
Eur. Phys. J. Plus         (2023) 138:312 
https://doi.org/10.1140/epjp/s13360-023-03921-6

Regular Art icle

Quantum walks in spaces with applied potentials

Georgios D. Varsamis1, Ioannis G. Karafyllidis1,2,a , Georgios Ch. Sirakoulis1

1 Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
2 National Centre for Scientific Research Demokritos, 15342 Athens, Greece

Received: 19 September 2022 / Accepted: 22 March 2023
© The Author(s) 2023

Abstract Discrete quantum walks are a universal model of quantum computation equivalent to the quantum circuit model and can
be mapped onto quantum circuits and executed using quantum computers. Quantum walks can model and simulate many physical
systems and several quantum algorithms are based on them. Discrete quantum walks have been extensively studied, but quantum
walks that evolve in spaces in which potentials are applied received little or no attention. Here, we formulate the discrete quantum
walk model in one and two-dimensional spaces in which potentials are applied. In this formulation the quantum walker carries a
“charge” affected by the potentials and the walk evolution is driven by both constant and time-varying potentials. We reproduce the
tunneling through a barrier phenomenon and study the quantum walk evolution in one and two-dimensional spaces with various
potential distributions. We demonstrate that our formulation can serve as a basis for applied quantum computing by studying maze
running and the motion of vehicles in urban spaces. In these spaces curbs and buildings are modeled as impenetrable potential
barriers and traffic lights as time-varying potential barriers. Quantum walks in spaces with applied potentials may open the way for
the development of novel quantum algorithms in which inputs are introduced as potential profiles.

1 Introduction

Quantum walks are proven to be a universal model of quantum computation, equivalent to the quantum circuit (gate) model
[1–5]. Quantum walks can directly be mapped onto quantum circuits and executed by quantum computers [6–8] and can also be
implemented in various platforms [9]. Furthermore, quantum walks can be combined with quantum cellular automata to perform
efficient quantum computations [10–12]. Among others, quantum walks have been used in quantum search [13, 14], in data safety
[15], in Hash functions generation [16], in quantum encryption [17], in quantum transport, in graphene [18, 19] and in the simulation
of bosonic and fermionic quantum systems [20].

In all above quantum walk applications, the quantum walk evolves freely in one and two-dimensional lattices and graphs, i.e., in
spaces with no applied potentials. The specificities of each problem enter the quantum computation through the structure of lattices
and graphs. Areas in which the quantum walker should not enter are defined using broken links.

In this paper, we extent the quantum walk model of quantum computation by introducing potentials in the spaces where the
quantum walk evolves. The quantum walker carries a “charge” which is affected by the applied potential and, therefore, the potential
profiles can be used to enter the inputs of the specific quantum computation in addition to the structure of lattices and graphs. The
output of the quantum computation is the probability distribution of the possible locations of the quantum walker, or, in specific
cases, the final location of the quantum walker. The fact that the quantum walker carries a “charge” along with the fact that the
probability amplitudes of its location change with time, allows us to use quantum phase gates to introduce the potential effect on
the evolution of the quantum walk.

In the next section, we present the formulation of the quantum walk in spaces with potentials. In the third section, we present
the mapping of the model onto quantum circuits and simulate the function of the circuit modules using Qiskit and IBM’s quantum
computer. In the fourth section we study the evolution of quantum walks in one-dimensional spaces with applied potentials, with an
emphasis on the reproduction of the tunneling through a potential barrier phenomenon. In the next section, we study the quantum
walk evolution in two-dimensional spaces with applied potentials. In the sixth section we apply our model to develop a basis for maze-
running and routing quantum algorithms and we introduce time-varying potentials and study the possibility of using quantum walks
to simulate the motion of vehicles in urban spaces. Immovable obstacles such as curbs and buildings are modeled as impenetrable
potential barriers. Traffic lights are modeled as time-varying potential barriers. Red traffic lights are modeled as potential barriers
with near-zero transmission coefficients and green lights as zero applied potentials. Finally, we present our conclusions. We believe
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that quantum walks in spaces with applied potentials can be used as a basis to develop novel quantum algorithms and also novel
hybrid quantum/classical algorithms.

