Skip to main content
Log in

Diffusive pattern formations in three-species nonlinear dynamics of cancer

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We examine pattern formations of the spatiotemporal dynamics of tumor growth model. The system is modeled by three-species reaction–diffusion equations of healthy cells, cancer cells and acid concentrations. The equilibrium points of the model are determined, the Routh–Hurwitz criteria allowed us to assess the stability of the system by deducing the conditions of existence of Turing models. Numerical results are presented in order to appreciate how biological processes have been affected by the formation of spatiotemporal patterns and highlight the impact of diffusion term on areas of healthy cells, cancer cells and acid concentrations through Turing and non-Turing models. Our results may be used to better describe the relationship between acidity and pattern formation as metastases during tumor growth through different sequence of diffusive cancer dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Article  Google Scholar 

  2. A. Abduvaliev, M. Saydalieva, M. Hidirova, M. Gildieva, Mathematical modeling of the thyroid regulatory mechanisms. Am. J. Med. Sci. Med. 3(3), 28–32 (2015)

    Google Scholar 

  3. S.S. Hori, S.S. Gambhir, Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci. Transl. Med. 3, 109–16 (2011)

    Article  Google Scholar 

  4. K. Park, A review of modeling approaches to predict drug response in clinical oncology. Yonsei Med. J. 58(1), 1–8 (2017)

    Article  Google Scholar 

  5. L.T. Jackson, A mathematical model of prostate tumor growth and androgen independent relapse. Disc Cont. Dyn. Syst. B 4, 187–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. D.S. Rodrigues, P.F.A. Mancera, T.R.P. Suani, Understanding the antiangiogenic effect of metronomic chemotherapy through a simple mathematical model. Phys. A 464, 251–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. W.E. Boyce, R. DiPrima, Elementary Differential Equations and Boundary Value Problems (Wiley, Hoboken, 2012)

    MATH  Google Scholar 

  8. M.W. Hirsh, S. Smale, R.L. Devaney, Differential Equations, Dynamical Systems and an Introduction to Chaos (Elsevier, Amsterdam, 2004)

    Google Scholar 

  9. V.A. Kuznetsov, I.A. Makalkin, M. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  MATH  Google Scholar 

  10. A.J. Adam, Effects of vascularization on lymphocyte/tumor cell dynamics: qualitative features. Math. Comput. Model. 23(6), 1–10 (1996)

    Article  MATH  Google Scholar 

  11. R. De Boer, P. Hogeweg, H. Dullens, A.R. De Weger, W. Den Otter, Macrophage lymphocyte interactions in the anti-tumor immune response: a mathematical model. J. Immunol. 134(4), 2748–2758 (1985)

    Article  Google Scholar 

  12. D. Kirschner, C.J. Panetta, Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  MATH  Google Scholar 

  13. S. Banerjee, R. Sarkar, Delay-induced model for tumor-immune interaction and control of malignant tumor growth. Biosystems 91(1), 268–288 (2008)

    Article  Google Scholar 

  14. R. Eftimie, L.J. Bramson, D.J. Earn, Interactions between the immune system and cancer: a brief review of non spatial mathematical models. Bull. Math. Biol. 73(1), 2–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Adam, A. Corrigendum, A mathematical model of tumor growth by diffusion. Math. Biosci. 94, 155 (1989)

    Article  MathSciNet  Google Scholar 

  16. M.A.J. Chaplain, F.N. Britton, On the concentration profile of a growth inhibitory factor in multicell spheroids. Math. Biosci. 115, 233–245 (1993)

    Article  MATH  Google Scholar 

  17. M.A.J. Chaplain, M.A. Stuart, A mathematical model for the diffusion of tumour angiogenesis factor into the surrounding host tissue. IMA J. Math. Appl. Med. Biol. 8, 191–220 (1991)

    Article  MATH  Google Scholar 

  18. P. Esfahani, H. Levine, M. Mukherjee, B. Sun, Three-dimensional cancer cell migration directed by dual mechanochemical guidance. Phys. Rev. Res. 4, L022007 (2022)

    Article  Google Scholar 

  19. P. Zhivkov, J. Waniewski, Modelling tumour-immunity interactions with different stimulation functions. Int. J. Appl. Math. Comput. Sci. 13(3), 307 (2003)

    MathSciNet  MATH  Google Scholar 

  20. R. Lefever, W. Horsthemke, Bistability in fluctuating environments. Implications in tumor immunology. Bull. Math. Biol. 41, 469 (1979)

    Article  MATH  Google Scholar 

  21. R.P. Garay, R. Lefever, A kinetic approach to the immunology of cancer: stationary states properties of efffector-target cell reactions. J. Theor. Biol. 73, 417 (1978)

    Article  ADS  Google Scholar 

  22. M.A.J. Chaplain, M. Ganesh, G.I. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth. J. Math. Biol. 42, 387–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Domschke, D. Trucu, A. Gerisch, M.A.J. Chaplain, Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 21(361), 41–60 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R.H. Thomlinson, H.L. Gra, The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955)

