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Abstract Multiphoton interference is an essential phenomenon at the very heart not only of fundamental quantum optics and
applications in quantum information processing and sensing but also of demonstrations of quantum computational supremacy
in boson sampling experiments relying only on linear optical interferometers. However, scalable boson sampling experiments
with either photon number states or squeezed states are challenged by the need to generate a large number of photons with fixed
temporal and frequency spectra from one experimental run to another. Unfortunately, even the well-established standard multiplexing
techniques employed to generate photons with fixed spectral properties are affected by the detrimental effects of losses, spectral
distorsions and reduction in purity. Here, we employ sampling correlation measurements in the photonic inner modes, time and
frequency, at the interferometer input and output to ensure the occurrence of multiphoton interference even with pure states of input
photons with random spectral overlap from one sample to another. Indeed, by introducing a random multiplexing technique where
photons are generated with random inner-mode parameters, it is possible to substantially enhance the probability to successfully
generate samples and overcome the typical drawbacks in standard multiplexing. We also demonstrate the classical hardness of the
resulting problem of scattershot multiboson correlation sampling based on this technique. Therefore, these results not only shed
new light in the computational complexity of multiboson interference but also allow us to enhance the experimental scalability
of boson sampling schemes. Furthermore, this research provides a new exciting route toward future demonstrations of quantum
computational supremacy with scalable experimental resources as well as future applications in quantum information processing
and sensing beyond boson sampling.

1 Introduction

Multiphoton interference is a fundamental phenomenon in quantum optics with numerous applications spanning from quantum
foundations [1–4] to quantum information and sensing technologies [5–9].

Recently, the introduction of the boson sampling problem by Aaronson and Arkhipov (AABS) [10] and the following experimental
realizations [11–17] have provided the potential to achieve quantum computational supremacy without the need of a general-purpose
quantum computer. Indeed, AABS simply consists of the task of sampling from the probability distribution of all the possible ways
of detecting N interfering photons at the output of a linear interferometer (described by a unitary matrix U chosen randomly with
respect to the Haar measure) after being injected in N out of M ∼ N 2 distinct fixed input ports [10].

A first enhancement in the scalability of boson sampling experiments was given by the introduction of Scattershot Boson Sampling
(SBS) [16, 18, 19], where a fixed numberN of identical single photons are postselected in a random set ofN input ports by employing
M ∼ N 2 heralded spontaneous parametric downconversion (SPDC) sources. The recent introduction of the Gaussian boson sampling
(GBS) problem, based on the use of nonheralded sources of squeezed states and therefore depending on matrix Hafnians instead of
matrix permanents, has triggered interesting but still open questions on its computational hardness [20–25].

More recently, a variation in SBS with a random number of input photons and only a linear number of heralded SPDC sources
was introduced by additionally sampling at the interferometer input over all the possible input states of N or more occupied input
ports [26]. This has allowed to achieve a probability of generating input samples which increases instead of decreasing with N ,
differently from SBS and GBS with a fixed number of postselected photons.

However, all these boson sampling schemes suffer from the experimental challenge to generate a large number of input photons
which are identical in their inner-mode properties in order to do not affect the computational hardness of the problem [4, 27–29].
Indeed, N photons emitted by different sources or by the same source at different times can differ in their frequency and temporal
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spectra, especially for N > 50 as required to achieve quantum computational supremacy [30]. This is indeed the case not only for
single-photon emitters, such as diamond color centers [31], single molecules [32] and quantum dots [33, 34] in boson sampling
experiments with single photons but also for sources of squeezed light employed in GBS experiments [22, 24, 35].

The experimental requirement for identical input photons in multiphoton interference experiments has been eased by introducing
a sampling process called multiboson correlation sampling (MBCS) [36]. Here, the input photons can differ in their inner mode
parameters, e.g., frequencies or injection times, and correlation measurements resolving the correspondent conjugate parameters
are performed at the output [36–39]. This differs from AABS where the sampling measurements at the interferometer output do
not resolve the photonic inner degrees of freedom and, therefore, full multi-photon indistinguishability at the detectors can only
be observed only for photons identical in all their parameters, including both their frequencies and injection times [4]. The advent
of very fast single-photon detectors and high-precision single-photon spectrometers [3, 4, 40–46] has already made possible the
realization of MBCS experiments [47, 48].

