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Abstract In this paper, we study the relativistic quantum dynamics of a neutral Dirac particle with a permanent magnetic dipole
moment that interacts with an external magnetic field in the background space-time of a linear topological defect called spiral
dislocation. The generalized Dirac wave equation is derived from the full action of that model involving the Lagrangian density of
the Dirac spinor field in the background and the interaction model. The energy eigenvalues and corresponding wave functions are
found in closed form by reducing the problem to that of a non-relativistic particle moving freely on a plane with a hole at the origin
whose radius is determined by the defect parameter. In the limit of vanishing external magnetic field we are also able to establish a
hidden SUSY structure of the underlying Dirac Hamiltonian allowing us to discuss the non-relativistic limit in some detail.

1 Introduction

Over the past decades, the Dirac equation [1] has been studied in various subjects and fields of physics. For example, one can refer
to study the Dirac oscillator [2, 3], a charged Dirac particle in a static electromagnetic field [4], the Pseudospin symmetry of a Dirac
nucleon in the relativistic Manning-Rosen potential [5], the Dirac particle in the curved space-time [6–8], the Dirac particle in the
framework of the Lorentz- and CPT-violating standard-model extension [9–14], the electronic properties of graphene obtained from
a Dirac Hamiltonian for a massless fermion [15, 16], relativistic quantum dynamics of a Dirac particle confined in a quantum ring
[17], the influence of dislocations, as a kind of topological defects in graphene, on the electronic properties of a Dirac particle [18],
the Dirac particle in a chiral cosmic string space-time [19], the Dirac particle with arbitrary magnetic moment [20], bound-state
dynamics of a neutron with an anomalous magnetic dipole moment interacting with certain external fields [21, 22], bound states
and geometric quantum phases for the Dirac particle with a magnetic dipole moment in a cosmic string space-time [23, 24], on the
second dipole moment of Dirac particle [25], and the developed form of particle-wave duality based on Einstein’s geodesic equation
in two-dimensional space-time versus the Dirac result [26].

Hence, it is not surprising that topological defects can affect the physical properties of various systems that have been analyzed
in different areas of physics such as gravitation and condensed matter physics. Indeed, inspired by the linear topological defects
appearing in the context of crystalline solids, as well as the relationship between defects in solids and defects in cosmology, a
generalization of topological defects in gravitation has been presented [27–31]. This fascinating approach has been taken on in many
subsequent papers. As examples, let us refer to studies on the structure of the curvature tensor of cosmic strings determined by a
conical singularity in space-time [32], the behavior of a Klein-Gordon particle in a class of space-times generated by defects [33–36],
in Kaluza-Klein theories [37, 38], on the behaviour of a spin-zero Duffin–Kemmer–Petiau’s particle in a cosmic string space-time
[39] and in a global monopole space-time [40], on the spin and pseudospin symmetries of Dirac particles in topological defect
backgrounds [41, 42], on the interaction of a scalar field with a Coulomb-type potential in a space-time with a screw dislocation
[43], and on non-relativistic quantum dynamics of a single particle interacting harmonically with conical singularities associated
with either a cosmic string, a global monopole, a magnetic flux string, or a screw dislocation [44].

In this work, we present the exact analytical solution of a neutral Dirac particle with a permanent magnetic dipole moment
(PMDM), which interacts with an external magnetic field in the background space-time generated by a spiral dislocation known as
a topological defect in solid lattice corresponding to torsion. Thus, the study of such an interaction in the desired background can
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be started by considering a generalization of a linear topological defect in gravitation, which means that we should consider Dirac
spinors in curved space-time background.

The organization of this paper is as follows. In Sect. 2, at first, an introduction of the line element of the spiral dislocation
background and ingredients of the relevant spinor covariant derivative are presented. This is followed by a discussion about the
action of a Dirac spinor field in Sect. 3, which results in a set of equations associated with a Dirac particle with a PMDM interacting
with an external magnetic field in the spiral dislocation background. The eigenvalue problem for the aforementioned system is then
solved exactly in Sect. 4. This is achieved by reducing it to a Schrödinger-like equation for a free particle on a punctured plane, which
in essence is Bessel’s differential equation. In Sect. 5 we are able to establish a hidden SUSY structure for a vanishing magnetic
field and briefly discuss the non-relativistic limit. Finally, in Sect. 6, we conclude with a short summary of our results.

