
Eur. Phys. J. Plus         (2023) 138:350 
https://doi.org/10.1140/epjp/s13360-023-03936-z

Regular Art icle

A dynamical study on stochastic reaction diffusion epidemic model with nonlinear
incidence rate

Nauman Ahmed1,2,a, Muhammad Waqas Yasin1,3,b, Muhammad Sajid Iqbal4,5,c, Ali Raza6,d, Muhammad Rafiq7,8,e,
Mustafa Inc9,10,f

1 Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
2 Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
3 Department of Mathematics, University of Narowal, Narowal, Pakistan
4 Department of Humanities and Basic Science, MCS, NUST, Islamabad, Pakistan
5 Institute of Applied Mathematics, Graz University of Technology, 8010 Graz, Austria
6 Department of Mathematics, Govt. Maulana Zafar Ali Khan Graduate College Wazirabad, Punjab Higher Education Department (PHED), Lahore 54000,

Pakistan
7 Department of Mathematics, Faculty of Science and Technology, University of the Central Punjab, Lahore, Pakistan
8 Department of Mathematics, Near East University, Mathematics Research Center, Near East Boulevard, 99138 Nicosia, Mersin 10, Turkey
9 Department of Mathematics, Faculty of Science, Firat University, 23119 Elazig, Turkey

10 Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Received: 20 February 2023 / Accepted: 26 March 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract The current study deals with the stochastic reaction–diffusion epidemic model numerically with two proposed schemes.
Such models have many applications in the disease dynamics of wildlife, human life, and others. During the last decade, it is observed
that the epidemic models cannot predict the accurate behavior of infectious diseases. The empirical data gained about the spread of
the disease shows non-deterministic behavior. It is a strong challenge for researchers to consider stochastic epidemic models. The
effect of the stochastic process is analyzed. So, the SIR epidemic model is considered under the influence of the stochastic process.
The time noise term is taken as the stochastic source. The coefficient of the stochastic term is a Borel function, and it is used to
control the random behavior in the solutions. The proposed stochastic backward Euler scheme and the proposed stochastic implicit
finite difference scheme (IFDS) are used for the numerical solution of the underlying model. Both schemes are consistent in the
mean square sense. The stability of the schemes is proven with Von-Neumann criteria and schemes are unconditionally stable. The
proposed stochastic backward Euler scheme converges toward a disease-free equilibrium and does not converge toward an endemic
equilibrium but also possesses negative behavior. The proposed stochastic IFD scheme converges toward disease-free equilibrium
and endemic equilibrium. This scheme also preserves positivity. The graphical behavior of the stochastic SIR model is much similar
to the classical SIR epidemic model when noise strength approaches zero. The three-dimensional plots of the susceptible and infected
individuals are drawn for two cases of endemic equilibrium and disease-free equilibriums. The efficacy of the proposed scheme is
shown in the graphical behavior of the test problem for the various values of the parameters.

1 Introduction

The reaction–diffusion models are used in ecology, and virology to explain various biological phenomena. Such models describe
the population or concentration distributed in space under the effect of two phenomena. In population models or concentration
models, the diffusion term explains the random motion of the individuals, and their reproduction is described by the reaction term.
In epidemiology, reaction–diffusion models are frequently used to understand the phenomena of various diseases such as how the
disease starts, how it is affected by the movement of different species, how it can be controlled, and how much time is required to
eradicate it from the species. Some researchers worked on the numerical solutions of the epidemic models. A mathematical model
was proposed by Wang and Wang [1] for the simulation of the hepatitis B virus infection and introduced a random motion of the
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virus in the deterministic model proposed by Nowak et al. [2], and they assumed that concentration gradient is proportional to the
population flux of the virus. Suryanto et al. proposed a nonstandard FDS for the numerical approximation of the SIR epidemic model
having a saturated incidence rate. The results obtained with the given scheme are dynamically consistent with the continuous model
[3]. Naik et al. considered the SIR epidemic model to have a Crowley-Martin-type functional response and Holling type-II treatment
rate. They used the Homotopy analysis method is used for the analytical solutions of the given model. The authors discussed the
stability of the model and conclude that it has two equilibria, one is disease free and the other is endemic [4].

