Skip to main content
Log in

Numerical model of hepatic glycogen phosphorylase regulation by nonlinear interdependent dynamics of calcium and \(IP_{3}\)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The liver’s primary function is to integrate various signals to retain stable blood glucose levels. Glycogenolysis, gluconeogenesis, and other metabolic processes are regulated by circulating hormones via calcium-dependent signaling. In this paper, the influence of calcium concentration on glycogen phosphorylase in hepatocytes is investigated utilizing a numerical approach. The system comprising two nonlinear reaction-diffusion equations for calcium and \(IP_{3}\), respectively, has been coupled to propose a mathematical model. The temporal equation of the fraction of active glycogen phosphorylase (\(\phi\)) is also incorporated into the model. The finite volume and the Crank Nicolson methods are implemented along spatial and temporal dimensions, while the Gauss-Seidel method is employed to simplify the resulting nonlinear equations. The impact of calcium influx, EGTA buffer concentration, SERCA pump rate constant, and leak flux constant on the \(\phi\) has been studied. It has been observed that interdependent calcium and \(IP_{3}\) dynamics have a crucial role in controlling the blood glucose level. Any dysregulation of calcium and \(IP_{3}\) processes can lead to the dysregulation of glycogen phosphorylase. This may lead to hyperglycemia or hypoglycemia.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. P.V. Roder, B. Wu, Y. Liu, W. Han, Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48(3), e219 (2016). https://doi.org/10.1038/emm.2016.6

    Article  Google Scholar 

  2. Z. Fu, E.R. Gilbert, D. Liu, Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 9(1), 25–53 (2013)

    Article  Google Scholar 

  3. E. Mann, M. Sunni, M.D. Bellin, Secretion of insulin in response to diet and hormones. Pancreapedia The Exocrine Pancreas Knowledge Base (2020). https://doi.org/10.3998/panc.2020.16

    Article  Google Scholar 

  4. F.L. Bygrave, A. Benedetti, Calcium: its modulation in liver by cross-talk between the actions of glucagon and calcium-mobilizing agonists. Biochem. J. 296(1), 1–14 (1993). https://doi.org/10.1042/bj2960001

    Article  Google Scholar 

  5. S.R. Nagarajan, M. Paul-Heng, J.R. Krycer, D.J. Fazakerley, A.F. Sharland, A.J. Hoy, Lipid and glucose metabolism in hepatocyte cell lines and primary mouse hepatocytes: a comprehensive resource for in vitro studies of hepatic metabolism. Am. J. Physiol-Endocrinol Metab. 316(4), E578–E589 (2019). https://doi.org/10.1152/ajpendo.00365.2018

    Article  Google Scholar 

  6. M.J. Berridge, Elementary and global aspects of calcium signalling. J. Physiol. 499(2), 291–306 (1997). https://doi.org/10.1113/jphysiol.1997.sp021927

    Article  Google Scholar 

  7. N.M. Woods, K.R. Cuthbertson, P.H. Cobbold, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319(6054), 600–602 (1986). https://doi.org/10.1038/319600a0

    Article  ADS  Google Scholar 

  8. M.H. Nathanson, A.D. Burgstahler, M.B. Fallon, Multistep mechanism of polarized \(Ca^{2+}\) wave patterns in hepatocytes. Am. J. Physiol-Gastrointest Liver Physiol. 267(3), G338–G349 (1994). https://doi.org/10.1152/ajpgi.1994.267.3.G338

    Article  Google Scholar 

  9. D. Gall, E. Baus, G. Dupont, Activation of the liver glycogen phosphorylase by \(Ca^{2+}\) oscillations: a theoretical study. J. Theor. Biol. 207(4), 445–454 (2000). https://doi.org/10.1006/jtbi.2000.2139

    Article  ADS  Google Scholar 

  10. K.X. Walsh, D.M. Millikin, K.K. Schlender, E.M. Reimann, Calcium-dependent phosphorylation of glycogen synthase by phosphorylase kinase. J. Biol. Chem. 254, 6611–6616 (1979)

    Article  Google Scholar 

  11. A.P. Thomas, D.C. Renard, T.A. Rooney, Spatial and temporal organization of calcium signalling in hepatocytes. Cell Calcium 12(2–3), 111–126 (1991). https://doi.org/10.1016/0143-4160(91)90013-5

