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Abstract In this work, we perform a numerical exploration of the escape in the N-body ring problem in absence of a central body,
for 4 ≤ N ≤ 9 and ten values of the Jacobi constant. We show how the probability of escape per interval of time varies as a function
of the Jacobi constant, finding that, for values of the Jacobi constant smaller than a certain limit value, the probability of escape
from the system tends to decrease with time. However, if we consider values of the Jacobi constant larger than this limit value, the
probability of escape grows with time, for times of escape smaller than 100 units of time.

1 Introduction

The problem of N bodies dates back to the work of ancient Greek astronomers and is the key to understanding the motion of celestial
bodies. Nowadays, this problem has sparked a great deal of interest in many research groups since the irruption of computers and,
after that, the development of numerical methods especially adapted to celestial mechanics problems. TheN-body problem describes
the motion ofN bodies of arbitrary masses and initial conditions interacting through Newton’s law of gravitation. As it is not possible
to give the general solution to the N-body problem, the determination of particular solutions where the N mass points fulfill certain
initial conditions has a great importance. This is the case of homographic solutions, that is, solutions such that the configuration of
the N bodies of the system remains similar when time changes. Two N-body configurations are similar if we can pass from one to
the other by means of a rotation or a dilatation. Euler found three collinear homographic solutions in the three-body problem [1]
and, in 1772, Lagrange [2] found two additional solutions, where the bodies are located at the vertices of an equilateral triangle.

Simó [3] defines a choreography as a solution of the N-body problem for which all the bodies describe a periodic motion along the
same fixed curve, without colliding and with a constant phase shift. Chenciner and Montgomery [4] found the first choreography for
the three-body problem after the equilateral solution of Lagrange. The configuration of N bodies axisymmetrically arranged along
a circumference is an extension of the Lagrange solution for the three-body problem to the N-body problem, and this is the object
of study of this paper. Other authors have devoted their work to investigate choreographies of N bodies moving around n concentric
circular orbits, where each circular orbit contains m axisymmetrically located bodies with equal masses, and the whole structure
rotates around its symmetry axis. These structures can be treated as systems formed by mutually embedded polygons rotating at a
constant angular velocity [5, 6]. Likewise, Llibre and Mello [7] have analyzed the existence of families of triple or quadruple nested
planar central configurations for the N-body problem, for N � 6, 8, 9.

In this paper, we focus on a special case of the so-called N-body ring problem, which models a wide variety of astronomical
systems, as the motion of co-orbital satellites or planetary rings. This problem deals with the motion of an infinitesimal particle
under the gravitational influence of a ring of N equally spaced bodies of equal masses, moving with the same mean motion around
a primary located at the center of the configuration. Maxwell analyzed this problem for the first time in 1859 [8], when he tackled
the problem of studying the stability of the rings of Saturn. Salo and Yoder [9] showed that this configuration is locally unstable for
N ≤ 6, and locally stable for N ≥ 7. They also proved that the ring configuration is the only stationary configuration when N ≥ 9.
The work developed in this field by Kalvouridis is also of great interest. In [10], Kalvouridis reports the main results of his research
concerning the existence of periodic orbits for N > 7, and considering several values of the mass ratio, showing the distribution of
these orbits in the configuration space of initial conditions. In [11], Kalvouridis gives a detailed overview of the results obtained on
the topic between the years 1997 and 2008.

The problem of escaping particles from open Hamiltonian systems is one of the most analyzed topics in nonlinear dynamics
[12–25]. In this kind of systems, there exists a finite energy of escape, Ee, such that if the energy of the particle is smaller than
Ee, the equipotential surfaces are closed and the escape from the system is impossible. However, for values of the energy larger
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than Ee, these surfaces open and several apertures emerge, making possible the escape to infinity. In the last few years, the authors
have started a numerical exploration of the escape of a particle from N-body ring configurations [15, 22]. Recently, in a previous
work, Belgharbi and Navarro [15] perform a numerical analysis to study how the central mass to peripheral mass ratio affects the
distribution of times of escape for N � 4, finding a sequential pattern in the evolution of the probability of escape per interval
of time. Also, Navarro and Martínez–Belda [26] have determined the basins of escape from the N-body ring configuration, for
5 ≤ N ≤ 8, analyzing the percentage of escaping orbits, as well as the way the escape is distributed among the different openings
of the potential well.