Nauman et al. [5] considered the following epidemic model having nonlinear incidence rate as follows:

∂S

∂t
� d1

∂2S

∂x2 + λ − ηS − βSI

1 + c1S + c2 I + c3SI
, (1)

∂ I

∂t
� d2

∂2 I

∂x2 − (η + δ + σ )I +
βSI

1 + c1S + c2 I + c3SI
, (2)

∂R

∂t
� d3

∂2R

∂x2 − ηR + σ R, (3)

with initial condition

S(x, 0) � α1(x), (4)

I (x, 0) � α2(x), (5)

and homogeneous Neumann boundary conditions(B.Cs)

∂S(0, t)

∂x
� 0,

∂S(l, t)

∂x
� 0, (6)

∂ I (0, t)

∂x
� 0,

∂ I (l, t)

∂x
� 0. (7)

Where S(x, t), I(x, t), and R(x, t) represent the susceptible, infected, and recovered individuals, respectively, at any space variable x
and time t. The parameters 	, η, δ, σ represent the recruitment rate, natural death rate, the death rate due to disease, and recovery rate
of the infected individuals, respectively. The da, a � 1, 2 are the diffusion coefficients, β is the infection parameter, ca, a � 1, 2, 3
are the arbitrary positive constants, βSI

1+c1S+c2 I+c3SI
is the nonlinear modified incidence rate. The nonlinear modified incidence rate

becomes bilinear if ca � 0, a � 1, 2, 3, and the saturated incidence if ca � 0, a � 1, 2 or a � 2, 3. The stability analysis of the
above model has been carried out, and it has two equilibria, one is the disease-free equilibrium is (λ/η, 0) and the other is endemic
equilibrium (S∗, I ∗) and S∗ � 2(e′+c2λ)

β−c1e′+c2η−c3λ+
√
d ′

I ∗ � λ−ηS∗
e′ where e′ � η + δ + α, d ′ � (β − c1e′ + c2η − c3λ)2 + 4c3η(e′ + c2λ). The reproduction number is given as

R0 � βλ
(η+c1λ)(η+δ+α) . As Eqs. (1) and (2) are independent of the state variable R, it is quite natural to consider the system of Eqs.

(1,2) instead of (1,2,3) because R does not affect the susceptible and infected individuals.
Modeling of physical phenomena is an interesting work. For this purpose, partial differential equations (PDEs) are used to

describe the physical behavior [6–9]. The solution of the PDEs is an active area of research, and various techniques are applied for
the solutions of PDEs [10–16]. Forty years ago, it was a faith that medical science has made tremendous progress in reducing the
mortality rate of humans because it is due to improvements in nutrition, drugs, and vaccines. Even then, infectious diseases have
been a severe threat to the human and livestock population. The classical epidemic models fail to describe the true behavior of the
diseases. So, it is the need of the hour to consider the epidemic models under some stochastic process. So, new literature is required
for cases. various researchers are working on the dynamics of stochastic partial differential equations. The authors used the finite
difference scheme to analyze the different aspects of various physical phenomena [17–19]. Macías-Díaz et al. analyzed the stochastic
epidemiological model with a nonstandard finite difference scheme [20]. Raza et al. developed a nonstandard finite difference for the
study of the stochastic smoking model and discussed various dynamics [21]. Nauman et al. worked on the numerical approximation
of the stochastic fractional epidemic model [22]. Raza et al. found the solution of the stochastic dengue epidemic model [23].
Alkhazzan et al. analyzed the SVIR epidemic model and discussed its various dynamics [24].

The main contributions of this manuscript are as given below:

(i) The epidemic models cannot predict the accurate behavior of the infectious disease. So, stochastic epidemic models are
preferred. We are considering the stochastic epidemics model.

(ii) Numerical approximation of the underlying model is carried out by two schemes.
(iii) The stability and consistency of the schemes are analyzed in the mean square sense.
(iv) The given model has two equilibrium points: one is disease free and the other is endemic equilibrium.
(v) The numerical simulations of the test problem are drawn for various choices of the parameters.
(vi) The MATLAB 2015a is used for the graphical behavior of the test problem.
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In structure of article, Sect. 2 contains the stochastic epidemic model. The Sect. 3 deals with the two numerical schemes for the given
model. The analysis of both schemes is carried out. Section 4 deals with the test problem, and its graphical behavior and discussion
are carried out for endemic equilibrium and disease-free equilibrium as well. The last Sect. 5 related to the conclusion of this article.

2 Stochastic epidemic model

During the last decade, it is observed that the epidemic models cannot predict the accurate behavior of the infectious disease. The
empirical data gained about the spread of the disease show the non-deterministic behavior [25]. So, various stochastic models are
proposed to describe the propagation of the disease in human life such as stochastic semi-mechanistic models [26], the stochastic SIS
epidemic models with nonlinear incidence rate [27], the stochastic SIRS epidemic models having saturated incidence rate [28], and
the SIS nonlinear stochastic epidemiological models having incidence rate and double epidemic hypothesis[29]. It is quite natural
to consider the epidemic under the effect of some perturbation.