2 Quantum dynamics in the presence of a spiral dislocation

In view of the vast literature on non-relativistic and relativistic quantum dynamics in space-time,1 with dislocation fields that are
considered as deformation fields,2 we intend to provide a quantum description of a neutral spin-half particle with a PMDM interacting
with an external magnetic field configuration in the relativistic regime. In fact, we want to study such interaction in background
space-time generated by a distortion of a circle into a spiral recognized as the spiral dislocation. In this case, the dislocation field
is due to a parameter associated with the spiral dislocation denoted by χ and has the dimension of a length [45]. As pointed out,
for example, by Bakke and Furtado [46], it is directly related to the associated Burger’s vector b via χ � |b|/2π . As discussed in
Ref. [45], the Burger vector is parallel to the plane z � constant, which is in the radial direction. Inspired by this kind of linear
topological defect described in the context of crystalline solids and also by considering the relationship between defects in solids
and defects in cosmology, we establish a generalization of such linear defect in gravitation [46–48]. Thus, taking in mind the natural
units, where c � 1 and � � 1, the background space-time, produced by such a kind of topological defect, can be described by the
following line element [41, 46]

ds2 � dt2 − dr2 − 2χdrdϕ − (
χ2 + r2)dϕ2 − dz2. (2.1)

Here, the spatial part of the line element given by eq. (2.1) presents a distortion of a circle into a spiral known as the spiral dislocation.
This distortion takes place in a plane orthogonal to the z axis. Note that we are using cylindrical coordinates, that is, r, ϕ, and z are
the radial, azimuthal, and axial coordinates, respectively.

When analyzing the neutral Dirac particle subject to such topological defect space-time, it is appropriate to consider Dirac spinors
in curved space-time background [49]. Therefore, in order to define the spinors in the local reference frame (LRF) of the observer,
we need to construct a non-coordinate basis θ̂a given by

θ̂a � eaμ(x)dxμ. (2.2)

Here the eaμ(x) are known as tetrads in the literature and obey the following condition:

gμν(x) � eaμ(x)ebν(x)ηab, (2.3)

where ηab � diag(+,−,−,−) represents the Minkowski space-time metric tensor and the Latin indices a, b � 0, 1, 2, 3 are used
for the LRF. Furthermore, we denote the space-time indices by μ with μ ∈ {t, r, ϕ, z}. The inverse of the tetrads are determined
by dxμ � eμ

a(x)θ̂a . Hence, the relationships eμ
a(x)eaν(x) � δ

μ
ν and eaμ(x)eμ

b(x) � δab are expected to be satisfied through the
tetrads and the inverse tetrads. Here, it suffices to present the values of the inverse tetrads as

et 0 � er1 � ez3 � 1, eϕ
2 � 1/r, er2 � −χ/r. (2.4)

Since we study the behavior of a Dirac particle in the space-time background described by a particular topological defect, we
must apply the spinor covariant derivative ∇μ instead of the partial derivative ∂μ such that the components of the spinor covariant
derivative can be obtained by ∇μ � ∂μ + 
μ(x), with the spinorial connection 
μ(x) � ωμab[γ a, γ b]/8 [7, 8, 49]. Here, the γ a

matrices, defined in the LRF, correspond to the standard Dirac equation (DE) applied to the relativistic quantum description of spin
one-half particles in the Minkowski spacetime

γ 0 � β̂ �
(

I 0
0 − I

)
, γ i � β̂α̂i �

(
0 σ i

−σ i 0

)
, �i �

(
σ i 0
0 σ i

)
, (2.5)

where �i represents the spin vector and σ i being the Pauli matrices. The Pauli matrices obey the usual anti-commutation relations
{σ i , σ j } � 2δi j I, with δi j being the Kronecker delta and I denotes the 2 × 2 identity matrix. We may also use the notation σ 0 � I.
Recall that i, j � 1, 2, 3 are indices denoting the spatial part of the LRF.