In this paper, we analyze how the probability of escape per interval of time depends on the Jacobi constant C in the N-body ring
configuration in the absence of a central body, that is, when we consider the value of the mass ratio equal to zero. We have performed
this study for 4 ≤ N ≤ 9. For the sake of simplicity, let us introduce here the set N4,9 � {4, 5, 6, 7, 8, 9}. For each N ∈ N4,9, we
have taken ten values of the Jacobi constant for the purpose of sketching the evolution of the probability of escape with respect to the
value of C. Then, we have defined grids of 29 × 29 initial conditions on the surface of section defined by x � y, ẏ > 0. Each initial
condition on the grid has been integrated up to Tmax � 100 units of time, to focus on short times of escape, as they are related with
the geometry of the first intersections of the set of ingoing asymptotic trajectories to the Lyapunov orbits located at the apertures of
the potential well. These structures are in charge of regulating the escape from the system.

The results of our work indicate that there exists a value of the Jacobi constant, denoted by CN ,H , for which, on average, the
probability of escape per interval of time remains constant with respect to time. If the Jacobi constant is smaller than CN ,H , the
probability of escape per interval of time decreases with time. However, when the Jacobi constant has a value between CN ,H and
the critical value, the probability of escape per interval of time increases with time, at least for times of escape below 100 units of
time.

2 Equations of motion and curves of zero velocity

The equations of motion of the N-body ring problem without central body are well known and have been described in many works
[10, 11, 15, 26]. This problem deals with the motion of a point particle under the Newtonian influence of a configuration of N
bodies (called primaries) with the same mass distributed on a circumference occupying the vertices of a regular polygon of N sides.
These primaries rotate at a constant angular velocity around the center of the circumference. If we consider a barycentric synodic
coordinate system Oxyz rotating with the primaries, the equations of motion are given by

ẍ − 2 ẏ � ∂U

∂x
, ÿ + 2ẋ � ∂U

∂y
, (1)

where the potential U(x, y) reads

U (x, y) � 1

2
(x2 + y2) +

1

Δ

N∑

ν�1

1

rν(x, y)
,

rν are the distances between the point particle and the primaries, for ν � 1, . . . , N , and Δ is given by

Δ � MΛ,

being

Λ �
N∑

ν�2

sin2 θ cos((N/2 + 1 − ν)θ )

sin2((N + 1 − ν)θ )
�

N∑

ν�2

sin2 θ

sin((ν − 1)θ )
,

and

M � √
2(1 − cos ψ) � 2 sin θ.

In these formulas, ψ is the angle between the center of mass of the system and two successive peripheral primaries, and θ � ψ/2 �
π/N . In the process of obtaining the equations of motion, dimensionless quantities xν, yν and t are introduced by transforming the
physical ones (x ′

ν, y
′
ν and t ′) by means of the following relations [27]:

xν � x ′
ν/α, yν � y′

ν/α

and

t � ωt ′,

for any ν � 1, . . . , N , where x ′
ν and y′

ν denote the coordinates of the primaries in the barycentric synodic frame, α is the distance
between two successive primaries and ω is the constant angular velocity of the primaries. Thus, time is measured in terms of the
period of motion of the primaries.
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Table 1 CN ,e , for N ∈ N4,9 N CN ,e

4 4.298576

5 5.633254

6 7.262526

7 9.154474

8 11.294434

9 13.673839

Table 2 CN ,1, for N ∈ N4,9 N CN ,1

4 4.280

5 5.615

6 7.244

7 9.136

8 11.276

9 13.655

This system has a first integral, known as Jacobi constant, given by

C � 2U (x, y) − (ẋ2 + ẏ2) . (2)

As ẋ2 + ẏ2 � 2U (x, y) − C must be a positive quantity, the curves defined by C − 2U (x, y) � 0 determine the boundary of the
region where the motion can take place.