We are taking the stochastic version of the system of the Eqs. (1,2) under the effect of time noise as follows:
∂S

∂t
� d1

∂S

∂x2 + λ − ηS − βSI

1 + c1S + c2 I + c3SI
+ α1S Ḃ1(t), (8)

∂ I

∂t
� d2

∂2 I

∂x2 − (η + δ + σ )I +
βSI

1 + c1S + c2 I + c3SI
+ α2 I Ḃ2(t), (9)

with initial conditions

S(x, 0) � α1(x), (10)

I (x, 0) � α2(x), (11)

and homogeneous Neumann boundary conditions(B.Cs)
∂S(0, t)

∂x
� 0,

∂S(l, t)

∂x
� 0, (12)

∂ I (0, t)

∂x
� 0,

∂ I (l, t)

∂x
� 0. (13)

Where αa, a � 1, 2 are the noise strength of the time noise, Ḃa(t), a � 1, 2 is the time noise and we consider the standard Wiener
process for stochastic behavior of the epidemic model. Various researchers are working on the numerical study of SDEs. Cai et al.
worked on the solution of the stochastic epidemic model analytically and numerically [30]. Meng et al. proposed a stochastic
eco-epidemiological model with time delay and a general incidence rate. They discussed the unique existence of a positive global
solution with positive initial conditions. They also established the stochastic analysis of the model [31]. The authors considered a
stochastic hepatitis B model and derived the different conditions for the extinction and persistence of the disease [32]. In [33], the
authors used the numerical technique for the study of theCovid−19 model. The authors worked on the numerical approximations of
the stochastic partial differential equations [34]. Zho et al. worked on the stochastic SIR model and discussed the different dynamics
of the model. They show that the model has a unique global positive solution and the solution oscillates around the equilibrium
points under some conditions [35]. Some more work on the numerical solutions of the differential equations can be seen [36–41].
We are using two numerical schemes namely, one is the proposed stochastic backward Euler scheme and the other is the proposed
stochastic implicit FDS. The analysis of the schemes and after that numerical simulations will be carried out for the efficacy of our
findings.

3 Numerical schemes

We have divided the [0, L] × [0, T ] into N × M grid points, and the stepsizes are l � T/M , m � L/N , respectively. The grid
points are xa � am, a � 0, 1, 2, 3, 4, . . . , N ,

tb � bl, b � 0, 1, 2, 3, 4, . . . , M .
The proposed stochastic backward Euler scheme for Eqs. (8,9) is

(1 + 2R1)Sb+1
a − R1(Sb+1

a−1 + Sb+1
a−1) � (1 − ηl)Sba + λl − lβSba I

b
a

1 + c1Sba + c2 I ba + c3Sba I
b
a

+ α1S
b
a (B(b+1)l

1 − Bbl
1 ) (14)

(1 + 2R2)I b+1
a − R2(I b+1

a−1 + I b+1
a−1) � (1 − l((η + δ + σ ))I ba +

lβSba I
b
a

1 + c1Sba + c2 I ba + c3Sba I
b
a

+ α2S
b
a (B(b+1)l

2 − Bbl
2 ) (15)

The proposed stochastic implicit finite difference scheme for Eqs. (8,9) is

−R1S
b+1
a−1 + (1 + 2R1 + ηl +

lβ I ba
1 + c1Sba + c2 I ba + c3Sba I

b
a

)Sb+1
a − R1S

b+1
1+1 �Sba + λl + α1S

b
a (B(b+1)l

1 − Bbl
1 ). (16)
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−R2 I
b+1
a−1 + (1 + 2R2 + l(η + δ + σ ))I b+1

a − R2 I
b+1
a−1 �I ba +

lβSba I
b
a

1 + c1Sba + c2 I ba + c3Sba I
b
a

+ α2S
b
a (B(b+1)l

2 − Bbl
2 . (17)

where R1 � ld1/m2, and R2 � ld2/m2. The Sba , I
b
a are the numerical approximations of the S, I at the point (am, bl).

3.1 Consistency of a scheme

Definition [42–44]. In the mean square sense, a SFDS A|baU |ba� F |ba is consistent with stochastic PDE AU � F at a point (x, t),
if there exist any continuously differentiable function 
 � 
(x, t), then

E ||(A
U )|ba−[A|ba
|(am,bl)−F |ba]||2→ 0 (18)

as m → 0, l → 0 and (am, (b + 1)l) → (x, t).

3.2 Von-Neumann analysis

In this technique, S|ba is taken as follow,

S|ba�
1√
2π

∫ π
m

−π
m

eιamψ Ŝ|ba(ψ)d(ψ), (19)

and Ŝ|ba is defined as

Ŝ|ba � 1√
2π

∞∑
−∞

e−ιamψ S|bam,

here, ψ is variable, and by replacing values in a given PDE,

Ŝ|b+1
a (ψ) � Ŝ|ba(ψ)g(ψm,m, l). (20)

Now, the necessary and sufficient condition of this method is given below [45],

E |g(ψm,m, l)|2 ≤ 1 + χl, (21)

where, χ is a constant.