    Article  Google Scholar 

  12. G. Dupont, S. Swillens, C. Clair, T. Tordjmann, L. Combettes, Hierarchical organization of calcium signals in hepatocytes: from experiments to models Reveiw. Biochim Biophys Acta (BBA)-Molecular Cell Res. 1498(2), 134–152 (2000). https://doi.org/10.1016/s0167-4889(00)00090-2

    Article  Google Scholar 

  13. J. Sneyd, Calcium buffering and diffusion: on the resolution of an outstanding problem. Biophys. J. 67(1), 4 (1994). https://doi.org/10.1016/S0006-3495(94)80448-5

    Article  ADS  Google Scholar 

  14. G.D. Smith, A. Sherman, L. Dai, R.M. Miura, Asymptotic analysis of buffered calcium diffusion near a point source. SIAM J. Appl. Math. 61(5), 1816–1838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Falcke, Buffers and oscillations in intracellular \(Ca^{2+}\) dynamics. Biophys. J . 84(1), 28–41 (2003). https://doi.org/10.1016/S0006-3495(03)74830-9

    Article  Google Scholar 

  16. J.F. Dufour, I.M. Arias, T.J. Turner, Inositol 1, 4, 5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1, 4, 5-trisphosphate receptor. J. Biol. Chem. 272(5), 2675–2681 (1997). https://doi.org/10.1074/jbc.272.5.2675

    Article  Google Scholar 

  17. N.L. Allbritton, T. Meyer, L. Stryer, Range of messenger action of calcium ion and inositol 1, 4, 5-trisphosphate. Science 258(5089), 1812–1815 (1992). https://doi.org/10.1126/science.1465619

    Article  ADS  Google Scholar 

  18. J. Wagner, C.P. Fall, F. Hong, C.E. Sims, N.L. Allbritton, R.A. Fontanilla, I.I. Moraru, L.M. Loew, R. Nuccitelli, A wave of \(IP_{3}\) production accompanies the fertilization \(Ca^{2+}\) wave in the egg of the frog, xenopus laevis: theoretical and experimental support. Cell Calcium 35(5), 433–447 (2004). https://doi.org/10.1016/j.ceca.2003.10.009

    Article  Google Scholar 

  19. M.L. Cardenas, A. Goldbeter, The glucose induced switch between glycogen phosphorylase and glycogen synthase in the liver: outlines of theoretical approach. J. Theor. Biol. 182, 421–426 (1996). https://doi.org/10.1006/jtbi.1996.0182

    Article  ADS  Google Scholar 

  20. S. Tewari, K.R. Pardasani, Finite difference model to study the effects of Na+ influx on cytosolic \(Ca^{2+}\) diffusion. Int. J. Biol. Med. Sci. 1(4), 205–210 (2009)

    Google Scholar 

  21. S. Tewari, K.R. Pardasani, Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG Int. J. Appl. Math. 40(3), 108–112 (2010)

    MathSciNet  MATH  Google Scholar 

  22. A. Jha, N. Adlakha, Two-dimensional finite element model to study unsteady state \(Ca^{2+}\) diffusion in neuron involving ER, leak and SERCA. Int. J. Biomath. 8(01), 1550002 (2015). https://doi.org/10.1142/S1793524515500023

    Article  MathSciNet  MATH  Google Scholar 

  23. B.K. Jha, H. Joshi, Chaos of calcium diffusion in Parkinson s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math. Model. Numer. Simul. with Appl. 1, 84–94 (2021). https://doi.org/10.53391/mmnsa.2021.01.008

    Article  Google Scholar 

  24. M. Kotwani, N. Adlakha, M. Mehta, Finite element model to study the effect of buffers, source amplitude and source geometry on spatiotemporal calcium distribution in fibroblast cell. J. Med. Imag. Health Inf. 4(6), 840–847 (2014). https://doi.org/10.1166/jmihi.2014.1328

    Article  Google Scholar 

  25. N. Manhas, K.R. Pardasani, Mathematical model to study \(IP_{3}\) dynamics dependent calcium oscillations in pancreatic acinar cells. J. Med. Imag. Health Inf. 4(6), 874–880 (2014). https://doi.org/10.1166/jmihi.2014.1333