In this work, we take N ∈ N4,9 and, for each of these values of N , ten values of the Jacobi constant C. It is well known that there
exists a value of the Jacobi constant depending on N , known as its critical value and denoted by CN ,e, for which the curves of zero
velocity open [22]. Thus, for values of the Jacobi constant smaller than the critical CN ,e, particles may exit from the system through
one of the apertures of the potential well. Each of the N openings of the curves of zero velocity is guarded by a periodic orbit called
Lyapunov orbit (LO). If a particle crosses one of the LO from the central part to the outside of the configuration, we consider that
the particle leaves the potential well and escapes from the system. The time of escape tesc of an initial condition is defined as the
time the corresponding trajectory needs to cross one of the LO with its velocity heading out of the potential well. In Table 1, we
give the critical values of the Jacobi constant, for any N ∈ N4,9.

In our analysis, the values of the Jacobi constant have been chosen so that the size of the corresponding opening of the potential
well is approximately of the same size for any N ∈ N4,9. We have denoted these sets of values by CN ,ν , for any N ∈ N4,9 and
ν � 1, . . . , 10, and are given by

CN ,ν � CN ,1 + h(ν − 1), ν � 1, . . . , 10,

where h � 2 × 10−3, and CN ,1, corresponding to the biggest size of the apertures, are given in Table 2, for any N ∈ N4,9.
In Figs. 1 and 2, we show the curves of zero velocity of the system for N � 4, 5, 6 (Fig. 1) and N � 7, 8, 9 (Fig. 2). In the first

and second row of both figures, we depict these curves for the values of the Jacobi constant corresponding to the smallest and biggest
opening of the potential well, respectively. Thus, in Fig. 1, we show the curves of zero velocity for N � 4,C4,10 � 4.298 (left upper
panel), N � 4,C4,1 � 4.280 (left lower panel), N � 5,C5,10 � 5.633 (middle upper panel), N � 5,C5,1 � 5.615 (middle lower
panel), N � 6,C6,10 � 7.262 (right upper panel) and N � 6,C6,1 � 7.244 (right lower panel). In Fig. 2, we show the curves of
zero velocity for N � 7,C7,10 � 9.154 (left upper panel), N � 7,C7,1 � 9.136 (left lower panel), N � 8,C8,10 � 11.294 (middle
upper panel), N � 8,C8,1 � 11.276 (middle lower panel), N � 9,C9,10 � 13.673 (right upper panel) and N � 9,C9,1 � 13.655
(right lower panel).

3 Numerical exploration

The numerical analysis of the escape in this system is performed on the surface of section defined by y � x , ẏ > 0. For each of the
values of N and C described in the previous section, we consider a set SN ,C of 29 × 29 initial conditions distributed evenly in the
(x, ẋ) space, and conditioned by the value of the Jacobi constant. If (x0, ẋ0) are known, we set y0 � x0 and, then, ẏ0 is determined
using the relation

ẏ0 � +
√

2U (x0, y0) − C − ẋ2
0 .
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Fig. 1 Curves of zero velocity for N � 4, 5, 6, and a pair of values of Jacobi constant related to the smallest (upper panel) and biggest (lower panel) size of
the openings of the potential well

Thus, we take the initial conditions in the set DN ,C defined by

DN ,C � {
(x0, ẋ0) ∈ R

2 : 2U (x0, x0) − C − ẋ2
0 ≥ 0

}
. (3)

To perform an analysis of the escape in this problem, we integrate each of the initial conditions in the grid SN ,C contained in DN ,C

numerically up to a maximum time of Tmax � 102 [26].
The relation between the escape of a particle from an open Hamiltonian system and the location of its initial condition with

respect to the stable manifolds of the Lyapunov orbits guarding the apertures of the curves of zero velocity of the system is well
known [19, 21, 28, 29]. If the initial condition of the orbit belongs to the interior of the hyper-surface defined by the stable manifold
of any of the Lyapunov orbits, then the orbit will leave the system by crossing the corresponding Lyapunov orbit. If we consider an
initial condition in a certain surface of section, the orbit will leave the potential well without crossing again the surface of section if
the initial condition belongs to the region delimited by the first intersection between the surface of section and the stable manifold
of any of the Lyapunov orbits of the system. In general, if the initial condition of the orbit belongs to the region delimited by the ν-th
intersection between the surface of section and the stable manifold of any of the Lyapunov orbits, the particle will leave the system
through the corresponding aperture of the potential well after intersecting ν − 1 times the surface of section. Thus, the limiting
curves of the basins of escape of the system are determined by the projection of the stable manifolds of the Lyapunov orbits located
at the apertures of the potential well. The first intersections between these hyper-surfaces and the surface of section have a simple
geometry. But the structure of these intersections becomes more complex as the number of the intersections grows [19]. Likewise,
the area of the region enclosed by these limiting curves decays very quickly with the number of the intersections and, so, the same
happens with the amount of orbits that escape from the system [22]. Consequently, in order to unveil how these structures are located
on the surface of section, we have focused on the analysis of times of escape smaller than Tmax.