    Article  Google Scholar 

  25. R.A. Gatenby, J.R. Gillies, Why do cancers have high aerobic glycolysis. Nat. Rev. Cancer 4, 891–899 (2004)

    Article  Google Scholar 

  26. R.J. Gillies, N. Raghunand, G.S. Karczmar, M.Z. Bhujwalla, MRI of the tumor microenvironment. J. Magn. Reson. Imag. 16, 430–450 (2002)

    Article  Google Scholar 

  27. H. Wang, Q. Xi, G. Wu, Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5(7), 1599–606 (2016)

    Article  Google Scholar 

  28. D.A. Fishman, Y. Liu, S.M. Ellerbroek, M. Sharon Stack, Lysophosphatidic acid promotes matrix metalloproteinase (MMP) activation and MMP-dependent Invasion in ovarian cancer cells. Cancer Res. 61, 3194–3199 (2001)

    Google Scholar 

  29. L. Liao, C. Liu, X. Xie, J. Zhou, Betulinic acid induces apoptosis and impairs migration and invasion in a mouse model of ovarian cancer. J. Food Biochem. 44, e13278 (2020)

    Article  Google Scholar 

  30. Y. Chen, W. Xiongjian, C. Liu, Y. Zhou, Betulinic acid triggers apoptosis and inhibits migration and invasion of gastric cancer cells by impairing EMT progress. Cell Biochem. Funct. 38, 702–709 (2020)

    Article  Google Scholar 

  31. A. Silvia, Acid-mediated tumor invasion as a function of nutrient source location. Phys. Rev. E 100, 022417 (2019)

    Article  Google Scholar 

  32. P.K. Maini, K.J. Painter, H.N.P. Chau, Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93, 3601–3610 (1997)

    Article  Google Scholar 

  33. M.-W. Takuma Hoshino, W.K.-A. Liu, H.-Y. Chen, T. Tsuruyama, S. Komura, Phys. Rev. E 99, 032416 (2019)

    Article  ADS  Google Scholar 

  34. Q. Zheng, J. Shen, Dynamics and pattern formation in a cancer network with diffusion. Commun. Nonlinear Sci. Numer. Simul. 27, 93–109 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. O. Warburg, The Metabolism of Tumours (Constable Press, London, 1930)

    Google Scholar 

  36. O. Warburg, On the origin of cancer cells. Science 123, 309–314 (1956)

    Article  ADS  Google Scholar 

  37. N. McCarthy, Metabolism: room to breathe. Nat. Rev. Cancer 9, 13 (2009)

    Article  Google Scholar 

  38. R.J. DeBerardinis, J.J. Lum, G. Hatzivassiliou, C.B. Thompson, The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabol 7, 11–20 (2008)

    Article  Google Scholar 

  39. R.A. Gatenby, R.J. Gillies, Why do cancers have high aerobic glycolysis. Nat. Rev. Cancer 4(11), 891–899 (2004)

    Article  Google Scholar 

  40. K. Smallbone, D. Gavaghan, R.A. Gatenby, P.K. Maini, The role of acidity in solid tumour growth and invasion. J. Theor. Biol. 235(4), 476–484 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. R. Venkatasubramanian, M.A. Henson, N.S. Forbes, Incorporating energy metabolism into a growth model of multicellular tumor spheroids. J. Theor. Biol. 242, 440–453 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. L. Bianchini, A. Fasano, A model combining acid-mediated tumour invasion and nutrient dynamics. Nonlinear Anal. Real World Appl. 10(4), 1955–1975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Bertuzzi, A. Fasano, A. Gandolfi, C. Sinisgalli, Necrotic core in EMT6/Ro tumour spheroids: is it caused by an ATP deficit. J. Theor. Biol. 262, 142–150 (2010)

    Article  ADS  MATH  Google Scholar 

  44. R.A. Gatenby, E.T. Gawlinski, A reaction-diffusion model of cancer invasion. Cancer Res. 56(24), 5745–5753 (1996)

    Google Scholar 

  45. S. Gakkhar, K. Gupta, A three species dynamical system involving prey-predation, competition and commensalism. Appl. Math. Comput. 237, 54–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Tamko Mbopda, S. Issa, S. Abdoulkary, R. Guiem, H. Fouda, P. Ekobena, Pattern formations in nonlinear dynamics of hepatitis B virus. Eur. Phys. J. Plus 136, 586 (2021)

    Article  Google Scholar 

  47. J. Lia, G.-Q. Sunb, Z. Jin, Pattern formation of an epidemic model with time delay. Phys. A 403, 100–109 (2014)

    Article  MathSciNet  Google Scholar 

  48. G.-Q. Sun, Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor and to the anonymous Referees for their valuables remarks and suggestions which help us to improve the quality of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Issa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, S., Mbopda, B.T., Kol, G.R. et al. Diffusive pattern formations in three-species nonlinear dynamics of cancer. Eur. Phys. J. Plus 138, 496 (2023). https://doi.org/10.1140/epjp/s13360-023-04048-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04048-4

Navigation