    Article  Google Scholar 

  26. N. Manhas, K.R. Pardasani, Modelling mechanism of calcium oscillations in pancreatic acinar cells. J. Bioenerg. Biomembr. 46(5), 403–420 (2014). https://doi.org/10.1007/s10863-014-9561-0

    Article  Google Scholar 

  27. N. Manhas, J. Sneyd, K.R. Pardasani, Modelling the transition from simple to complex \(Ca^{2+}\) oscillations in pancreatic acinar cells. J. Biosci. 39(3), 463–484 (2014). https://doi.org/10.1007/s12038-014-9430-3

    Article  Google Scholar 

  28. P.A. Naik, K.R. Pardasani, One dimensional finite element model to study calcium distribution in oocytes in presence of VGCC, RyR and buffers. J. Med. Imag. Health Inf. 5(3), 471–476 (2015). https://doi.org/10.1166/jmihi.2015.1431

    Article  Google Scholar 

  29. P.A. Naik, K.R. Pardasani, One dimensional finite element method approach to study effect of ryanodine receptor and SERCA pump on calcium distribution in oocytes. J. Multiscale Modell. 5(02), 135000715 (2013). https://doi.org/10.1142/S1756973713500078

    Article  MathSciNet  Google Scholar 

  30. P.A. Naik, K.R. Pardasani, Finite element model to study calcium distribution in oocytes involving voltage gated \(Ca^{2+}\) channel, ryanodine receptor and buffers. Alex. J. Med. 52(1), 43–49 (2016). https://doi.org/10.1016/j.ajme.2015.02.002

    Article  Google Scholar 

  31. P.A. Naik, K.R. Pardasani, Three-dimensional finite element model to study effect of RyR calcium channel, ER leak and SERCA pump on calcium distribution in oocyte cell. Int. J. Comput. Methods. 16(01), 1850091 (2019). https://doi.org/10.1142/S0219876218500913

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Panday, K.R. Pardasani, Finite element model to study effect of advection diffusion and \(Na^{+}/Ca^{2+}\) exchanger on \(Ca^{2+}\) distribution in Oocytes. J. Med. Imag. Health Inf. 3(3), 374–79 (2013). https://doi.org/10.1166/jmihi.2013.1184

    Article  Google Scholar 

  33. S. Panday, K.R. Pardasani, Finite element model to study the mechanics of calcium regulation in oocyte. J. Mech. Med. Biol. 14(02), 1450022 (2014). https://doi.org/10.1142/S0219519414500225

    Article  Google Scholar 

  34. P.A. Naik, J. Zu, Modeling and simulation of spatial-temporal calcium distribution in T lymphocyte cell by using a reaction-diffusion equation. J. Bioinform. Comput. Biol. 18(02), 2050013 (2020). https://doi.org/10.1142/S0219720020500134

    Article  Google Scholar 

  35. P.A. Naik, Modeling the mechanics of calcium regulation in T lymphocyte: a finite element method approach. Int. J. Biomath. 13(05), 2050038 (2020). https://doi.org/10.1142/S1793524520500382

    Article  MathSciNet  MATH  Google Scholar 

  36. K.B. Pathak, N. Adlakha, Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer. J. Med. Imag. Health Inf. 5(4), 683–688 (2015). https://doi.org/10.1166/jmihi.2015.1443

    Article  Google Scholar 

  37. Y.D. Jagtap, N. Adlakha, Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes. Commun. Math. Biol. Neurosci 2018, 1–16 (2018)

    Google Scholar 

  38. Y.D. Jagtap, N. Adlakha, Simulation of buffered advection diffusion of calcium in a hepatocyte cell. Math. Biol. Bioinf. 13, 609–619 (2018). https://doi.org/10.17537/2018.13.609

    Article  Google Scholar 

  39. N. Singh, N. Adlakha, A mathematical model for interdependent calcium and inositol 1, 4, 5-trisphosphate in cardiac myocyte. Netw. Model Anal Health Inf. Bioinf. 8(1), 18 (2019). https://doi.org/10.1007/s13721-019-0198-0

    Article  Google Scholar 

  40. Y.D. Jagtap, N. Adlakha, Numerical study of one-dimensional buffered advection-diffusion of calcium and \(IP_{3}\) in a hepatocyte cell. Netw. Model Anal Health Inf. Bioinf. 8, 25 (2019). https://doi.org/10.1007/s13721-019-0205-5