For the numerical integration of the equations of motion, we have used the method of recurrent power series adapted to the
N-body ring problem. This method converges for any initial condition not leading to a binary collision [30]. In our computations,
we have set the number of the term series to 21 and fixed the accuracy of the method to ε � 10−18 in order to determine the variable
step size.
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Fig. 2 Curves of zero velocity for N � 7, 8, 9, and a pair of values of Jacobi constant related to the smallest (upper panel) and biggest (lower panel) size of
the openings of the potential well

Now, let us define some quantities that we will use in the paper. M(N , C) denotes the total number of initial conditions of SN ,C

belonging to the domain DN ,C , being N and C the number of primaries and the value of the Jacobi constant, respectively. E(N , C)
denotes the total number of initial conditions in SN ,C ∩ DN ,C corresponding to orbits that escape from the system with a time of
escape smaller than Tmax, E(N ,C, t1, t2) denotes the number of initial conditions in SN ,C ∩DN ,C corresponding to orbits that escape
with a time of escape t such that t1 < t ≤ t2. Also, E(N ,C, t) � E(N ,C, 0, t) is the number of initial conditions corresponding to
trajectories that leave the system in a time not larger than t. P(N ,C, t1, t2) refers to the probability of escape from the system in a
time t such that t1 < t ≤ t2, P(N ,C, t) � P(N ,C, 0, t) and P(N ,C) � P(N ,C, Tmax). These quantities are defined by

P(N ,C, t1, t2) � E(N ,C, t1, t2)

M(N ,C)
, P(N ,C, t) � E(N ,C, t)

M(N ,C)
,

and

P(N ,C) � E(N ,C, Tmax)

M(N ,C)
.

With the aim of carrying out the analysis of the influence of the Jacobi constant on the probability of escape per interval of time, we
have calculated P(4,C4,ν , t1, t2), P(5,C5,ν , t1, t2), P(6,C6,ν , t1, t2), P(7,C7,ν , t1, t2), P(8,C8,ν , t1, t2) and P(9,C9,ν , t1, t2), for
ν � 1, . . . , 10, t1 � nh, t2 � (n + 1)h, being h � 1 and n ∈ N, 0 ≤ n ≤ 99.

In Fig. 3, we show the probability of escape per interval of time for N � 4, P(4,C4,ν , t1, t2), considering t2 − t1 � 1, and ten
values of the Jacobi constant of the form C4,ν � C4,1 +h(ν −1), with h � 0.002, and C4,1 � 4.280. We observe that the behavior of
P(4,C4,ν , t1, t2) reproduces the same scheme for any of the values of the Jacobi constant we have examined. For values of the time of
escape smaller than 3 or 4 units of time, no orbit escapes from the system. Then, we find a maximum of the probability of escape per
interval of time for times of escape between 3 and 8 units of time, and, right after that, a secondary maximum. Then, the probability
of escape per interval of time shows an oscillatory behavior around an average line. Figure 3 unveils that the slope of the average
line of the probability of escape per interval of time is negative, for values of the Jacobi constant C such that C4,1 ≤ C ≤ C4,8.
However, if C4,9 ≤ C ≤ C4,10, the slope is positive. This means that there exists a value C4,H of the Jacobi constant such that if
C4,H < C < C4,e, the slope of the average line of the probability of escape per interval of time is positive. Moreover, if C < C4,H ,
the slope is negative. We can also conclude that the probability of escape per interval of time decreases as the value of the Jacobi
constant grows.
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Fig. 3 Probabilities of escape per interval of time, for values of the Jacobi constant given by C4,ν � C4,1 + h(ν − 1), ν � 1, . . . , 10, h � 2 × 10−3, and
C4,1 � 4.280