3.3 Consistency of the proposed stochastic backward Euler scheme

The consistency analysis is carried out in the mean square sense.

Theorem 1 In a mean square sense, the stochastic FD scheme in Eqs. (14,15) for the variables S, I is consistent with Eqs. (8, 9).

Proof By assumption, S(x, t) and I(x, t) are smooth functions and by using A( f ) � ∫ (b+1)l
bl f dr on Eq. (8). We get

A(S)|ba � S(am, (b + 1)l) − S(am, bl) − d1

∫ (b+1)l

bl
Sxx (am, r )dr

−
∫ (b+1)l

bl
λdr + η

∫ (b+1)l

bl
S(am, r )dr + β

∫ (b+1)l

bl

S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− α1

∫ (b+1)l

bl
S(am, r )dB1(r ).

By using the proposed scheme on Eq. (8)

A|ba(S) � S(am, (b + 1)l) − S(am, bl)

− d1l
S((i + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((i − 1)m, (b + 1)l)

m2

− lλ + ηS(am, bl)

+ l
S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

− α1S(am, bl)(B(b+1)l
1 − Bbl

1 ).

The above two equations can be expressed as in the mean square
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E |A(S)|ba−A|ba S|2 ≤ 4d2
1 E |

∫ (b+1)l

bl
(−Sxx (am, r )

+
S((1 + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4η2E |
∫ (b+1)l

bl
(−S(am, r ) + S(am, bl))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)
dr |2

+ 4α2
1E |

∫ (b+1)l

bl

(
− S(am, r ) + S(am, bl)

)
dB1(r )|2.

Due to the Itô integrals’ square feature, we can

E |A(S)|ba−A|ba S|2 ≤ 4d2
1 E |

∫ (b+1)l

bl
(−Sxx (am, r )

+
S((1 + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4η2E |
∫ (b+1)l

bl
(−S(am, r ) + S(am, bl))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)
dr |2

+ 4α2
1

∫ (b+1)l

bl
E |(−S(am, r ) + S(am, bl))|2dr.

E |A(S)|ba−A|ba S|2→ 0 as a → ∞, b → ∞., The scheme for S is consistent (8). Now, the consistency of the (9) is given below

A(I )|ba � I (am, (b + 1)l) − I (am, bl) − d2

∫ (b+1)l

bl
Ixx (am, r )dr

+ (η + δ + σ )
∫ (b+1)l

bl
I (am, r )dr − β

∫ (b+1)l

bl

S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− α2

∫ (b+1)l

bl
I (am, r )dB2(r ).

By using scheme on Eq. (8),

A|ba(I ) � I (am, (b + 1)l) − I (am, bl)

− d2l
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((a − 1)m, (b + 1)l)

m2

+ (η + δ + σ )I (am, bl) − l
S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

− α2 I (am, bl)(B(b+1)l
2 − Bbl

2 ).

The above two equations can be expressed as in the mean square

E |A(I )|ba−A|ba I |2 ≤ 4d2
2 E |

∫ (b+1)l

bl
(−Ixx (am, r )

+
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((a − 1)m, (b + 1)l)

m2 )dr |2

+ 4(η + δ + σ )2E |
∫ (b+1)l

bl
(I (am, r ) − I (am, bl))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

123



  350 Page 6 of 17 Eur. Phys. J. Plus         (2023) 138:350 

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)

+ 4α2
2E |

∫ (b+1)l

bl

(
− I (am, r ) + I (am, bl)

)
dB2(r )|2.

Due to the Itô integrals’ square feature, we can

E |A(I )|ba−A|ba I |2 ≤ 4d2
2 E |

∫ (b+1)l

bl
(−Ixx (am, r )

+
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((a − 1)m, (b + 1)l)

m2 )dr |2

+ 4(η + δ + σ )2E |
∫ (b+1)l

bl
(I (am, r ) − I (am, bl))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)

+ 4α2
2

∫ (b+1)l

bl
E |(−I (am, r ) + I (am, bl))|2dr.

E |A(I )|ba−A|ba I |2→ 0 as a → ∞, b → ∞. The scheme for I is consistent with (9).

3.4 Consistency of proposed stochastic implicit finite difference scheme

The consistency analysis is carried out in the mean square sense.

Theorem 2 In a mean square sense, the stochastic FD scheme in Eqs. (16, 16) for the variables S, I is consistent with Eqs. (8,9).

Proof By assumption S(x, t) and I(x, t) are smooth functions and by using the A( f ) � ∫ (b+1)l
bl f dr on Eq. (8). We get

A(S)|ba � S(am, (b + 1)l) − S(am, bl) − d1

∫ (b+1)l

bl
Sxx (am, r )dr −

∫ (b+1)l

bl
λdr

+ η

∫ (b+1)l

bl
S(am, r )dr + β

∫ (b+1)l

bl

S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− α1

∫ (b+1)l

bl
S(am, r )dB1(r ).