    Article  Google Scholar 

  41. D.D. Dave, B.K. Jha, Analytically depicting the calcium diffusion for Alzheimer’s affected cell. Int. J. Biomath. 11(07), 1850088 (2018). https://doi.org/10.1142/S1793524518500882

    Article  MathSciNet  MATH  Google Scholar 

  42. B.K. Jha, N. Adlakha, M. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7(03), 1450031 (2014). https://doi.org/10.1142/S1793524514500314

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Joshi, B.K. Jha, Chaos of calcium diffusion in Parkinson’s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math. Modell. Numer. Simul. Appl. 1(2), 84–94 (2021). https://doi.org/10.53391/mmnsa.2021.01.008

    Article  Google Scholar 

  44. H. Joshi, B.K. Jha, On a reaction-diffusion model for calcium dynamics in neurons with Mittag-Leffler memory. Eur. Phys. J. Plus 136(6), 1–15 (2021). https://doi.org/10.1140/epjp/s13360-021-01610-w

    Article  Google Scholar 

  45. A. Pawar, K.R. Pardasani, Effects of disorders in interdependent calcium and \(IP_{3}\) dynamics on nitric oxide production in a neuron cell. Eur. Phys. J. Plus 137, 543 (2022). https://doi.org/10.1140/epjp/s13360-022-02743-2

    Article  Google Scholar 

  46. A. Pawar, K.R. Pardasani, Simulation of disturbances in interdependent calcium and \(\beta\)-amyloid dynamics in the nerve cell. Eur. Phys. J. Plus. 137, 960 (2022). https://doi.org/10.1140/epjp/s13360-022-03164-x

    Article  Google Scholar 

  47. P.J. Bartlett, L.D. Gaspers, N. Pierobon, A.P. Thomas, Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 55(6), 306–16 (2014). https://doi.org/10.1016/j.ceca.2014.02.007

    Article  Google Scholar 

  48. I.V. Dokukina, M.V. Yamashev, E.A. Samarina, O.M. Tilinova, E.A. Grachev, Calcium-dependent insulin resistance in hepatocytes: mathematical model. J. Theor. Biol. 522, 110684 (2021). https://doi.org/10.1016/j.jtbi.2021.110684

    Article  MATH  Google Scholar 

  49. J. Keener, J. Sneyd, Mathematical Physiology: I: Cellular Physiology (Springer Science & Business Media, UK, 2010)

    MATH  Google Scholar 

  50. C.P. Fall, Computational Cell Biology: Interdisciplinary Applied Mathematics (Springer-Verlag, New York Incorporated, 2002)

    Google Scholar 

  51. T.A. Rooney, E.J. Sass, A.P. Thomas, Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J. Biol. Chem. 265(18), 10792–10796 (1990)

    Article  Google Scholar 

  52. S.A. Brown, F. Morgan, J. Watras, L.M. Loew, Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar purkinje spines. Biophys. J. 95(4), 1795–1812 (2008). https://doi.org/10.1529/biophysj.108.130195

    Article  ADS  Google Scholar 

  53. H.K. Versteeg (Henk Kaarle), An introduction to computational fluid dynamics : the finite volume method. (Harlow, Essex, England ; Longman Scientific & Technical :New York : Wiley, (1995)) pp. 115-132

  54. A. Politi, L.D. Gaspers, A.P. Thomas, T. Hofer, Models of \(IP_{3}\) and \(Ca^{2+}\) oscillations: frequency encoding and identification of underlying feedbacks. Biophys. J . 90(9), 3120–3133 (2006). https://doi.org/10.1529/biophysj.105.072249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogita Jagtap.