Fig. 4 Probabilities of escape per interval of time, for values of the Jacobi constant given by C9,ν � C9,1 + h(ν − 1), ν � 1, . . . , 10, h � 2 × 10−3, and
C9,1 � 13.655

In Fig. 4, we depict the probability of escape per interval of time for N � 9, P(9,C9,ν , t1, t2), considering t2 − t1 � 1, and ten
values of the Jacobi constant of the form C9,ν � C9,1 + h(ν − 1), with h � 0.002, and C9,1 � 13.655. As before, we find that
the behavior of P(9,C9,ν , t1, t2) reproduces an analogous pattern to that described for N � 4, for any of the values of the Jacobi
constant we have examined. Thus, again, no orbit escapes from the system with a time of escape smaller than 3 or 4 units of time.
Then, we find a pair of main peaks in the probability of escape per interval of time. These pairs of peaks are more or less pronounced
depending on the value of the Jacobi constant, but they always exist, except for C9,10. For times of escape larger than 10 units of
time, the probability of escape per interval of time exhibits an oscillatory behavior around an average line. For values of the Jacobi
constant C such that C9,1 ≤ C ≤ C9,5, the slope of the average line is negative. However, if C9,6 ≤ C ≤ C9,10, the slope is positive.
This means that there exists a value C9,H of the Jacobi constant such that if C9,H < C < C9,e, then the slope of the average line of
the probability of escape per interval of time is positive. Moreover, if C < C9,H , the slope is negative. As in the previous case, the
probability of escape per interval of time decreases as the value of the Jacobi constant grows. The difference between the two cases
we have analyzed, N � 4 and N � 9, lies in the value of CN ,H and its proximity to CN ,e.

Table 3 shows the slopes of the average lines of the probability of escape per interval of time for N � 4 and N � 9 and the values
of the Jacobi constant,C4,ν � C4,1 +h(ν−1),C9,ν � C9,1 +h(ν−1), with h � 0.002,C4,1 � 4.280 andC9,1 � 13.655, considering
Tmax � 100. The slope of the average line corresponding to CN ,ν is denoted by mN ,ν , for any N ∈ N4,9 and ν � 1, . . . , 10. We
notice that as the value of the Jacobi constants C4,ν and C9,ν grows tending to its critical value, the value of the slopes of the average
lines also becomes bigger, going from negative to positive.

We have found this same scheme for any N ∈ N4,9. In Fig. 5, we depict the slope of the average line of the probability of escape
per interval of time with respect to the value of the Jacobi constant, for any N ∈ N4,9. This figure unveils that the sign of the slope
changes independently of the value of the number of primaries we consider. As the value of the Jacobi constant becomes bigger
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Table 3 Jacobi constants and
slopes of the average lines of the
probability of escape per interval
of time, for N � 4 and N � 9

N � 4 N � 9

C4,ν m4,ν C9,ν m9,ν

4.28 −5 × 10−5
13.655 −9 × 10−6

4.282 −4 × 10−5
13.657 −7 × 10−6

4.284 −3 × 10−5
13.659 −4 × 10−6

4.286 −2 × 10−5
13.661 −3 × 10−6

4.288 −1 × 10−5
13.663 −1 × 10−7

4.29 −1 × 10−5
13.665 1 × 10−6

4.292 −5 × 10−6
13.667 2 × 10−5

4.294 −5 × 10−8
13.669 2 × 10−6

4.296 2 × 10−6
13.671 2 × 10−6

4.298 2 × 10−6
13.673 2 × 10−6

Fig. 5 Slope of the average line of the probability of escape per interval of time versus the Jacobi constant for N � 4, 5, 6, 7, 8 and 9

and, then, the size of the openings of the curves of zero velocity becomes smaller, the value of the slope of the average line tends,
in general, to increase, going from a negative to a positive value. Thus, there exists a value of the Jacobi constant CN ,H < CN ,e,
such that the slope of the corresponding average line of the probability of escape per interval of time is equal to zero. Moreover,
we notice that the change in the sign of the slope of the average line occurs at a value CN ,H located at a different distance from
the critical value CN ,e for any of the values of N considered. Let us remark here that the value CN ,10 is very close to CN ,e and, for
values of the Jacobi constant larger than CN ,e, no orbit can escape from the potential well.