By using the proposed scheme- on Eq. (8),

A|ba(S) � S(am, (b + 1)l) − S(am, bl)

− d1l
S((1 + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((a − 1)m, (b + 1)l)

m2

− lλ + ηS(am, (b + 1)l) + l
S(am, (b + 1)l)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

− α1S(am, bl)(B(b+1)l
1 − Bbl

1 ).

The above two equations can be expressed as in the mean square

E |A(S)|ba−A|ba S|2 ≤ 4d2
1 E |

∫ (b+1)l

bl
(−Sxx (am, r )

+
S((1 + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4η2E |
∫ (b+1)l

bl
(−S(am, r ) + S(am, (b + 1)l))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, (b + 1)l)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)
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+ 4α2
1E |

∫ (b+1)l

bl

(
− S(am, r ) + S(am, bl)

)
dB1(r )|2.

Due to the Itô integrals’ square feature, we can

E |A(S)|ba−A|ba S|2 ≤ 4d2
1 E |

∫ (b+1)l

bl
(−Sxx (am, r )

+
S((1 + 1)m, (b + 1)l) − 2S(am, (b + 1)l) + S((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4η2E |
∫ (b+1)l

bl
(−S(am, r ) + S(am, (b + 1)l))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, (b + 1)l) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)

+ 4α2
1

∫ (b+1)l

bl
E |(−S(am, r ) + S(am, bl))|2dr.

E |A(S)|ba−A|ba S|2→ 0 as a → ∞, b → ∞, so this proposed scheme for S is consistent with stochastic PDE (8).
Now, the consistency of the (9) is given as

A(I )|ba � I (am, (b + 1)l) − I (am, bl) − d2

∫ (b+1)l

bl
Ixx (am, r )dr

+ (η + δ + σ )
∫ (b+1)l

bl
I (am, r )dr − β

∫ (b+1)l

bl

S(am, r )I (am, r )

1 + c1S(am, r ) + c2(am, r ) + c3S(am, r )I (am, r )

− α2

∫ (b+1)l

bl
I (am, r )dB2(r ).

By using the proposed scheme on Eq. (9)

A|ba(I ) � I (am, (b + 1)l) − I (am, bl)

− d2l
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((a − 1)m, (b + 1)l)

m2

+ (η + δ + σ )I (am, (b + 1)l) − l
S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

− α2 I (am, bl)(B(b+1)l
2 − Bbl

2 ).

The above two equations can be expressed as in the mean square

E |A(I )|ba−A|ba I |2 ≤ 4d2
2 E |

∫ (b+1)l

bl
(−Ixx (am, r )

+
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4(η + δ + σ )2E |
∫ (b+1)l

bl
(I (am, r ) − I (am, (b + 1)l))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)

+ 4α2
2E |

∫ (b+1)l

bl

(
− I (am, r ) + I (am, bl)

)
dB2(r )|2.

Due to the Itô integrals’ square feature, we can
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E |A(I )|ba−A|ba I |2 ≤ 4d2
2 E |

∫ (b+1)l

bl
(−Ixx (am, r )

+
I ((1 + 1)m, (b + 1)l) − 2I (am, (b + 1)l) + I ((i − 1)m, (b + 1)l)

m2 )dr |2

+ 4(η + δ + σ )2E |
∫ (b+1)l

bl
(I (am, r ) − I (am, (b + 1)l))dr |2

+ 4β2E |
∫ (b+1)l

bl

(
S(am, r )I (am, r )

1 + c1S(am, r ) + c2 I (am, r ) + c3S(am, r )I (am, r )

− S(am, bl)I (am, bl)

1 + c1S(am, bl) + c2 I (am, bl) + c3S(am, bl)I (am, bl)

)

+ 4α2
2

∫ (b+1)l

bl
E |(−I (am, r ) + I (am, bl))|2dr.

E |A(I )|ba−A|ba I |2→ 0 as a → ∞, b → ∞. The scheme for I is consistent with Eq. (9).

3.5 Stability of proposed stochastic backward Euler scheme

The linear stability analysis is carried out.

Theorem 3 The scheme for S, I by Eqs. (14,15) is unconditionally stable.

Proof We are using the Von-Neumann technique for the stability analysis. So, by linearizing Eq. (14) and keeping the coefficient
term frozen, we have

(1 + 2R1)Sb+1
a − R1(Sb+1

a−1 + Sb+1
a−1) � (1 − ηl)Sba + α1S

b
a (B(b+1)l

1 − Bbl
1 ). (22)

By replacing the value of S from Eq. (19)

(1 + 2R1 − R1e
−ιmψ − R1e

ιmλ)
1√
2π

∫ π
m

−π
m

eιamψ Ŝb+1
a (ψ)d(ψ) � 1√

2π

∫ π
m

−π
m

eιamψ

(
1 − ηl + α1(B(b+1)l

1 − Bbl
1 ))Ŝba (ψ)d(ψ).