Unfortunately, even for MBCS schemes with non-identical input photons, a key experimental challenge is still the need to
generate a large number of input photons which states, although they may differ from each other, are not allowed to change between
consecutive runs of the experiments.

One possible approach is the use of multiplexing to approximately generate SPDC states |ψ〉 �
⊗k

i�1[
√

1 − γ 2
∑∞

ni�0 γ ni |ni , ni 〉], with γ � tanh r , of k “multiplexed” modes with ni ≥ 0 photons and the same squeez-
ing parameter r [40, 49–52]. Indeed, by increasing the number k of inner modes in which each single photon can be generated by
SPDC sources it is ideally possible to enhance the probability of single photon generation, while keeping the ratio between one
photon pair events and two pair events constant. Only k � 13 inner modes with the optimal value γ � γopt � 1/

√
2 are already

enough to reach, in principle, a probability p � 1 − (1 − γ 2
opt(1 − γ 2

opt))
k ∼� 98% for single-photon generation with a substantial

enhancement with respect to the probability of 25% when no multiplexing is employed [52].
Another promising approach based on demultiplexing of single photons emitted by a single quantum dot was also demonstrated

experimentally [17].
However, unfortunately, current multiplexing and demultiplexing techniques in the photonic inner modes, such as time and

frequency [17, 40, 49–52], are threatened, especially for large photon numbersN , by the effect of losses, possible spectral distorsions
and reduction in purity. This is due to the need of additional optical elements such as switches, delay lines, storage cavities or phase
modulators which are employed to generate photons with both fixed frequency and temporal properties, limiting also the range of
exploitable multiplexed modes to scale up the probability in single-photon generation [40, 51, 52]. Furthermore, for high values of
squeezing parameters photon-number resolved detectors are required to ensure single-photon emissions.

Therefore, important questions remain to be addressed for future experiments at the intersection between quantum optics and
quantum computational complexity. Can classical hardness be achieved by employing single photons whose inner-mode properties
change randomly from one sample to another? Can the generation of input photons with random inner-mode properties be turned
from an experimental drawback to a resource for more scalable boson sampling realizations while only using a linear number of
sources? Can one take also advantage of multi-photon emission in multiplexing techniques without recurring to photon-number
resolving detectors?

In this paper, we demonstrate the quantum computational complexity beyond any classical capabilities of quantum linear optics
networks even with pure states of input photons which differ randomly in either their central frequencies or injection times from one
experimental run to another. Remarkably, we also show how, in this case, a substantial scaling up of experimental implementations
of boson sampling is achievable with the current technology.

In particular, we introduce a novel technique, random inner-mode multiplexing, which employs heralding SPDC measurements
to sample at the interferometer input over either the central times (Fig. 1a) or the central frequencies (Fig. 2a) of the input heralded
photons. Further, by sampling at the output in the respective conjugate parameters, instead of “classically” average over such
information, it is possible to restore multiphoton indistinguishability at the detectors (see Fig. 1b and 2b, respectively). The emergence
of full multiphoton interference even with input photons with random spectral overlap is at the very heart of the classical hardness
of this problem, named here scattershot multiboson correlation sampling (SMBCS), even in the approximate case. Indeed, full
quantum interference occurs at each experimental run for all possible injection times (frequencies) heralded at the input and all
detected frequencies (times) at the output, even if these values vary randomly in consecutive measurements.

By allowing the input photons to have either random central times or frequencies, losses, as well as possible spectral distortions and
reduction in purity, due to additional optical elements needed to generate single photons in fixed inner modes are also avoided. This
allows to scale up SMBCS experiments to larger photon numbers in comparison to boson sampling, SBS, and MBCS experiments
where the input photons are generated in fixed inner modes. Furthermore, no filtering for particular detection times or frequencies
is necessary, since this technique takes advantage of all the possible measurement outcomes in the photonic inner modes.