In Fig. 6, we show the probability of escape from the system P(N ,CN ,ν) versus the value of the Jacobi constant, for N ∈ N4,9,
and considering Tmax � 100. These graphics show that, for any of the values of the number of primaries, the probability of escape
decreases when the Jacobi constant grows and, hence, the size of the openings of the curves of zero velocity becomes smaller. Also,
we can conclude that P(4,C4,ν) > P(5,C5,ν) > P(6,C6,ν), and P(7,C4,ν) > P(8,C5,ν) > P(9,C6,ν), for any ν � 1, . . . , 10.
However, P(6,C6,ν) < P(7,C4,ν), for any ν � 1, . . . , 10.
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Fig. 6 Probability of escape P(N ,CN ,ν ) versus the value of the Jacobi constant, for N � 4, 5, 6, 7, 8 and 9

Navarro and Martínez–Belda [26] found an almost linear relation (with negative slope) between the probability of escape from the
system and the number of primaries N , in the N-body ring configuration with central body. In this paper, we explore if we find this
same linear relation in the absence of a central body. Figure 7 depicts the probability of escape from the system versus the number of
primaries N , for nine of the values of the Jacobi constant we have used in our numerical exploration, and considering Tmax � 100.
Each plot corresponds to one value of the Jacobi constant. Thus, in Fig. 7 (P(N ,CN ,ν)), we depict the probability of escape for
N � 4, 5, 6, 7, 8, 9 and the corresponding values of the Jacobi constant, CN ,ν . The values of the Jacobi constant employed in each
of the plots correspond to apertures of the curves of zero velocity of approximately the same size. We observe that the probability of
escape decreases between N � 4 and N � 6, as well as between N � 7 and N � 9. However, it always increases between N � 6
and N � 7. This change in the trend between N � 6 and N � 7 may be the object of a future investigation.

4 Conclusions

In this paper, we have analyzed the dependence of the probability of escape per interval of time on the Jacobi constant in the N-body
ring configuration in the absence of a central body. We have performed this study for 4 ≤ N ≤ 9 and ten values of the Jacobi
constant, in order to sketch the evolution of the probability of escape from the system with respect to the value of this constant.

The results obtained through the numerical exploration we have performed indicate that there exists a value of the Jacobi constant,
here denoted by CN ,H , such that, on average, the probability of escape per interval of time remains constant, for short times of
escape, that is, for times of escape smaller than 100 units of time. If the value of the Jacobi constant is smaller than CN ,H , the
probability of escape per interval of time decreases with time. However, for values of the Jacobi constant between CN ,H and the
critical value, the probability of escape per interval of time increases with time, at least for times of escape smaller than 100 units
of time.

As the value of the Jacobi constant grows and, consequently, the size of the apertures of the curves of zero velocity of the system
becomes smaller, so does the number of orbits leaving the system with short times of escape. In some sense, we could say that
the path to escape from the system becomes more complicated as the size of the aperture tends to zero. Moreover, the size of the
Lyapunov orbit and, so, of the region delimited by the intersection between the stable manifold of this orbit and the surface of section
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Fig. 7 Probability of escape P(N ,CN ,ν ) versus the number of primaries N , for N � 4, 5, 6, 7, 8 and 9

we are considering, is inversely proportional to the value of the Jacobi constant, that is, the Lyapunov orbit becomes smaller as the
Jacobi constant tends to CN ,e, as the size of the Lyapunov orbit is directly proportional to the size of the aperture. This fact implies
that the number of orbits that escape from the system with short times of escape decreases when the Jacobi constant tends to CN ,e

(and the size of the aperture decreases) and, moreover, the orbits that leave the potential well need more time to escape: The size of
the aperture is inversely proportional to the average time of escape from the system. This is the reason why we observe a positive
slope of the average line of the probability of escape per interval of time for values of C larger than CN ,H .

We have also found that, if N1 < N2, then P(N1,CN1,ν) > P(N2,CN2,ν), for any ν � 1, . . . , 10 corresponding to values of the
Jacobi constant related to openings of the curves of zero velocity of approximately the same size, except if N1 � 6 and N2 � 7.
A further study is required in order to clarify the behavior of the trend of the probability of escape between these two values of
the number of bodies. We think that we will find the clue in the analysis of the way the geometry of the stable manifolds of the
Lyapunov orbits changes depending on the value of N .
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