1 In the previous section, we referred to some of the work done in this area.
2 As stated in ref. [45], in a solid, the dislocation field is associated with the lack of connectivity in the deformed area of a body. The body becomes
disconnected due to deformation if the curl of the local deformation field is non-null.
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Now, according to the spinor theory in curved spacetime, we have to provide the generalized Dirac matrices through the relation
γ μ � eμ

aγ
a . Thus, to obtain the non-null component of the spinorial connection, in addition to the standard Dirac matrices, we need

to obtain the non-null components of the connection 1-form ωa
μ b(x) using the Maurer-Cartan structure equations, dθ̂a+ωa

b∧θ̂b � 0,
written in the absence of torsion, in which ωa

b � ωa
μ b(x)dxμ. Thereby, by solving the associated Maurer-Cartan structure equations,

we arrive at

ω2
ϕ 1 � −ω1

ϕ 2 � 1, (2.6)

and then we get 
ϕ � −i�3/2.

3 Action of a Dirac spinor field

In this section we will discuss the action of a neutral Dirac fermion with a PMDM interacting with an external magnetic field.
In addition, we will consider the gravitational effects arising from a curved space-time caused by the aforementioned topological
defect. The action for this interaction scenario can be expressed as

S[�] �
∫

d4x
√|g|LGDE−PMDM, (3.1)

where g � det(gμν) is the determinant of the metric tensor and the Lagrangian densities is given by

(3.2)

where

This Lagrangian provides a framework to describe a minimal interaction. In some cases, additional terms are added to the Lagrangian
[50]. It is noteworthy that this Lagrangian consists of a nonminimal coupling,

iγ μ∇μ ≡ iγ μ
(
∂μ + 
μ

)
+

μ̃

2
�̄�μν�Fμν, (3.3)

which specifically describes the interaction of such a fermion with an external magnetic field. The PMDM of the neutral Dirac particle
is represented by the coupling constant μ̃ ≥ 0. Here, the electromagnetic field tensor is denoted by Fμν having components F0i �
−Fi0 � −Ei and Fi j � εi jk Bk such that the electric and magnetic fields are given by E � (E1, E2, E3)T and B � (B1, B2, B3)T ,
respectively. In addition the relevant spin tensor is given by �μν � i[γ μ, γ ν]/2 and obeys the relation �μν − �νμ � i[γ μ, γ ν].

Equation (3.3), which includes a combination of the spinor covariant derivative due to a topological defect in background space-
time and also an additional term that is responsible for describing the corresponding interaction, can be expanded in terms of the
electromagnetic field components in the following form

iγ μ∇μ ≡ iγ t∂t + iγ r∂r + iγ ϕ
(
∂ϕ + 
ϕ

)
+ iγ z∂z

+ iμ̃α̂1Er + i
μ̃

r
α̂2(Eϕ − χEr

)
+ iμ̃α̂3Ez

− μ̃

r
�1(Br + χBϕ

) − μ̃�2Bϕ − μ̃

r
�3Bz . (3.4)

In the absence of an electric field, i.e. E � 0, the full generalized Dirac equation (FGDE) can be obtained from the action S[�] in
the usual way and explicitly reads

[
iγ 0∂t + iγ 1

(
∂r +

1

2r

)
+ i

γ 2

r

(
∂ϕ − χ∂r

)
+ iγ 3∂z

− μ̃

r
�1(Br + χBϕ

) − μ̃�2Bϕ − μ̃

r
�3Bz − M

]
�(t, r) � 0. (3.5)

From now on we limit ourselves to a magnetic field of the form B � B0 r ẑ with B0 ∈ R, which represents a unidirectional magnetic
field in the positive or negative z-direction with a linearly increasing field strength,3 in the radial direction. With the ansatz

�(t, r) � e
−iEt+i

(
�+ 1

2

)
ϕ+ikz

ψ(r ), (3.6)