2 Model formulation

We formulate our model using the one-dimensional discrete quantum walk. Its extension to more dimensions is straightforward.
The quantum walk evolves in a one-dimensional discrete lattice and the associated quantum computational basis is |n〉, where n is
a positive integer representing the lattice sites. The basis states |n〉 label the possible positions of the quantum walker and span the
corresponding Hilbert space, HP, which is called the position space [1, 2]. To determine the direction of the quantum walker motion,
a two-state quantum system, called a coin, is used. The coin basis states are labeled as |0〉 and |1〉 and span a two-dimensional Hilbert
space, HC , called the coin space [1, 2]. The quantum walk evolves in the Hilbert space, HQW , which comprises HP and HC and is
given by their tensor product:

HQW � HP ⊗ HC (1)

Next, we define the unitary operators that act on the basis states and drive the quantum walk. The first operator acts on the coin
basis states and is called the coin operator, ̂C . The coin operator is represented by a 2X2 unitary matrix:

̂C �
[

a11 a12

a21 a22

]

(2)

The action of ̂C on the coin basis states is given by:

̂C |0〉 �
[

a11 a12

a21 a22

][

1
0

]

�
[

a11

a21

]

� a11|0〉 + a21|1〉 (3)

and

̂C |1〉 �
[

a11 a12

a21 a22

][

0
1

]

�
[

a12

a22

]

� a12|0〉 + a22|1〉 (4)

The second operator is called the shift operator, ̂S, and acts on the position basis states. ̂S shifts the quantum walker to the left
or right according to the current coin state. Suppose that at time step t the quantum walker is located at lattice sitei with probability
amplitude ai,t . The coin is tossed at time step t + 1 and if its state is |0〉 the action of shift operator moves the walker to lattice site
i-1 and the probability amplitude becomes ai,t+1:

̂S|0〉ai,t |i〉 � |0〉ai,t+1|i − 1〉 (5)

If the coin state is |1〉 the action of shift operator moves the walker to lattice site i + 1 with amplitude a′
i,t+1:

̂S|1〉ai,t |i〉 � |1〉a′
i,t+1|i + 1〉 (6)

Therefore, the shift operator acting on a lattice with m sites is given by:

̂S � |0〉〈0|⊗
m
∑

i�1
|i − 1〉〈i |+|1〉〈1|⊗

m
∑

i�1
|i + 1〉〈i | (7)

The combined operator that acts to evolve the quantum walk, ̂UQW , is given by:

̂UQW � ̂S
(

̂C ⊗ I
)

(8)

The quantum walk formulation described above applies to free spaces, i.e., spaces in which no potentials are applied. We extend
the quantum walk formulation in spaces with applied potentials. In this case, the quantum walker carries a “charge” that is affected
by the applied potential.

As all quantum systems, quantum walks can also be described by the Schrödinger equation. The Hamiltonian operator comprises
a kinetic and a potential energy term:

̂H � − �
2

2m
∂2

∂x2 + V (x, t) (9)

A solution to the Schrödinger equation has the form:

̂U � exp
(

i t
�

�
2

2m
∂2

∂x2

)

exp
(−i t

�
V (x, t)

)

(10)

The first exponential of the unitary operator ̂U corresponds to the kinetic energy part, which in the quantum walk model is
expressed by the operator ̂UQW . The second exponential corresponds to the potential energy. In the case of quantum walks, the
potential energy at lattice site i at time step t is V (i, t) and it is the potential energy of the quantum walker when located at site i.
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Fig. 1 a Quantum circuit for the one-dimensional quantum walk in spaces with applied potentials implemented using Qiskit. b The computed probability
distribution of the quantum walker location after the first time step

But the motion of the quantum walker is not continuous. During its motion from lattice site i to lattice sites i-1 or i + 1 its motion
will be affected by the potential differences between these lattice sites:

V (i − 1, i, t) � V (i − 1, t) − V (i, t) (11)

and

V (i + 1, i, t) � V (i + 1, t) − V (i, t) (12)

If the applied potential is constant in time, the index t can be dropped.
Consider a quantum walker located at time step t at site i with probability amplitude ai,t and coin state |0〉. After the action of

̂UQW the new state of the quantum walker will be:

|0〉ai,t |i〉 → |0〉ai,t a11|i − 1〉 + |1〉ai,t a21|i + 1〉 � |0〉ai,t+1|i − 1〉 + |1〉 a′
i,t+1|i + 1〉 (13)

As expressed in Eq. (10), when the quantum walker moves from a site i to the two neighboring sites it peaks up a phase factor
that depends on the value of the potential applied in these sites:

exp(iϕ(i, t)) � exp
(−i t

�
V (i, t)

)

(14)

This potential depended phase factor is introduced using phase quantum gates. In this case Eq. (13) becomes:

(15)

|0〉ai,t |i〉 → exp (iϕ (i − 1, t)) |0〉ai,t a11|i − 1〉 + exp (iϕ (i + 1, t)) |1〉ai,t a21|i + 1〉
� exp (iϕ (i − 1, t)) |0〉ai,t+1|i − 1〉 + exp (iϕ (i + 1, t)) |1〉a′

i,t+1|i + 1〉
Equation (15) describes the motion of the quantum walker from site i to site i-1 and to site i + 1. The formulation presented above

is in agreement with the results of experimental realization of electric quantum walks using Cs atoms as lattice sites [21].