Let us consider, in general, N single photons injected into a set S of N input ports of an arbitrary passive, linear optical network
with a total of M ∼ N 2 input and output ports. Contrary to conventional boson sampling models, we allow these photons to have
normalized spectra ξ (ω − ωs)eiωts with either different central frequencies ωs or different central times ts , with s ∈ S, where
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ξ (ω − ωs) is a positive function with maximum at ω � ωs describing the photonic wave packets. The overall input state can be
written as the product state

|S〉 :�
⊗

s∈S
|1; ωs, ts〉s

⊗

s /∈S
|0〉s (1)

of M − N vacuum states in the unoccupied ports and N single photon states

|1; ωs, ts〉s :�
∫ ∞

0
dω ξ (ω − ωs)e

+iωts â†
s (ω)|0〉s . (2)

2 Scattershot multiboson correlation sampling (SMBCS) with input photons injected at random times

We consider first the case where the N input photons in Eq. (2) are generated with the same frequency (ωs � ω0 ∀s ∈ S) but at
random different times {ts} from one sample to another by employing the random time multiplexing (RTM) technique in Fig. 1a.
Here, the input photons are the signal photons of pulsed SPDC sources heralded at random times by time-resolved detections of
the idler photons. Remarkably, by allowing random input times, this RTM technique is not affected by any losses associated with
the optics required in boson sampling experiments based on standard time-multiplexing to generate the photons at fixed times (e.g.,
multiple delay lines and optical switchers) [49, 50], enhancing therefore substantially the experimental scalability to higher photon
numbers.

Multiphoton interference at the interferometer output can be obtained by “erasing” any random time distinguishability via
frequency-resolved measurements as depicted in Fig. 1b. For photonic wave packets of a given bandwidth �ω, for example of
Gaussian or rectangular shape, this is ensured for small enough frequency resolution δω according to the conditions

δω � |ts − ts′ |−1 ∀s, s′ ∈ S and δω � �ω. (3)

This includes the case where the input photons exhibit no overlap in their temporal spectra.
We can now define the “Scattershot Multiboson Correlation Sampling” (SMBCS) problem with input photons injected at random

input times as the task of generating an overall sample [(D, {ωd}d∈D), (S, {ts}s∈S )] determined by an input sample (S, {ts}s∈S ) of
N input ports S occupied with single photons with random injection times {ts} in addition to the output sample (D, {ωd}d∈D) of N
detectors D detecting the N photons at random frequencies {ωd}.

Indeed, defining the annihilation operators âd � ∑
s∈S Uds âs at the detectors and the permanent permA :� ∑

σ∈	N

∏N
i�1 Aiσ (i)

of a matrix A as the sum over all possible permutations σ from the symmetric group 	N of order N , we find in appendix the value
of the probability of generating a sample [(D, {ωd}d∈D), (S, {ts}s∈S )] in the detected frequency intervals I ({ωd}) :� ⊗

d∈D[ωd −
δω/2, ωd + δω/2]:

P (D,S)
{ωd },{ts } �

∫

I ({ωd })

∏

d∈D
dωd

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

�
∫

I ({ωd })

∏

d∈D
dωd

[ ∏

d∈D
ξ (ωd − ω0)

]
∣∣∣∣∣∣∣
perm

([Udse
iωd ts

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

� δωN
[ ∏

d∈D
ξ2(ωd − ω0)

]
∣∣∣∣∣∣∣
perm

([Udse
iωd ts

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

,

(4)

where we used the condition (3) in the last equality.
TheN! permutations which are coherently added in the matrix permanents defining Eq. (4) correspond to all possible multiphoton

paths which bijectively connect the output ports D with the input ports S. Evidently such multiphoton interference arises from the
interfering terms in the squared modulus of each permanent dependent from the oscillating phase factors eiωd ts of the single-photon
amplitudes associated with the detection of each photon s emitted at central time ts and detected with frequency ωd at the output port
d. Therefore, such interference is not affected by the random overlap between the photonic wave packets ξ (ω − ω0)e+iωts emitted at
random times ts as in the case of measurements not resolving any photonic degrees of freedom [4, 37]. Indeed, even in the case of
negligible overlap between any pair of photons s and s′ (i.e., | ts′ − ts |
 1/�ω) N-photon interference can be observed as in Eq. (4)
if condition (3) is satisfied, as shown experimentally in Ref. [48]. In fact, in such a condition the frequency-resolved measurements
“erase” at the detectors any distinguishability in time between the photons. In other words, at each measurement the detectors are
not able to distinguish the detected photons in their emission times since they resolve with enough precision the conjugate parameter
to time which is the frequency. Therefore, N-photon interference occurs at any possible set of detected frequencies corresponding to
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an N-photon detection sample without the need of postselecting particular events. Furthermore, the associated probability in Eq. (4)
manifests quantum beats as a function of the relative values of the detected frequencies from one sample to another with a visibility
which is independent of the photonic emission times. On the other hand, the squared moduli ξ2(ωd −ω0) of the photonic amplitudes,
corresponding to the single-photon spectral probability distributions, determine the modulation of such N-photon interference from
one frequency sample to another. In particular, for photons of equal rectangular spectral shapes, such a modulation assumes the