3 Such axial magnetic fields with a radial gradient play, for example, an important role in modelling magnetized relativistic jets [51], but are also used in
so-called fixed-field alternating-gradient particle accelerators [52].
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for the solution of the FGDE, we obtain four coupled equations for the four components of the radial Dirac spinor ψ(r ) �
(ψ1(r ), ψ2(r ), ψ3(r ), ψ4(r ))T of the following form

(E − M − μ̃B0)ψ1(r ) − kψ3(r ) +

((
i − χ

r

)
∂r +

i

r
(� + 1)

)
ψ4(r ) � 0, (3.7a)

(E − M + μ̃B0)ψ2(r ) +

((
i +

χ

r

)
∂r − i�

r

)
ψ3(r ) + kψ4(r ) � 0, (3.7b)

k ψ1(r ) −
((

i − χ

r

)
∂r +

i

r
(� + 1)

)
ψ2(r ) − (E + M + μ̃B0)ψ3(r ) � 0, (3.7c)

−
((

i +
χ

r

)
∂r − i�

r

)
ψ1(r ) − kψ2(r ) − (E + M − μ̃B0)ψ4(r ) � 0. (3.7d)

In the above k ∈ R is the eigenvalue of the z-component of the linear momentum p̂z � −i∂z and � ∈ Z represents the eigenvalue
of the angular momentum operator L̂ z � −i∂ϕ . Furthermore, E stands for the energy eigenvalue of the Dirac particle, that is, the
eigenvalue of i∂t

In the next section, we will decouple the set of eqs. (3.7) by deriving a second-order wave equation, who’s solution represents
those four radial spinor components.

4 Exact solutions for a Dirac particle with PMDM

In order to achieve the decoupling of eqs. (3.7) we start with the ansatz ψ1(r ) � α1 ψ3(r ) and ψ2(r ) � α2 ψ4(r ), where α1 and α2

are constant. This ansatz results in the two conditions

α1 � − (−M + μ̃B0 − E) − α2k

(−M + μ̃B0 + E)α2 + k
, α2 � −α1k + (−M − μ̃B0 − E)

(−M − μ̃B0 + E)α1 − k
, (4.1)

from which we obtain the following values

α1 � E
k

−
√
E2

k2 − 1, α2 � −E
k

−
√
E2

k2 − 1. (4.2)

Inserting this result into eqs. (3.7) we obtain a third relation between ψ3(r ) and ψ4(r )

ψ4(r ) �
(
i + χ

r

)
∂r − i�

r

(M − μ̃B0 − E)α2 − k
ψ3(r ). (4.3)

and an associated second-order wave equation for ψ3(r )
(

1 +
χ2

r2

)
d2ψ3(r )

dr2 +

(
1

r
− χ2

r3 − i
2χ�

r2

)
dψ3(r )

dr
− �2

r2 ψ3(r ) + i
χ�

r3 ψ3(r ) + κ2ψ3(r ) � 0, (4.4)

where κ is given by

κ2 �
(√

E2 − k2 + μ̃B0

)2

− M2. (4.5)

Before we study the exact solution of this equation, let us briefly comment on the behavior of ψ3(r ) for small r.
Assuming that for small r the solution of eq. (4.4) behaves like ψ3(r ) ∼ ra , we are led to the two solutions a � 2 and a � 0.

Obviously, the first result ψ3(r ) ∼ r2 implies a vanishing wave function at origin, that is, Dirichlet boundary conditions are applied
at r � 0. On the other side, for the second solution, we need to extend the ansatz to ψ3(r ) ∼ c + rb with an arbitrary constant
c and b > 0. This results in b � 2 and hence we are led to the boundary condition ψ ′

3(0) � 0, which is a Neumann boundary
condition at the origin. Both results are only valid for χ 
� 0. It is obvious that r � 0 is a singular point due to the non-trivial
topology characterized by the line element (2.1). Whereas the Dirichlet condition appears to be the natural choice, we will consider
both options in our way forward. To conclude this part, let us mention that for the flat space limit χ � 0 we have the usual result
ψ3(r ) ∼ r |�|.