3 Quantum circuits for quantum walks

Several implementations of quantum walks in free spaces using quantum circuits have been proposed [6–9]. Here we implement
quantum walks in spaces with applied potentials using quantum circuits and execute one and two-dimensional quantum walks using
the Qiskit simulator and IBM’s quantum computer [22, 23]. Phase rotation quantum gates are used to introduce the applied potentials
in the evolution of quantum walks.

The quantum circuit implementing quantum walk in a one-dimensional space with five lattice sites is shown in Fig. 1a. The
quantum walk starts at site 3. Eight phase rotation gates are used in this circuit to model the effect of any applied potential to the
quantum walk.

The probability distribution of the quantum walker location is computed by IBM’s quantum computer. Figure 1b shows the
probability distribution after the first time step. The lattice sites 1 to 5 correspond to qubits |q1〉 to |q5〉. The quantum coin is qubit
|q0〉. To execute the next step of the quantum walk, the circuit of Fig. 1a is repeated as shown in Fig. 2a and the computed probability
distribution after the second step is shown in Fig. 2b.

To execute quantum walks in spaces with more lattice sites and for more time steps the circuit of Fig. 1a is repeated both in time
(x-axis) and space (y-axis). The computation results are subjected to errors introduced during the quantum computation.
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Fig. 2 a Quantum circuit for the second time step of the one-dimensional quantum walk in spaces with applied potentials implemented using Qiskit. b The
computed probability distribution of the quantum walker location after the second time step

Fig. 3 a Quantum circuit for the two-dimensional quantum walk in spaces with applied potentials implemented using Qiskit.b The computed probability
distribution of the quantum walker location after the first time step

Next, we implement quantum walks in a two-dimensional space. The lattice sites form a cross and the center site corresponds
to qubit |q5〉. The left site corresponds to qubit |q4〉, the right site to |q6〉, the up site to qubit |q3〉 and the down site to qubit |q7〉.
Two quantum coins are used in this case. Figure 3a shows the quantum circuit implementing the two-dimensional quantum walk in
spaces with any applied potential. Figure 3b shows the results produced by IBM’s quantum computer for the probability distribution
of the quantum walker location after the first time step. Again, the computation results are subjected to errors introduced during the
quantum computation. Scaling of the circuit of Fig. 3a to execute two-dimensional quantum walks in larger lattices and for more
time steps is straightforward.

4 Quantum walks in one-dimensional spaces with applied potentials

Quantum walks in free spaces are directional depending on the initial state of the quantum coin. Since the quantum walker in
potential spaces caries a charge, we use this property to define a “positive” quantum walker charge if the initial coin state is |0〉 and
a “negative” charge if the initial coin state is |1〉.
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Fig. 4 Probability distribution of the quantum walker location in a space with a linear applied potential at time step 150. a Quantum walker carries a “positive”
charge. b Quantum walker carries a negative charge

Fig. 5 Probability distribution of
the quantum walker location in a
space with a potential barrier. The
tunneling phenomenon is
reproduced

Figure 4 shows the probability distribution of the quantum walker location in a space with a linear applied potential at time step
150. The potential is represented by the red line. In Fig. 4a the quantum walker carries a “positive” charge and in Fig. 4b a “negative”
charge. Attributing a signed charge to quantum walkers in potential spaces opens the way for new applications of quantum walks as
models of physical systems and processes.

Next, we study the quantum walk evolution is spaces where potential barriers are present. Our aim is to reproduce the tunneling
through a barrier phenomenon. Figure 5 shows the probability distribution of the quantum walker location in a space where a
potential barrier is present. The potential barrier is represented by the red line. The potential barrier transmission and reflection
coefficients are analogous to the total probability of the walker location to the left of the potential barrier and to the total probability
of the walker location to the right of the barrier after reaching the barrier and reflected by it.

5 Quantum walks in two-dimensional spaces with applied potentials

Quantum walks can evolve in two-dimensional spaces with any applied potential distribution. In this case two quantum coins forming
a quantum register are used, one for motion along the x-axis and one along the y-axis. Furthermore, depending on the quantum coin
initial states four charge configurations can be used.