Appendix: model equations summary

Appendix: model equations summary

Solving space integration of Eq. (23) we get,

$$\begin{aligned}&\frac{\delta x}{D_{Ca}}\int ^{t+\Delta t}_t\frac{\partial C_{G}}{\partial t} dt=\int ^{t+\Delta t}_{t}\left[ \left( \frac{\partial C}{\partial x} \right) _{e}-\left( \frac{\partial C}{\partial x} \right) _{w} \right] dt-a\int ^{t+\Delta t}_{t}C_{G}\delta x dt+a C_{{\infty }} \delta x \delta t \nonumber \\&\qquad +\delta x\int ^{t+\Delta t}_{t}\frac{ \lambda _{IP3R}}{D_{Ca}V_{C}} \left( \dfrac{(P_{c})_{G}}{(P_{c})_{G}+K_{IP3}}\dfrac{C_{G}}{C_{G}+K_{Act}}\right) ^{3}\left( \dfrac{K_{Inh}}{K_{Inh}+C_{G}}\right) ^{3}\nonumber \\&\quad \left( \dfrac{C_{T}-V_{C}C_{G}}{V_{E}} -C_{G}\right) dt +\delta x\int ^{t+\Delta t}_{t}\frac{\lambda _{LK}}{D_{Ca}V_{C}}\left( \dfrac{C_{T}-V_{C}C_{G}}{V_{E}}-C_{G}\right) dt \nonumber \\&\qquad -\delta x\int ^{t+\Delta t}_{t}\frac{\lambda _{SERCA}}{D_{Ca}V_{C}}\dfrac{C_{G}^{2}}{K_{SERCA}^{2}+C_{G}^{2}} dt. \end{aligned}$$
(28)

The time integral is simplified by using weighted parameter \(\Psi\), where \(\Psi \in \left[ 0, 1 \right]\).

$$\begin{aligned}&\frac{\delta x}{D_{Ca}} [C_{G}-C_{G}^{0}]= \Psi \left[ \frac{C_{E}-C_{G}}{\delta x} -\frac{C_{G}-C_{W}}{\delta x}\right] \Delta t \nonumber \\&\qquad +(1-\Psi ) \left[ \frac{C_{E}^{0}-C_{G}^{0}}{\delta x} -\frac{C_{G}^{0}-C_{W}^{0}}{\delta x}\right] \Delta t-a\delta x[\Psi C_{G}+(1-\Psi )C_{G}^{0}]\Delta t+a C_{{\infty }} \delta x \delta t \nonumber \\&\qquad + \delta x \frac{ \lambda _{IP3R}}{D_{Ca}V_{C}}.\Psi \left( \dfrac{(P_{c})_{G}}{(P_{c})_{G}+K_{IP3}}\dfrac{C_{G}}{C_{G}+K_{Act}}\right) ^{3}\left( \dfrac{K_{Inh}}{K_{Inh}+C_{G}}\right) ^{3}\left( \dfrac{C_{T}-V_{C}C_{G}}{V_{E}} -C_{G}\right) \Delta t\nonumber \\&\qquad +(1-\Psi ) \left( \dfrac{(P_{c})_{G}^{0}}{(P_{c})_{G}^{0}+K_{IP3}}\dfrac{C_{G}^{0}}{C_{G}^{0}+K_{Act}}\right) ^{3}\left( \dfrac{K_{Inh}}{K_{Inh}+C_{G}^{0}}\right) ^{3}\left( \dfrac{C_{T}-V_{C}C_{G}^{0}}{V_{E}} -C_{G}^{0}\right) \Delta t \nonumber \\&\qquad +\delta x.\Psi \left[ \frac{\lambda _{LK}}{D_{Ca}V_{C}}\left( \dfrac{C_{T}-V_{C}C_{G}}{V_{E}}-C_{G}\right) -\frac{\lambda _{SERCA}}{D_{Ca}V_{C}}\dfrac{C_{G}^{2}}{K_{SERCA}^{2}+C_{G}^{2}}\right] \Delta t\nonumber \\&\qquad +(1-\Psi )\left[ \frac{\lambda _{LK}}{D_{Ca}V_{C}}\left( \dfrac{C_{T}-V_{C}C_{G}^{0}}{V_{E}}-C_{G}^{0}\right) -\frac{\lambda _{SERCA}}{D_{Ca}V_{C}}\dfrac{(C_{G}^{0})^{2}}{K_{SERCA}^{2}+(C_{G}^{0})^{2}}\right] \Delta t, \end{aligned}$$
(29)

where the 0 super scripted values of C represents initial concentrations. The Crank Nicolson method is employed by substituting \(\Psi = 1/2\). The hepatocyte cell is assumed to be discretized by 24 nodes. Equation (29) is arranged at ‘\(j^{th}\)’ iteration in the following form,

$$\begin{aligned} a_{G}C_{G}^{j}=a_{G}^{0}C_{G}^{j-1}+a_{E}[C_{E}^{j}+C_{E}^{j-1}]+a_{W}[C_{W}^{j}+C_{W}^{j-1}]+S_{u}+NLT_{G}^{j-1}, \end{aligned}$$
(30)