(1 + 2R1 − R1e
−ιmψ − R1e

ιmλ)hat Sb+1
a (ψ) �

(
1 − ηl + α1(B(b+1)l

1 − Bbl
1 )

)
Ŝba (ψ).

g(ψm, l,m) � 1 − ηl

1 + 4R1 sin2(mψ
2 )

+
α1

1 + 4R1 sin2(mψ
2 )

(B(b+1)l
1 − Bbl

1 ).

Using the Wiener process’ independent state, the amplification factor can now be expressed as

E |g(ψm, l,m)|2≤
∣∣∣∣ 1 − ηl

1 + 4R1 sin2(mψ
2 )

∣∣∣∣
2

+

∣∣∣∣ α1

1 + 4R1 sin2(mψ
2 )

∣∣∣∣
2

l.

As always ∣∣∣∣ 1 − ηl

1 + 4R1 sin2(mψ
2 )

∣∣∣∣
2

< 1,

and let

∣∣∣∣ α1

1+4R1 sin2( mψ
2 )

∣∣∣∣
2

� χ , so,

E |g(ψm, l,m)|2≤ 1 + χl. (23)

So, scheme for S is stable.
Now, to discuss the stability of the scheme for I , by linearizing Eq. (9) and keeping the coefficient term frozen, we have

(1 + 2R2)I b+1
a − R2(I b+1

a−1 + I b+1
a−1) � (1 − l((η + δ + σ ))I ba + α2S

b
a (B(b+1)l

2 − Bbl
2 ). (24)

By replacing the value of I from Eq. (19)

(1 + 2R2 − R2e
−ιmψ − R2e

ιmψ )
1√
2π

∫ π
m

−π
m

eιamψ Î b+1
a (ψ)d(ψ) � 1√

2π

∫ π
m

−π
m

123



Eur. Phys. J. Plus         (2023) 138:350 Page 9 of 17   350 

eιamψ

(
1 − (η + δ + σ )l + α2(B(b+1)l

2 − Bbl
2 )

)
Î ba (ψ)d(ψ).

(1 + 2R2 − R2e
−ιmψ − R1e

ιmψ )hat I b+1
a (ψ) �

(
1 − (η + δ + σ )l + α2(B(b+1)l

2 − Bbl
2 )

)
Î ba (ψ).

g(ψm, l,m) � 1 − (η + δ + σ )l

1 + 4R2 sin2(mψ
2 )

+
α2

1 + 4R2 sin2(mψ
2 )

(B(b+1)l
2 − Bbl

2 ).

Using the Wiener process’ independent state, the amplification factor can now be expressed as

E |g(ψm, l,m)|2≤
∣∣∣∣ 1 − (η + δ + σ )l

1 + 4R2 sin2(mψ
2 )

∣∣∣∣
2

+

∣∣∣∣ α2

1 + 4R2 sin2(mψ
2 )

∣∣∣∣
2

l.

As always
∣∣∣∣ 1 − (η + δ + σ )l

1 + 4R2 sin2(mψ
2 )

∣∣∣∣
2

< 1,

and let

∣∣∣∣ α2

1+4R2 sin2( mψ
2 )

∣∣∣∣
2

� χ , so

E |g(ψm, l,m)|2≤ 1 + χl. (25)

So, scheme for I is stable.

3.6 Stability analysis of proposed stochastic implicit scheme

The linear stability analysis is carried out.

Theorem 4 The scheme for S, I by Eqs. (16,16) is unconditionally stable.

Proof We are using the Von-Neumann technique for the stability analysis. So, by linearizing Eq. (14) and keeping the coefficient
term frozen, we have

(1 + 2R1 + ηl)Sb+1
a − R1(Sb+1

a−1 + Sb+1
a−1) � (1)Sba + α1S

b
a (B(b+1)l

1 − Bbl
1 ). (26)

By replacing the value of S from Eq. (19),

(1 + 2R1 + ηl − R1e
−ιmψ − R1e

ιmλ)
1√
2π

∫ π
m

−π
m

eιamψ Ŝb+1
a (ψ)d(ψ) � 1√

2π

∫ π
m

−π
m

eιamψ

(
1 + α1(B(b+1)l

1 − Bbl
1 ))Ŝba (ψ)d(ψ).

