.660575 × 10−4

1.0 2.5915957524456 2.5954928265364 2.5987560978792 2.5922241210937 3.897074 × 10−3 7.160345 × 10−3 6.283686 × 10−4
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Table 6 Error variation for Y at different values of μ

α Analytical
solution

Fibonacci wavelet
at μ � 6

Fibonacci wavelet
at μ � 10

Haar wavelet at J
� 5

AE at μ � 6 AE at μ � 10 AE in Haar
solution

0.0 0.0000000000000 0.0000000000000 0.0000000000000 0.0000000000000 0 0 0

0.2 0.0000060327036 0.0000060219440 0.0000060333063 0.0000060368541 1.075960 ×10−9 6.026999 ×10−10 4.150499 ×10−9

0.4 0.0000131583444 0.0000131393795 0.0000131605805 0.0000131664732 1.896490 ×10−8 2.236099 ×10−9 8.128791 ×10−9

0.6 0.0000212237911 0.0000211977922 0.0000212299890 0.0000212367950 2.599889 ×10−8 6.197900 ×10−9 1.300390 ×10−8

0.8 0.0000301774286 0.0000301489297 0.0000301931955 0.0000301963391 2.849890 ×10−8 1.576689 ×10−8 1.891049 ×10−8

1.0 0.0000400378278 0.0000400176402 0.0000400756072 0.0000400630524 2.018759 ×10−8 3.777940 ×10−8 2.522460 ×10−8

6 Application

Take into account the following HIV infection biological model of CD4+ T cells of the form.

dX
dα

� a − bX + cX
(

1 − X+Y
Xmax

)
− ηZ X

dY
dα

� ηZ X − eY

dZ
dα

� leY − ζ Z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)

subject to the initial conditions Y (0) � 0, X (0) � 0.1 and Z (0) � 0.1. For the values of the parameters of the HIV model given
as a � 0.1, b � 0.02, e � 0.3, c � 3, ζ � 2.4, η � 0.0027, Xmax � 1500, l � 9, we applied the Fibonacci wavelets collocation
method at different values of the μ � 6, 10 and the obtained solutions are expressed below in terms of the Fibonacci wavelets.

X6(α) � 0.1 + 0.391226041063660α + 0.658675023106998α2 + 0.277893133979247α3

+ 1.177134783080766α4 − 0.645872371310166α5 + 0.636436216615935α6.

Y6(α) � 2.69183446999649210−05α + 1.752070565382036−05α2 − 9.114423829265501 × 10−6α3

7.074026118122498 × 10−6α4 − 3.139734237876142 × 10−6α5 + 7.587217980409271 × 10−7α6.

Z6(α) � 0.1 − 0.239930028644941α + 0.287163848461543α2 − 0.225793198594894α3

0.125350273263879α4 − 0.046066809677993α5 + 0.008375606938865α6.

Similarly, the solution of the technique described in this paper for μ � 10 obtained as;

X10(α) � 0.1 + 0.397957486097656α + 0.592843121911826α2 + 0.589916822894210α3

+ 0.434584659490634α4 + 0.276885379242344α5 + 0.100629706589874α6

+ 0.091218024363554α7 − 1.385994299865041 × 10−4α8 + 0.009271277144194α9

+ 0.005588219574928α10.

Y10(α) � 2.700009620232397 × 10−5α + 1.727414215387677 × 10−5α2

− 8.405040841816345 × 10−6α3 + 6.197272282093506 × 10−6α4

− 2.955361856777003 × 10−6α5 + 1.389187262533337 × 10−6α6

− 6.298772685137824 × 10−7α7 + 2.454884456803799 × 10−7α8.

− 4.658120499988379 × 10−10α9

Z10(α) � 0.1 − 0.239999906162426α + 0.288034579883702α2 − 0.230396282041108α3

+ 0.138150334553266α4 − 0.066046831447757α5 + 0.025878619729596α6

− 0.008160119735072α7 + 0.001863453186237α8 − 0.000225897923658α9.