constant value
[∏

d∈D ξ2(ωd − ω0)
]

� �ω−N for N-photon events within the bandwidth �ω around the central frequency ω0,

while no events occur outside such bandwidth.
Differently, for measurements not resolving the photonic frequencies (i.e., not satisfying the condition (3)) a “classical average”

of the N-photon sample probabilities occurs over all the possible photonic frequencies, i.e., an indefinite integration in the frequency
domain in the second equality of Eq. (4). In such a case, the observance of N-photon interference would become dependent from the
random overlap between the photonic wave packets [4]. Therefore, frequency-resolved measurements have key role in the occurrence
of multiphoton interference for each N-photon detection event even if in this technique the photonic wave packets are not identical,
but they randomly overlap in time.

We also emphasize that, as in all boson sampling schemes, the experimental task here is not to retrieve the probability for each
sample but to experimentally sample from the probability distribution associated with all the possible time-resolved outcomes at the
input and frequency-resolved outcomes at the output of the boson sampling interferometric network in Fig. 1a.

In order to give evidence of the classical hardness of SMBCS, we recall that, for Haar random unitary matrices U of size M, the
elements Uds of any submatrices of U of size N � M are independent and identically distributed (i.i.d.) Gaussian random variables
with a standard normal distribution N (0; 1)C with mean 0 and variance 1 [10]. Therefore, the same is valid for the entries Udseiωd ts

of the N ×N submatrices in Eq. (4), independently of the values of ts and ωd , since the additional phase factors eiωd ts only rotate the
elements Uds in the complex plane and the distribution N (0; 1)C is symmetric around the origin [36]. Permanents of matrices with
i.i.d. Gaussian random entries as in Eq. (4) are strongly believed to be classically hard to estimate [10], implying that approximate
SMBCS with random input injection times is at least as classically hard as approximate AABS [36]. Indeed, for any fixed set of
injection times approximate SMBCS reduces to approximate MBCS, which has been already shown to be at least as classically hard
as approximate AABS [36]. Since approximate SMBCS can be thought as sampling over any approximate MBCS experimental
settings for random photonic injection times, such a problem is therefore at least as hard as approximate MBCS. Indeed, given k
possible “multiplexed” injected times, the SMBCS problem has additionally the “bonus” that the number of possible samples is kN

times larger in comparison to MBCS experiments with photons injected at fixed times.
Furthermore, the dramatic reduction in losses in the RTM technique enables to scale up boson sampling experiments by avoiding

the need to generate photons at fixed times via standard time multiplexing [49, 50]. In addition, by increasing the pulsed pump laser
repetition rate fp or by decreasing the frequency resolution δω of the detectors it is possible to substantially increase the maximum
number of pulses k � fp/δω, therefore enhancing the single-photon generation probability. One may also extend this technique
to the use of a cw pump laser which would lead to a maximum number of RTM time bins k � (δtδω)−1 determined by the time
resolution δt and the frequency resolution δω of the detectors.

3 Scattershot multi-boson correlation sampling (SMBCS) with input photons of random colors

We consider now the case where the N input photons in Eq. (2) are injected into the interferometer at the same time ts � t0 but can
have random colors (generally, ωs �� ωs′ if s �� s′), by using the technique of random frequency multiplexing (RFM) in Fig. 2a. Here,
SPDC sources are used to generate single photons at random, but known, central frequencies through frequency-resolved heralding
with a single-photon spectrometer [40]. This technique differs from the standard frequency multiplexing technique introduced in
Ref. [40], where a phase modulator is used to shift the random frequencies of the heralded single photons to a fixed value. Indeed,
the RFM technique allows us to sample from all the possible random frequencies of the input photons, which we can assume for
simplicity to occur equally likely. Additionally, at the interferometer output in Fig. 2b a sampling process occurs both in the output
ports and the detections times the photons are detected at with detector integration times

δt � |ωs − ωs′ |−1 ∀s, s′ ∈ S and δt � 1/�ω (5)

to ensure multiphoton indistinguishability. Indeed, this condition corresponds to Eq. (3) by interchanging the conjugate variables
frequency and time.