where,

$$\begin{aligned} a_{G}&=\left[ \frac{\delta x}{D_{Ca}\Delta t}+\frac{1}{2\delta x}+\frac{1}{2\delta x} +\frac{a}{2}\right] , \, a_{G}^{0}=\left[ \frac{\delta x}{D_{Ca}\Delta t}-\frac{1}{2\delta x}-\frac{1}{2\delta x} -\frac{a}{2}\right] \\ a_{E}& = a_{W}=\frac{1}{2\delta x} \, and \, S_{u}=a C_{{\infty }} \delta x, \end{aligned}$$

and nonlinear term of \(Ca^{2+}\) is given by,

$$\begin{aligned}&NLT_{G}^{j}=\dfrac{\delta x}{2}. \frac{ \lambda _{IP3R}}{D_{Ca}V_{C}} \left( \dfrac{(P_{c})_{G}^{j-1}}{(P_{c})_{G}^{j-1}+K_{IP3}}\dfrac{C_{G}^{j-1}}{C_{G}^{j-1}+K_{Act}}\right) ^{3}. \\&\quad \left( \dfrac{K_{Inh}}{K_{Inh}+C_{G}^{j-1}}\right) ^{3}\left( \dfrac{C_{T}-V_{C}C_{G}^{j-1}}{V_{E}} -C_{G}^{j-1}\right) \\&\qquad + \dfrac{\delta x}{2}\left[ \frac{\lambda _{LK}}{D_{Ca}V_{C}}\left( \dfrac{C_{T}-V_{C}C_{G}^{j-1}}{V_{E}}-C_{G}^{j-1}\right) -\frac{\lambda _{SERCA}}{D_{Ca}V_{C}}\dfrac{(C_{G}^{j-1})^{2}}{K_{SERCA}^{2}+(C_{G}^{j-1})^{2}}\right] . \end{aligned}$$

First boundary condition can be incorporated by setting, \(C_{W}=\sigma _{Ca}\) and \(a_{W}=0\),

$$\begin{aligned} a_{G}C_{G}^{j}=a_{G}^{0}C_{G}^{j-1}+a_{E}[C_{E}^{j}+C_{E}^{j-1}]+S_{u}+NLT_{G}^{j-1}, \end{aligned}$$
(31)

where

$$\begin{aligned} a_{G}&=\left[ \frac{\delta x}{D_{Ca}\Delta t}+\frac{1}{2\delta x}+\left( \frac{1}{\delta x} +\frac{a}{2}\right) \right] , \, a_{G}^{0}=\left[ \frac{\delta x}{D_{Ca}\Delta t}-\frac{1}{2\delta x}-\left( \frac{1}{\delta x} +\frac{a}{2}\right) \right] , \\ a_{E}&=\frac{1}{2\delta x} \, and \, S_{u}=\dfrac{2 \sigma _{Ca}}{\delta x}+a C_{{\infty }} \delta x. \end{aligned}$$

Second boundary condition can be incorporated by setting \(C_{\infty }=0.1 \,\mu M\) and \(a_{E}=0\),

$$\begin{aligned} a_{G}C_{G}^{j}=a_{G}^{0}C_{G}^{j-1}+a_{W}[C_{W}^{j}+C_{W}^{j-1}]+S_{u}+NLT_{G}^{j}, \end{aligned}$$
(32)

where,

$$\begin{aligned} a_{G}&=\left[ \frac{\delta x}{D_{Ca}\Delta t}+\frac{1}{2\delta x}+\left( \frac{1}{\delta x} +\frac{a}{2}\right) \right] , \, a_{G}^{0}=\left[ \frac{\delta x}{D_{Ca}\Delta t}-\frac{1}{2\delta x}-\left( \frac{1}{\delta x} +\frac{a}{2}\right) \right] ,\nonumber \\ a_{E}&=\frac{1}{2\delta x} \, and \, S_{u}=\dfrac{2 C_{\infty }}{\delta x}+a C_{{\infty }} \delta x. \end{aligned}$$