Figure 6 shows the quantum walk evolution in a space where a linear potential is applied shown by the inclined plane in Fig. 6a.
On this potential plane, a potential well, a potential barrier and an L-shaped potential barrier are added. The quantum walk starts
at the center of the plane with initial coins states |01〉. Figure 6b shows the probability distribution of the quantum walker location
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Fig. 6 Quantum walk evolution in a space with a linear applied potential on which a quantum well, a potential barrier and an L-shaped potential barrier are
present. The initial quantum coins state is |01〉. a Potential distribution. b Probability distribution of the quantum walker location. c Top view of the quantum
walker location probability distribution

at time step 75, and Fig. 6c shows the top view of the probability distribution. Tunneling and reflections from the potential barriers
along with localization in the quantum well produce an interesting probability distribution.

Another case is shown in Fig. 7. Again a linear potential is applied with a diagonal potential well facing a potential barrier, as
shown in Fig. 7a.

The quantum walk starts at the center of the plane with initial coins states |00〉. Figure 7b shows the probability distribution of
the quantum walker location at time step 75, and Fig. 7c shows the top view of the probability distribution.

6 Applications

The extension of quantum walks in spaces with applied potentials and the assignment of “charge” to the quantum walker breaks new
ground for practical quantum computing applications. In this section we present two models which can serve as a basis for applied
quantum computing to maze running, routing and to control of moving robots, nano-robots or vehicles.

Maze running and routing algorithms are very useful in many engineering problems such as routing in VLSI physical design,
finding shortest paths etc. Quantum walks in free spaces have been proven to achieve shortest hitting times that their classical
counterparts. In most applications the point of entrance into the maze (IN) and the exit point (OUT) are known, but classical
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Fig. 7 Quantum walk evolution in a space with a linear applied potential on which a diagonal quantum well facing a potential are present. The initial quantum
coins state is |00〉. a Potential distribution. b Probability distribution of the quantum walker location. c Top view of the quantum walker location probability
distribution

algorithms cannot exploit this information adequately. In quantum maze running even approximate knowledge of the location of the
exit point provides a significant speedup. Such an example is shown in Fig. 8.

In Fig. 8a, the maze is modeled as a number of potential barriers corresponding to maze “walls”. The information of the side on
which the exit point is located is used to apply an additional linear potential in which the entrance point is located at a high potential
area and the exit point at a low potential area. Figure 8b shows the top view of the quantum walker probability distribution. The path
with the highest probability, marked with a black line, connects the entrance to the exit. The quantum walker in the above described
potential searches in superposition all possible paths and reaches the exit point very fast. It is worth noting that by increasing the
potential barrier heights, their reflection coefficients are increased and the resulting interference accelerates the quantum walk.

The second application incorporates time varying potentials. Figure 9a shows a potential distribution that models a space with
immovable obstacles, which are represented by high and thick potential barriers and a time-varying obstacle represented by a lower
narrow barrier. If the quantum walker represents a moving vehicle, then immovable obstacles correspond to buildings and curves
and the time-varying obstacles to traffic lights. In this context, Fig. 9a shows a vehicle stopped in front of a red traffic light. Green
traffic lights correspond to the absence of barriers in road junctions. The additional linear potential models the route the vehicle
wishes to follow, which in this case is to turn to the right. Figure 9b shows the probability distribution of the quantum walker location
at time step 5.

In Fig. 10a, the red light turned green and green lights at two other junctions turned red. As sown in Fig. 10b the quantum walker
turns to the right and moves along the high probability path indicated by the black line. This quantum walk approach is scalable and
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Fig. 8 Quantum walk for maze running. a Potential distribution forming a maze. The entrance point is labeled with IN and the exit point with OUT. b Top
view of the quantum walker location probability distribution

Fig. 9 Quantum walk describing the motion of a moving vehicle or robot in a space with constant and time varying potentials. High potential barriers
correspond to immovable obstacles and a lower and narrower potential barrier to time-varying obstacles such as traffic lights. a Initial location of the vehicle
(quantum walker) b Probability distribution of the quantum walker location at time step 5

can serve as a basis for many moving entities in spaces with immovable and time-varying obstacles. Interference between different
quantum walkers can provide useful information about collision probabilities resulting in an effective navigation of the moving
entities.

7 Conclusion

We extended the universal quantum computation model of quantum walks in spaces with applied potentials. We showed that
quantum walks in such spaces can be mapped onto quantum circuits and therefore the resulting quantum algorithms can be executed
by quantum computers. We applied quantum walks in one and two dimensional spaces. Furthermore, we demonstrated with two
applications that the proposed quantum walk formulation can serve as a basis for the development of novel quantum algorithms for
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Fig. 10 a The lower potential barrier (red light) of Fig. 9a is removed (green light) and low potential barriers appear at two other junctions. b The vehicle
turns to the right following the desired direction indicated by the black line

real life applications. In addition, the assignment of “charge” to quantum walkers may facilitate theoretical simulations of quantum
field interactions with charge carrying particles.
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