(1 + 2R1 + ηl − R1e
−ιmψ − R1e

ιmλ)hat Sb+1
a (ψ) �

(
1 + α1(B(b+1)l

1 − Bbl
1 )

)
Ŝba (ψ).

g(ψm, l,m) � 1

1 + +ηl + 4R1 sin2(mψ
2 )

+
α1

1 + ηl + 4R1 sin2(mψ
2 )

(B(b+1)l
1 − Bbl

1 ).

Using the Wiener process’ independent state, the amplification factor can now be expressed as

E |g(ψm, l,m)|2≤
∣∣∣∣ 1

1 + ηl + 4R1 sin2(mψ
2 )

∣∣∣∣
2

+

∣∣∣∣ α1

1 + ηl + 4R1 sin2(mψ
2 )

∣∣∣∣
2

l.

As always
∣∣∣∣ 1

1 + ηl + 4R1 sin2(mψ
2 )

∣∣∣∣
2

< 1,

and let

∣∣∣∣ α1

1+ηl+4R1 sin2( mψ
2 )

∣∣∣∣
2

� χ , so

E |g(ψm, l,m)|2≤ 1 + χl. (27)

So, proposed for S is stable.
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Table 1 Values of parameters for
plots

Sr. no. c1 c2 c3 d1 d2 η � δ λ � σ m

1 0.1 0.02 0.03 0.1 0.5 0.1 0.5 1/100

Now, to discuss the stability of the scheme for I , by linearizing Eq. (16) and keeping the coefficient term frozen, we have

(1 + 2R2 + l(η + δ + σ ))I b+1
a − R2(I b+1

a−1 + I b+1
a−1) � I ba + α2S

b
a (B(b+1)l

2 − Bbl
2 ) (28)

By replacing the value of I from Eq. (19)

(1 + 2R2 + l(η + δ + σ ) − R2e
−ιmψ − R2e

ιmψ )
1√
2π

∫ π
m

−π
m

eιamψ Î b+1
a (ψ)d(ψ) � 1√

2π

∫ π
m

−π
m

eιamψ

(
1 + α2(B(b+1)l

2 − Bbl
2 )) Î ba (ψ)d(ψ).

(1 + 2R2 + l(η + δ + σ ) − R2e
−ιmψ − R1e

ιmψ )hat I b+1
a (ψ) �

(
1 + α2(B(b+1)l

2 − Bbl
2 )

)
Î ba (ψ).

g(ψm, l,m) � 1 − (η + δ + σ )l

1 + l(η + δ + σ ) + 4R2 sin2(mψ
2 )

+
α2

1 + l(η + δ + σ ) + 4R2 sin2(mψ
2 )

(B(b+1)l
2 − Bbl

2 ).

Using the Wiener process’ independent state, the amplification factor can now be expressed as

E |g(ψm, l,m)|2≤
∣∣∣∣ 1

1 + l(η + δ + σ ) + 4R2 sin2(mψ
2 )

∣∣∣∣
2

+

∣∣∣∣ α2

1 + l(η + δ + σ ) + 4R2 sin2(mψ
2 )

∣∣∣∣
2

l.

As always ∣∣∣∣ 1

1 + l(η + δ + σ ) + 4R2 sin2(mψ
2 )

∣∣∣∣
2

< 1,

and let

∣∣∣∣ α2

1+l(η+δ+σ )+4R2 sin2( mψ
2 )

∣∣∣∣
2

� χ , so

E |g(ψm, l,m)|2≤ 1 + χl. (29)

So, the scheme for I is stable.

4 Numerical results

∂S

∂t
� d1

∂2s

∂x2 + λ − ηS − βSI (x, t)

1 + c1S + c2 I + c3SI (x, t)
+ α1S Ḃ1(t), (30)

∂ I

∂t
� d2

∂2 I

∂x2 − (η + δ + σ )I +
βSI (x, t)

1 + c1S + c2 I + c3SI (x, t)
+ α2 I Ḃ2(t), (31)

with initial conditions as

S(x, 0) �
{

1.1x if 0 ≤ x < 0.5
1.1(1 − x) if 0.5 ≤ x ≤ 1.

(32)

I (x, 0) �
{

0.5x if 0 ≤ x < 0.5
0.5(1 − x) if 0.5 ≤ x ≤ 1,

(33)

and having homogeneous Neumann boundary conditions.