With this in mind we are now aiming at the exact solution of (4.4). In doing so we first make the ansatz ψ3(r ) � ei � Arctan(r/χ ) Q̃(r )
and eq. (4.4) leads us to a Schrödinger-type wave equation of the form

(
1 +

χ2

r2

)
d2 Q̃(r )

dr2 +

(
1

r
− χ2

r3

)
dQ̃(r )

dr
− �2

r2 + χ2 Q̃(r ) + κ2 Q̃(r ) � 0. (4.6)
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In a second step we now change to a new radial variable ρ � √
χ2 + r2 ≥ χ and set Q(ρ) � Q̃(r ) � Q̃(

√
ρ2 − χ2). With this

substitution we arrive at

d2Q(ρ)

dρ2 +
1

ρ

dQ(ρ)

dρ
+

1

ρ2

(
κ2ρ2 − �2)Q(ρ) � 0. (4.7)

Surprisingly, eq. (4.7) is the radial Schrödinger equation of a free particle of mass 1/2 with energy ε � κ2 moving on a two-
dimensional plane. Hence, κ > 0 can be interpreted as wave number for the radially outgoing and incoming wave. However, we
do have the condition ρ ≥ χ , that is, the two-dimensional plane has a hole at the origin with radius χ . That is, we need to specify
boundary conditions at the border of that hole. Our discussion on the small r above allows us to consider both, Dirichlet and Neumann
conditions at ρ � χ .

Noting that eq. (4.7) is the well-known Bessel differential equation, we can express its general solution in terms of two linearly
independent Bessel functions. Here we opt for H (1)

� (κρ) and H (2)
� (κρ) being the Hankel functions of first and second kind, respectively.

They show the asymptotic behaviour H (1,2)
� (κρ) ∼ exp{±iκρ} ∼ exp{±iκr} of an outgoing and incoming radial wave for large

ρ ∼ r with the expected wave number κ . Hence the exact solution of (4.7) is given by

QD,N (ρ) � AD,N H (1)
� (κρ) + BD,N H (2)

� (κρ), (4.8)

where the superscripts D and N stand for the Dirichlet and Neumann conditions. That is QD(0) � 0 and dQN

dρ
(0) � 0. This is

achieved via the proper selection of the constants AD,N and BD,N given by

BD � −AD H (2)
� (κχ)

H (1)
� (κχ)

and BN � −AN H (2)′
� (κχ)

H (1)′
� (κχ)

(4.9)

together with the normalisation condition. For both boundary conditions the energy eigenvalues are given by

Ek,κ � ±
√

k2 +
(√

M2 + κ2 − μ̃B0

)2
, k ∈ R, κ ≥ 0. (4.10)

The energy spectrum of a neutral Dirac particle in the topological defect background with a PMDM μ̃ coupled to the magnetic field
is continuous and bounded from below, respectively above, as follows

Ek,κ ≥ |M − μ̃B0|, Ek,κ ≤ −|M − μ̃B0|. (4.11)

Obviously, the usual spectral gap of the free Dirac fermion is either decreased or increased by the presence of the PMDM in a
magnetic field, when the latter is pointing towards the positive or negative z-axis, respectively. The deformation parameter χ does
not have any effect on the spectrum but it has an obvious effect on the wave functions (4.8) via the parameters (4.9) and the
r-dependent phase exp{i�Arctan(r/χ)}.

5 A hidden supersymmetry

In this section will show that the relativistic system discussed above exhibits, in the limit of a vanishing magnetic field or equivalently
a vanish PMPD coupling constant, a hidden SUSY structure known from SUSY quantum mechanics [53]. In fact, when multiplying
eq. (3.5) from the left with γ 0 we can put it into the form

i∂t� � ĤFGDE�, (5.1)

where the full generalized Dirac Hamiltonian is represented by 2 × 2 block matrices as follows

ĤFGDE � Q1 + β̂M �
(M A
A − M

)
. (5.2)

In the above we have introduced the block matrices

M � (M + μ̃B0σ3) and Q1 �
(

0 A
A 0

)
, (5.3)

where

A :� −iσ 1
(

∂r +
1

2r

)
− i

σ 2

r

(
∂ϕ − χ∂r

) − iσ 3∂z � A† (5.4)
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is a self-adjoint operator acting on L2(R3) ⊗ C
2. At this stage we note that in order to fulfill the requirements of a supersymmetric