Integrating Eq. (24) along spatial dimension we get,

$$\begin{aligned}\dfrac{\delta x}{D_{P}}\int ^{t+\Delta t}_{t}\frac{\partial (P_{c})_{G}}{\partial t} dt&=\int ^{t+\Delta t}_{t} \left( \frac{\partial P_{c}}{\partial x} \right) _{e}-\left( \frac{\partial P_{c}}{\partial x} \right) _{w} dt \nonumber \\&\qquad +\dfrac{V_{Prod}}{D_{P}V_{C}}\int ^{t+\Delta t}_{t} \left[ \dfrac{C_{G}^{2}}{C_{G}^{2}+K_{Prod}^{2}}\right] dt\nonumber \\&\qquad -\dfrac{\lambda \delta x}{D_{P}V_{C}}\int ^{t+\Delta t}_{t} \left( 1-\dfrac{C_{G}}{C_{G}+0.39} \right) V_{1} \dfrac{(P_{c})_{G}}{(P_{c})_{G}+2.5} \nonumber \\&\qquad +\dfrac{C_{G}}{C_{G}+0.39} V_{2}\dfrac{(P_{c})_{G}}{(P_{c})_{G}+0.5}+ V_{3}\dfrac{(P_{c})_{G}}{(P_{c})_{G}+30} dt. \end{aligned}$$
(33)

The time integral is simplified using the weighted parameter \(\Psi\), where \(\Psi \in \left[ 0, 1 \right]\).

$$\begin{aligned}&\dfrac{\delta x}{D_{P}} [(P_{c})_{G}-(P_{c})_{G}^{0}]= \Psi \left[ \frac{(P_{c})_{E}-(P_{c})_{G}}{\delta x} -\frac{(P_{c})_{G}-(P_{c})_{W}}{\delta x}\right] \Delta t \nonumber \\&\qquad +(1-\Psi ) \left[ \frac{(P_{c})_{E}^{0}-(P_{c})_{G}^{0}}{\delta x} -\frac{(P_{c})_{G}^{0}-(P_{c})_{W}^{0}}{\delta x}\right] \Delta t \nonumber \\&\qquad \delta x\Psi \dfrac{V_{Prod}}{D_{P}V_{C}}\left[ \dfrac{C_{G}^{2}}{C_{G}^{2}+K_{Prod}^{2}}\right] \Delta t+\delta x(1-\Psi )\dfrac{V_{Prod}}{D_{P}V_{C}}\left[ \dfrac{(C_{G}^{0})^{2}}{(C_{G}^{0})^{2}+K_{Prod}^{2}}\right] \Delta t \nonumber \\&\qquad -\dfrac{\lambda \Psi \delta x}{D_{P}V_{C}}\left( 1-\dfrac{C_{G}}{C_{G}+0.39} \right) V_{1} \dfrac{(P_{c})_{G}}{(P_{c})_{G}+2.5}+\dfrac{C_{G}}{C_{G}+0.39} V_{2}\dfrac{(P_{c})_{G}}{(P_{c})_{G}+0.5}+ V_{3}\dfrac{(P_{c})_{G}}{(P_{c})_{G}+30} . \Delta t \nonumber \\&\qquad -\dfrac{\lambda (1-\Psi )\delta x}{D_{P}V_{C}} \left( 1-\dfrac{C_{G}^{0}}{C_{G}^{0}+0.39} \right) V_{1} \dfrac{(P_{c})_{G}^{0}}{(P_{c})_{G}^{0}+2.5} \nonumber \\&\qquad +\dfrac{C_{G}^{0}}{C_{G}^{0}+0.39} V_{2}\dfrac{(P_{c})_{G}^{0}}{(P_{c})_{G}^{0}+0.5}+ V_{3}\dfrac{(P_{c})_{G}^{0}}{(P_{c})_{G}^{0}+30} . \Delta t, \end{aligned}$$
(34)

where the 0 super scripted values of P represents initial concentrations. The Crank Nicolson method is employed by substituting \(\Psi = 1/2\). Equation (34) is arranged in the following form for all internal nodes at ‘\(j^{th}\)’ iteration,

$$\begin{aligned} b_{G}(P_{c})_{G}^{j}=b_{G}^{0}(P_{c})_{G}^{j-1}+b_{E}[(P_{c})_{E}^{j}+(P_{c})_{E}^{j-1}]+b_{W}[(P_{c})_{W}^{j}+(P_{c})_{W}^{j-1}]-NLTP_{G}^{j-1}, \end{aligned}$$
(35)