4.1 Disease-free equilibrium of test problem

All the figures of disease-free equilibrium are plotted for different values of the parameters given in Table 1. For the given values of
the parameters, the reproductive number for the disease-free equilibrium is R0 � 0.9286 < 1 with β � 0.2. For the system of the
Eqs. (8,9), the disease-free equilibrium DFE � (λ/η, 0) has the value (5,0) for β � 0.2. Figures 1, 2 are plotted for noise strength
equal to zero, i.e., without stochastic behavior. Figure 1 is acquired by using the proposed stochastic backward Euler scheme and
the susceptible and infected individuals converge toward the disease-free equilibrium, and the solution has positive values. Figure 2
is acquired by using the proposed stochastic implicit FDS. The susceptible and infected individuals converge toward disease-free
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Fig. 1 The graphical behavior of the susceptible and infected individual by proposed stochastic backward Euler scheme for α1 � α2 � 0, β � 0.2, l � 0.2

equilibrium and the solution preserves the positivity and boundedness. Positivity and boundedness are the important dynamics of
the model. Figures 3, 4 are drawn for the noise strength have to value 0.5, and stochastic behavior is observed. Figure 3 is acquired
by the proposed stochastic Backward Euler scheme, and it converges toward DFE and the solutions also preserve the positivity.
Figure 4 is acquired by the proposed stochastic IFD scheme and the susceptible and infected individuals converge toward DFE. So,
both schemes converge toward DFE with and without stochastic phenomena and preserve positivity.

4.2 Endemic equilibrium (β � 5, ) of the problem

All the figures of endemic equilibrium are plotted for different values of the parameters given in Table 1. For the given values of the
parameters, the reproductive number for the endemic equilibrium is R0 � 35.2143 with β � 5. For the system of the Eqs. (8,9), the
endemic equilibrium EE � (S∗, I ∗) has the value (0.1440,0.6937) for β � 5. Figures 5, 6 are drawn for noise strength having value
zero, i.e., without stochastic behavior. Figure 5 is drawn by the proposed stochastic backward Euler scheme. The susceptible and
infected individuals do not converge toward the endemic equilibrium. The solutions possess negative behavior, and it is meaningless
in the disease dynamics. Figure 6 is plotted by the proposed stochastic IFD scheme and the susceptible and infected individuals
converge toward (S∗, I ∗). The solutions preserve positivity and boundedness as well. Figures 7, 8 are drawn for the noise strength
having a value equal to 0.5. Figure 7 is drawn by the proposed stochastic backward Euler scheme. The susceptible and infected
individuals do not converge toward the endemic equilibrium and also possess negative behavior and it is meaningless. Figure 8 is
plotted by the proposed stochastic IFD scheme and the susceptible and infected individuals converge toward (S∗, I ∗). The solutions
preserve positivity. So, the proposed stochastic backward Euler scheme does not have the required results because the given scheme
has negative solutions with and without stochastic behavior. But the proposed stochastic IFD scheme has convergent behavior as
well preserves positivity.

4.3 Graphical behavior

The plots are drawn for the efficacy of our findings.
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Fig. 2 The graphical behavior of the susceptible and infected individual by proposed stochastic IFD scheme alpha�α�0, β � 0.2, l � 100/500

Fig. 3 The graphical behavior of the susceptible and infected individual by proposed stochastic backward Euler scheme alpha�α�0.5, β � 0.2, l � 0.2
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Fig. 4 The graphical behavior of the susceptible and infected individual by proposed stochastic IFD scheme alpha�α�0.5, β � 0.2, l � 0.2

Fig. 5 The graphical behavior of the susceptible and infected individual by proposed stochastic backward Euler scheme alpha�α�0, β � 5, l � 0.8.
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Fig. 6 The graphical behavior of the susceptible and infected individual by proposed stochastic IFD scheme for α1 � α2 � 0, β � 5, l � 0.8

Fig. 7 The graphical behavior of the susceptible and infected individual by proposed stochastic backward Euler scheme alpha�α�0.5, β � 5, l � 0.8.
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Fig. 8 The graphical behavior of the susceptible and infected individual by proposed stochastic IFD scheme alpha�α�0.5, β � 5, l � 0.8

5 Conclusion

The stochastic reaction–diffusion epidemic model has been numerically investigated by two time-efficient novel schemes. The
proposed stochastic backward Euler scheme is consistent with the given system of equations. It is also unconditionally stable, and
its stability analysis is carried out by using the von-Neumann criteria. The suggested stochastic IFD approach is compatible with the
provided equation system. Additionally, it is unconditionally stable, and the von Neumann criteria are used to analyze its stability.
The system has two equilibriums: an endemic equilibrium and a disease-free equilibrium. For the disease-free equilibrium, both
schemes converge toward the equilibrium and preserve positivity. For the endemic equilibrium, the proposed stochastic backward
Euler scheme did not show the convergent behavior toward the endemic equilibrium and it also shows the negative behavior of
the solution and which is meaningless in the population dynamics. On the other hand, the proposed stochastic IFD scheme shows
the convergent behavior toward the endemic equilibrium and also preserves positivity. The graphical behavior of the test problems
shows that the proposed stochastic IFD scheme has an advantage over the proposed stochastic backward Euler scheme. The graphical
results for the test problem are drawn that show the efficacy of our proposed stochastic IFD scheme.
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