Dirac Hamiltonian [53] we need to require [Q1,M] � 0. This can obviously be achieved by switching off the magnetic field or the
PMPD coupling parameter. Hence, from now on we consider the case μ̃B0 � 0 only and observe that

Ĥ2
FGDE � Q2

1 + M2 � (
A2 + M2) ⊗ I. (5.5)

We will now establish an N � 2 SUSY structure of the system under discussion. In doing so we closely follow [53] and introduce
the following operators

HSUSY � 1

2M

(
A2 0
0 A2

)
, Q � 1√

2M

(
0 A
0 0

)
, Q† � 1√

2M

(
0 0
A 0

)
, (5.6)

which obviously obey the SUSY algebra

HSUSY � {Q,Q†}, {Q, β̂} � 0, Q2 � 0 � (Q†)2, (5.7)

where β̂ acts as the Witten parity operator. The SUSY Hamiltonian introduced above is related to the free Dirac Hamiltonian in the
background space-time (2.1) as follows

Ĥ2
FGDE � M2 + 2MHSUSY. (5.8)

With this relation the eigenvalues ofHSUSY, denoted by εk,κ , immediately follow from those of ĤFGDE given in (4.10) with μ̃B0 � 0,

εk,κ � 1

2M

(
k2 + κ2). (5.9)

Obviously, the ground-state energy ε0,0 vanishes and SUSY is unbroken. However, when switching on the magnetic interaction
SUSY is explicitly broken.

For supersymmetric Dirac Hamiltonians it is also known [53] that there exists a unitary operator Û , representing a Foldy-
Wouthuysen transformation, which block-diagonalizes it, that is,

ĤFW � ÛĤFGDEÛ
−1 �

(√
A2 + M2 0

0 − √
A2 + M2

)

. (5.10)

Above relation may be rewritten as

ĤFW � β̂M

√

1 +
2HSUSY

M
(5.11)

and indicates that in the non-relativistic limit, where M becomes large, the SUSY Hamiltonian is indeed the one representing the
non-interacting system under investigation in this limit as

ĤFW ∼ β̂(M + HSUSY). (5.12)

In concluding the discussion on SUSY we finally note that the above relation (5.11) has been found for several relativistic SUSY
Hamiltonians not limited to spin- 1

2 particles [54, 55].

6 Conclusion

In this paper, we started off with a (1 + 3)-dimensional space-time generated by the spiral dislocation background followed by a
concise review of the mathematical formulation of the Dirac spinor in the context of quantum field theory in curved space-time.
Then, the relativistic behaviour of a neutral spin-half particle with a PMDM that interacts with an external magnetic field in that
background has been investigated. This interaction scenario has been designed by presenting the action of a Dirac spinor field
involving the Lagrangian density of the Dirac spinor field in that background and the Lagrangian density corresponding to the
interaction model. In search of analytical solutions, the wave equation deriving from the action of a Dirac spinor field corresponding
to that possible scenario has been established.

We were able to reduce the relativistic wave equations to that of a radial Schrödinger problem of a free particle moving on a
plane with a hole of radius given by the deformation parameter χ . The energy eigenvalue are found in closed form and we showed
that this system has a continuous spectrum like that of free Dirac particle but with the gap between the positive and negative branch
being increased or decreased due to the presence of the PMPM, i.e. the gap is given by

[−|M − μ̃B0|, |M − μ̃B0|
]
. We were also

able to present the Dirac energy eigenspinors in closed form for Dirichlet and Neumann boundary conditions along the z-axis, both
of which are admissible.

Finally, we could show that the system under discussion, for vanishing magnetic interaction, exhibits a SUSY structure known
from SUSY quantum mechanics. That is, the free Dirac Hamiltonian in a background space-time characterized by the line element
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(2.1) exhibits a SUSY structure with unbroken SUSY. This is similar to the situation of a free Dirac particle moving in de Sitter and
anti-de Sitter space [56, 57].
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