Tables 1, 2, and 3 represent a value comparison of the Fibonacci wavelet solution for X (α), Y (α), and Z (α), respectively, while
Tables 4, 5, and 6 show error variations in FWCM and a comparison of the absolute error with some other existing method’s absolute
errors, i.e., Haar method, LADM [29] for X (α), Y (α) and Z (α), respectively. Table 2 shows that the FWCM solution is accurate up
to 9–10 digits, which is a good accuracy for a small number of grid points. It is also clear that error can be reduced by increasing
the number of collocation points (μ) and size of the operational matrix of integration. Figures 1, 2, and 3 represent a graphical
comparison of the Fibonacci wavelet solution for X (α), Y (α) and Z (α), respectively, while Figures 4, 5 and 6 show error variations
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Fig. 1 Approximate solution
using Fibonacci wavelets for X

Fig. 2 Approximate solution
using Fibonacci wavelets for X

Fig. 3 Approximate solution
using Fibonacci wavelets for Z

in FWCM and in several other existing method’s solutions for X (α), Y (α) and Z (α), respectively. In Table 4, FWCM solution is
compared with the homotopy perturbation method (HPTM) [30], the Legendre wavelet method (LWM) [19], orthonormal Bernstein
collocation method (OBCM) [31], and quasilinearization method (QL) [32] (Figs. 7, 8, 9, 10, 11, 12; Table 7).
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Fig. 4 Absolute error for X

Fig. 5 Absolute error for Y

Fig. 6 Absolute error for Z

6.1 Figure observations

(i) Increment in the quantity of death of free virus particles results in decrement in the quantity of number of infected cells. Hence,
ζ is inversely proportional to both Y (α) and Z (α).
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Fig. 7 Comparison of FWCM
solution for different values of a
for X

Fig. 8 Comparison of FWCM
solution for different values of a
for Y

Fig. 9 Comparison of FWCM
solution for different values of a
for Z

(ii) Since infected T cells directly increase the production rate of free virus particles, therefore, l is directly proportional to Y (α)
and Z (α).

(iii) Rapid infection occurs if it is due to free virus particles. Hence, Y and Z are directly proportional to η.
(iv) Increment in the death rate of the uninfected T cells results in decrement in the quantity of infected cells and number of free

virus particles because X (α) decreases. Hence, all the modules are inversely proportional to b.

123



  458 Page 14 of 16 Eur. Phys. J. Plus         (2023) 138:458 

Fig. 10 Comparison of FWCM
solution for different values of b
for X

Fig. 11 Comparison of FWCM
solution for different values of b
for Y

Fig. 12 Comparison of FWCM
solution for different values of b
for Z

(v) Increment in the production rate of the uninfected T cells result in increment in the quantity of uninfected cells and number
of free virus particles. Therefore, this change will also increase the value of Y (α). Hence, X (α), Y (α), and Z (α) are directly
proportional to a.
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7 Conclusion

In this research, a numerical technique based on the Fibonacci wavelets and collocation approach is explored and applied for the
solution of the HIV-infected CD4 + T cells mathematical model. This method delivers superior results with lower processing costs
compare than several other existing methods in the literature. As a result, the recommended method is very effective and can be
applied to several mathematical models like treatment of cancer, drug targeting systems, and biotherapy. Last but not least, we
provide the following conclusions of our investigation:

• In comparison with the analytical solution, the current technique offers more precision.
• This methodology is simple to implement in computer programs, and we may expand it to higher orders by making a little change

to the current approach.
• The suggested approach is also quite easy to apply, and the numerical results obtained indicate that it is very effective for solving

the aforementioned mathematical models numerically as well as for solving additional systems of differential equations.
• Theoretical discussions are used to describe Fibonacci wavelet properties and their convergent analysis.
• From the analysis above, it can be summarized that we can only reduce the free virus particles and number of infected cells by

changing the values of the parameters which directly decreases Y and Z without changing the quantity of healthy cells to a great
extent.

Acknowledgements All authors are thankful to the respected reviewers for the positive feedback and helpful comments or suggested modifications to
improve the quality of the paper.

Author contributions Vivek came up with the paper’s basic idea, prepared the text, and carried out every stage of the research’s proofs.

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on request.]

Declarations

Conflict of interest All authors declare that they do not have no conflict of interest.