where,

$$\begin{aligned} b_{G}=\left[ \frac{\delta x}{D_{P}\Delta t}+\frac{1}{2\delta x}+\frac{1}{2\delta x}\right] , \, b_{G}^{0}=\left[ \frac{\delta x}{D_{P}\Delta t}-\frac{1}{2\delta x}-\frac{1}{2\delta x} \right] \, and \, b_{E}=b_{W}=\frac{1}{2\delta x}, \end{aligned}$$

and nonlinear term of \(IP_{3}\) is given by,

$$\begin{aligned}NLTP_{G}^{j-1}&=\dfrac{\lambda \delta x}{D_{P}V_{C}}. \left( 1-\dfrac{C_{G}^{j-1}}{C_{G}^{j-1}+0.39} \right) V_{1} \dfrac{(P_{c})_{G}^{j-1}}{(P_{c})_{G}^{j-1}+2.5} \\&\qquad + \dfrac{C_{G}^{j-1}}{C_{G}^{j-1}+0.39} V_{2}\dfrac{(P_{c})_{G}^{j-1}}{(P_{c})_{G}^{j-1}+0.5}+ V_{3}\dfrac{(P_{c})_{G}^{j-1}}{(P_{c})_{G}^{j-1}+30} . \nonumber \end{aligned}$$

First boundary condition can be incorporated by setting, \((P_{c})_{E}=\sigma _{P}\) and \(b_{E}=0\),

$$\begin{aligned} b_{G}(P_{c})_{G}^{j}=b_{G}^{0}(P_{c})_{G}^{j-1}+b_{W}[(P_{c})_{W}^{j}+(P_{c})_{W}^{j-1}]+S_{u}+NLTP_{G}^{j-1}, \end{aligned}$$
(36)

where

$$\begin{aligned} b_{G}=\left[ \frac{\delta x}{D_{P}\Delta t}+\frac{1}{2\delta x}+ \frac{1}{\delta x}\right] , \, b_{G}^{0}=\left[ \frac{\delta x}{D_{P}\Delta t}-\frac{1}{2\delta x}-\frac{1}{\delta x}\right] , \, b_{W}=\frac{1}{2\delta x} \, and \, S_{u}=\dfrac{2 \sigma _{P}}{\delta x}. \end{aligned}$$

Second boundary condition can be incorporated by setting \(P_{\infty }=10 \mu M\) and \(a_{W}=0\),

$$\begin{aligned} b_{G}(P_{c})_{G}^{j}=b_{G}^{0}(P_{c})_{G}^{j-1}+b_{E}[(P_{c})_{E}^{j}+(P_{c})_{E}^{j-1}]+S_{u}+NLTP_{G}^{j-1}, \end{aligned}$$
(37)

where

$$\begin{aligned} b_{G}=\left[ \frac{\delta x}{D_{P}\Delta t}+\frac{1}{2\delta x}+ \frac{1}{\delta x}\right] , \, b_{G}^{0}=\left[ \frac{\delta x}{D_{P}\Delta t}-\frac{1}{2\delta x}-\frac{1}{\delta x}\right] , \, b_{E}=\frac{1}{2\delta x} \, and \, S_{u}=\dfrac{2 P_{\infty }}{\delta x}. \end{aligned}$$

All discretized equations obtained from Eqs. (30)– (32) and Eqs. (35)– (37) are expressed in matrix form as follows;

$$\begin{aligned}{}[L]_{24\times 24}*\begin{bmatrix} C \\ P_{c} \end{bmatrix}_{24\times 1}=[M]_{24\times 1}, \end{aligned}$$
(38)

where [L] is diagonal block matrix, \(\begin{bmatrix} C \\ P_{c}\end{bmatrix}\) is calcium and \(IP_{3}\) concentration vector, [M] is constant vector. At each time step Eq. (38) is solved by using Gauss-Seidel’s method to get desired solution vector \(\begin{bmatrix} C \\ P_{c} \end{bmatrix}_{24\times 1}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagtap, Y., Adlakha, N. Numerical model of hepatic glycogen phosphorylase regulation by nonlinear interdependent dynamics of calcium and \(IP_{3}\). Eur. Phys. J. Plus 138, 399 (2023). https://doi.org/10.1140/epjp/s13360-023-03961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03961-y

Navigation