We can now define SMBCS with input photons of random colors as the task of generating an overall sample
[(D, {td}d∈D), (S, {ωs}s∈S )] determined by input sample (S, {ωs}s∈S ) of N input ports S occupied with single photons of ran-
dom central frequencies {ωs} in addition to the output sample (D, {td}d∈D) of N detectors D detecting the N photons at random
detection times {td}.
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Fig. 1 SMBCS implementation with input photons injected at random times. a Random time multiplexing: Using time-resolved heralding of the idler photons
emitted by an SPDC source pumped by a train of laser pulses, N signal photons are generated in random but known time slots at each different sample.
b Multiphoton interferometer based on frequency-resolved correlation measurements: N single photons, generated as in panel a, are injected into a passive
linear network and detected using frequency-resolving detectors

Fig. 2 SMBCS implementation with input photons of random colors. a Random frequency multiplexing: Using frequency-resolved heralding of the idler
photons emitted by a pulsed SPDC source, N signal photons are generated at random but known central frequencies at each different sample. b Multiphoton
interferometer based on time-resolved correlation measurements: N single photons, generated as in panel a, are injected into a passive linear network and
detected using time-resolving detectors

Indeed, by interchanging now the conjugate parameters times and frequencies in Eq. (4), the probability

P (D,S)
{td },{ωs } ∝

∣∣∣∣∣∣∣
perm

([Udse
iωs td

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

(6)

of generating the sample [(D, {td}d∈D), (S, {ωs}s∈S )] is defined again by permanents of matrices with i.i.d. Gaussian random entries
[36]. Analogously to the previous case, this implies that approximating SMBCS with input photons of random colors is at least
as classically hard as approximate AABS and MBCS [36]. Again, this computational hardness is intimately connected with the
N-photon interference arising from the interfering terms in the squared modulus of the matrix permanents in Eq. (6) dependent from
the oscillating phase factors eiωs td associated with the detection of a photon of central frequency ωs at detection time td [4, 36].
Analogously to the previous case, such interference is not affected by the overlap between the photonic wave packets ξ (ω−ωs)e+iωt0

at random central frequencies since measurements in the conjugate parameter, i.e., detection time, are performed with a precision
satisfying Eq. (5).

Furthermore, the RFM technique allows to avoid the losses connected with the need in standard frequency multiplexing of phase
modulators to shift the photons heralded at a random frequency to a fixed frequency, enabling a scaling up of boson sampling
experiments to higher photon numbers [40].

In addition, while in standard frequency multiplexing the maximum number kmax of central frequencies is limited by the maximum
frequency shift allowed by the phase modulators, in RFM kmax is only limited by the detector resolution according to Eq. (5). As an
example, given a frequency resolution of 1GHz c of 10ps, it is possible to sample already over k ∼ 10 different central frequencies.

4 SMBCS with more than one single photon per input channel

So far we have considered SMBCS with one single photon in only one of the k multiplexed modes at each of the N input channels.
We exploit now the case where ns ≥ 1 single photons, each in a different multiplexed mode, are allowed to be injected at each input
channel s ∈ S, leading to an input spatial sample S ′ of N ′ ≥ N occupied input channels where each channel s is counted ns times.
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In such a case, one can define the SMBCS samples [(D′, {td ′ }d ′∈D′ ), (S ′, {ωs′ }s′∈S ′ )], for input photons with random colors, and
[(D′, {ωd ′ }d ′∈D′ ), (S ′, {ts′ }s′∈S ′ )], for input photons at random times, which are detected in a random set D′ of N ′ distinct output

channels by resolving the corresponding conjugate parameters. The corresponding detection probabilities P (D′,S ′)
{td′ },{ωs′ } and P (D′,S ′)

{ωd′ },{ts′ }
for such samples in Eqs. (6) and (4), respectively, depend now on permanents of N ′ × N ′ matrices with ns columns for each input
channel s ∈ S, containing the same single-photon interferometer transition amplitudes Ud ′s but different phase factors associated
with different ns input injection times or frequencies. Since the N sources produce at least one photons, such matrices contain at
least N × N entries which are i.i.d. Gaussian random variables, which is again a strong evidence that such a problem is at least as
classical hard as AABS and MBCS [10, 36]. Additionally, by considering additional samples where more than one single photon
can be injected per channel the number of possible samples further increases exponentially with the number of multiplexed modes.