References

1. A.S. Perelson, Modelling the interaction of the immune system with HIV, in Mathematical and Statistical Approaches to AIDS Epidemiology. ed. by C.
Castillo-Chavez (Springer, Berlin, 1989), p.350

2. V. Sridhar, K. Ramesh, M. Gnaneswara Reddy, M.N. Azese, S.I. Abdelsalam, On the entropy optimization of hemodynamic peristaltic pumping of a
nanofluid with geometry effects. Waves Random Complex Media 19, 1–21 (2022)

3. S.I. Abdelsalam, K.S. Mekheimer, A.Z. Zaher, Dynamism of a hybrid Casson nanofluid with laser radiation and chemical reaction through sinusoidal
channels. Waves Random Complex Media 9, 1–22 (2022)

4. I.M. Eldesoky, S.I. Abdelsalam, R.M. Abumandour, M.H. Kamel, K. Vafai, Interaction between compressibility and particulate suspension on peri-
staltically driven flow in planar channel. Appl. Math. Mech. 38, 137–54 (2017)

5. S. Kumar, R. Kumar, J. Singh, D. Kumar, An efficient numerical scheme for fractional model of HIV-1 infection of CD 4+T-cells with the effect of
antiviral drug therapy. Alex. Eng. J. 59, 2053–64 (2020)

6. Y. Suayip, A numerical approach to solve the model for HIV infection of CD4+T cells. Appl. Math. Model. 36, 5876–90 (2012)
7. M. Ghoreishi, A. Ismail, A.K. Alomari, Applications of the homotopy analysis method for solving a model of HIV infection of CD+4 T cells. Math.

Comput. Model. 54, 3007–15 (2011)
8. S. Balamuralitharan, Analytical approach to solve the model for HIV infection of CD 4+Tcells using LADM. Int. J. Pure Appl. Math. 113, 243–51

(2017)
9. N.H. Sweilam, S.M. Al-Mekhalf, Legendre spectral-collocation method for solving fractional optimal control of HIV infection of CD 4+T cells

mathematical model. J. Def. Model. Simul. Appl. Methodol. Technol. 14, 273–284 (2016)
10. A. Gokdogan, A. Yildirim, M. Merdana, Solving a fractional order model of HIV infection of CD 4+T cells. Math. Comput. Model. 54, 2132–8 (2011)
11. M. Merdana, A. Gokdogan, A. Yildirim, On the numerical solution of the model for HIV infection of CD 4+T cells. Comput. Math. Appl. 62, 118–23

(2011)
12. F. Mirzaee, N. Samadyar, On the numerical method for solving a system of nonlinear fractional ordinary differential equations arising in HIV infection

of CD 4+T cells. Iran. J. Sci. Technol. Trans. A Sci. 43(3), 1127–38 (2019)
13. F. Mirzaee, N. Samadyar, Parameters estimation of HIV infection model of CD 4+T-cells by applying orthonormal Bernstein collocation method. Int.

J. Biomath. 11(2), 1850020 (2018)
14. Ü. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, in Proceedings of the Estonian Academy of Sciences,

Physics, Mathematics 1 (Vol. 56, No. 1) (2007)
15. H.M. Srivastava, F.A. Shah, N.A. Nayied, Fibonacci wavelet method for the solution of the non-linear Hunter–Saxton equation. Appl. Sci. 12(15), 7738

(2022)
16. F.A. Shah, M. Irfan, K.S. Nisar, R.T. Matoog, E.E. Mahmoud, Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet

boundary conditions. Results Phys. 24, 104123 (2021)

123



  458 Page 16 of 16 Eur. Phys. J. Plus         (2023) 138:458 

17. S. Kumar, R. Kumar, S. Momani, S. Hadid, A study on fractional COVID-19 disease model by using Hermite wavelets. Math. Methods Appl. Sci. 7
(2021)

18. S.S. Alzaid, R. Kumar, R.P. Chauhan, S. Kumar, Laguerre wavelet method for fractional predator–prey population model. Fractals 30(08), 2240215
(2022)

19. S.G. Venkatesh, S. Raja Balachandar, S.K. Ayyaswamy, K. Balasubramanian, A new approach for solving a model for HIV infection of CD4 ˆ+ T CD
4+ T-cells arising in mathematical chemistry using wavelets. J. Math. Chem. 54, 1072–82 (2016)
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