Since the total number N ′ of photons is always proportional to the numberN of independent sources, the number of interferometer
channels still scales as M ∼ N ′2 for large values of N as in the case of single photon emissions. Therefore, in such a case photons
are still likely to scatter separately toward different output channels instead of bunching in the same channel [10]. The likely absence
of more than one photons at any of the output channels avoids the need of photon number resolving detectors. This also allows us to
distinguish events where one of the multiplexed input modes is occupied with more than one photon if single photons are detected in
more than N output channels without again employing photon-number resolving detectors as in standard multiplexing techniques.

Furthermore, the possibility of taking into advantage sampling events with more than N single photons has the potential to
enhance the robustness of SMBCS to losses.

5 Discussion

We have introduced and shown the classical hardness even in the approximate case of the so-called scattershot multiboson correlation
sampling (SMBCS) problem employing a linear interferometer with input photons which, differently from previous schemes, do
not need to be generated with fixed frequencies or injection times from one experimental run to another.

Indeed, SMBCS relies on sampling over either the random central frequencies or injection times of the input photons generated
by using the newly introduced random inner-mode multiplexing (RIMM) technique (Figs. 2 and 1). Remarkably, this technique also
overcomes two main drawbacks in standard multiplexing techniques imposed by the need of tuning the SPDC generated photons to
fixed inner-mode parameters from one experimental run to another: losses associated with the necessary auxiliary optics; limitation
in the range of exploitable multiplexed frequencies or time of emissions.

Therefore, SMBCS allows both a scaling up in experimental realizations and an exponential increase in the number of samples
with the number of multiplexed modes with respect to current schemes where the input single photons are required to have fixed
inner modes at each experimental run.

Interestingly, the RIMM technique can be applied in general to schemes with input photons with any random inner mode parameters
in addition to the central frequencies and injection times considered here, e.g., transverse momentum or orbital angular momentum.
Indeed, by resolving at the interferometer output the correspondent photonic conjugate parameters, multi-photon indistinguishability
is retrieved independently of the input inner modes from one experimental run to another.

One can further take advantage of an additional number of samples, again exponential with the number of multiplexed modes,
by allowing more than one mode per channel to be occupied with single photons and without requiring photon-number resolving
detectors. This motivates an interesting question: Would it be possible to demonstrate SMBCS quantum computational supremacy
by keeping the number of sources fixed independently ofN or even using a single source withN injected single photons inN different
multiplexed modes in a single input port? Another interesting aspect concerns the effect of cross talk in the linear optical network,
which could become less negligible at the increasing of the density of waveguide elements when integrated photonic circuits are
employed. Although several techniques have been already developed to reduce such cross talk [53–55], it would be interesting to
explore if the ability to consider in SMBCS also samples of photons with different temporal and frequency spectra both at the input
and output of the interferometer can further reduce it with respect to standard boson sampling with identical photons. Further studies
of SMBCS interferometers in these scenarios will surely be the focus of future works.

Finally, these results not only can be exploited to enhance the scalability of any boson sampling scheme with either photon
number states or squeezed states with a fixed or random number of detected photons [19, 20, 26], but can also inspire new platforms
for applications in quantum sensing and information processing beyond boson sampling, where experimental losses are minimized
and the quantum information stored in the spectra of experimentally non-identical photons is exploited in its fullness [4, 56].
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Appendix: Frequency correlations of N photons

The detection of a photon in output port d ∈ D and at frequency ωd can be described by the application of the annihilation operator
âd (ωd ) to the output state of the interferometer. Therefore, the probability density to measure the outcome (D, {ωd}) is given by the
correlation function

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

(S1)

evaluated for the input state (Eqs. (1) and (2) in the main paper)

|S〉 :�
⊗

s∈S
|1; ωs, ts〉s

⊗

s /∈S
|0〉s (S2)

with

|1; ωs, ts〉s :�
∞∫

0

dω ξ (ω − ωs)e
+iωts â†

s (ω)|0〉s . (S3)

Naturally, the structure of this correlation function strongly depends on the passive, linear optical network. Its effect can be described
as a linear transformation which connects the output mode operators âd (ω) with the input mode operators âs(ω) via the single-photon
transition amplitudes Uds . Since the unoccupied input ports s /∈ S do not contribute to the correlations, we can for given S and D
effectively write

âd (ωd ) �
∑

s∈S
Uds âs(ωd ). (S4)

The probability to detect the N photons in the input state in Eq. (S2) at the output ports D and in the detected frequency intervals
I ({ωd}) :� ⊗

d∈D[ωd − δω/2, ωd + δω/2] consequently is

P (D,S)
{ωd },{ts } �

∫

I ({ωd })

∏

d∈D
dωd

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

. (S5)

Using the notation ‖|ψ〉‖:� 〈ψ |ψ〉 and Eq. (S4), we can rewrite the correlation function, Eq. (S1), as

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

�
∥∥∥∥∥

∏

d∈D
âd (ωd )|S〉

∥∥∥∥∥

2

�
∥∥∥∥∥∥

∏

d∈D

∑

sd∈S
Udsd âsd (ωd )|S〉

∥∥∥∥∥∥

2

�
∥∥∥∥∥

∑

{sd }∈SN

∏

d∈D
Udsd âsd (ωd )|S〉

∥∥∥∥∥

2

. (S6)

This expression can be further simplified by noting that due to the structure of the state |S〉, Eq. (S2), only those terms contribute, in
which each of the N annihilation operators âs(ω), s ∈ S, appears exactly once. Denoting the set of all permutations of N elements,
the symmetric group of order N , as 	N and recalling Eq. (S2), the correlation function becomes

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

�
∥∥∥∥∥∥

∑

σ∈	N

∏

d∈D
Udσ (d)âσ (d)(ωd )|S〉

∥∥∥∥∥∥

2

�
∥∥∥∥∥∥

∑

σ∈	N

∏

d∈D
Udσ (d)âσ (d)(ωd )|1; ωσ (d), tσ (d)]〉σ (d)

∥∥∥∥∥∥

2

. (S7)
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With the help of the definition of the single-photon states |1; ωs, ts〉 in Eq. (S3), and recalling the definition permA �∑
σ∈	N

∏N
i�1 Aiσ (i) of the permanent of an N × N matrix with elements Ai j , this can be simplified to

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

�
∥∥∥∥∥∥

∑

σ∈	N

∏

d∈D
Udσ (d)ξ (ωd − ωσ (d))e

iωd tσ (d) |0〉
∥∥∥∥∥∥

2

�
∣∣∣∣∣∣

∑

σ∈	N

∏

d∈D
Udσ (d)ξ (ωd − ωσ (d))e

iωd tσ (d)

∣∣∣∣∣∣

2

�

∣∣∣∣∣∣∣
perm

([Udsξ (ωd − ωs)e
iωd ts

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

,

,

(S8)

which, by considering photons with frequency spectra of width �ω and identical central frequencies ωs � ω0 ∀s ∈ S, reduces to

〈

S
∣∣∣∣∣

∏

d∈D
â†
d (ωd )

∏

d∈D
âd (ωd )

∣∣∣∣∣
S
〉

�
[ ∏

d∈D
ξ (ωd − ω0)

]
∣∣∣∣∣∣∣
perm

([Udse
iωd ts

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

. (S9)

Then, under the conditions

δω|ts − ts′ | � 1 ∀s, s′ ∈ S and δω � �ω (S10)

from Eq. (5), which ensure that the detectors do not “classically average” over the correlations, the probability in Eq. (S5) takes the
form

P (D,S)
{ωd },{ts } � δωN

[ ∏

d∈D
ξ (ωd − ω0)

]
∣∣∣∣∣∣∣
perm

([Udse
iωd ts

]
d ∈ D
s ∈ S

)
∣∣∣∣∣∣∣

2

. (S11)
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