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Abstract In this work, we adapt the foundations of relativistic kinetic theory and the Boltzmann equation to particles with Lorentz-
violating dispersion relations. The latter are taken to be those associated to two commonly considered sets of coefficients in the
minimal Standard-Model Extension. We treat both the cases of classical (Maxwell–Boltzmann) and quantum (Fermi–Dirac and
Bose–Einstein) statistics. It is shown that with the appropriate definition of the entropy current, Boltzmann’s H-theorem continues to
hold. We derive the equilibrium solutions and then identify the Lorentz-violating effects for various thermodynamic variables, as well
as for Bose–Einstein condensation. Finally, a scenario with nonelastic collisions between multiple species of particles corresponding
to chemical or nuclear reactions is considered.

1 Introduction

It is a generally accepted notion that the minimal standard model provides a low-energy limit to a more fundamental theory that
includes a quantum description of gravity. Numerous studies have proposed that one of the physical effects of the latter may be the
spontaneous breaking of Lorentz invariance. A field-theoretic framework that has been used extensively for studying these is the
Standard-Model Extension (SME) [1, 2]. It contains all possible operators utilizing standard-model fields that satisfy coordinate
reparametrization invariance. These are generally chosen to preserve energy-momentum conservation, observer Lorentz invariance,
hermiticity, micro-causality and gauge invariance. Moreover, in its minimal version it is power-counting renormalizable. These
operators are parametrized by coefficients that are now standardized in the literature. Based on these coefficients, there have been
exhaustive experimental searches for Lorentz and/or CPT violation. To date, these have not encountered any confirmed evidence for
Lorentz violation, and so therefore is reasonable to assume that any violation must be extremely small in conventional laboratory
frames. For an overview of current bounds, see [3].

Statistical mechanics has been applied in the context of the SME to provide a mechanism for baryogenesis in thermal equilibrium
[4]. A general study of statistical mechanics in the context of the minimal SME to first order on Lorentz-violating coefficients was
performed by Colladay and MacDonald [5]. Other studies of thermodynamics in the presence of SME-type Lorentz violation include
Refs. [6–9]. We also mention recent studies on the effects of Lorentz violation in the context of black-hole thermodynamics [10–14]
and of Bose–Einstein condensation [6, 15, 16].

A related topic that, to our knowledge, has been unexplored in the literature is that of kinetic theory and the Boltzmann equation
in the context of Lorentz violation. In this work, we intend to provide a contribution to fill this gap. To do so, we introduce the
basic concepts of kinetic theory and the Boltzmann equation in its relativistic formulations, but with crucial modifications of the
particle dispersion relations due to Lorentz violation. The latter are taken to be those associated to two commonly considered
sets of coefficients in the minimal SME, namely the aμ and the cμν (the former violates CPT, the latter doesn’t). We adopt an
observer-Lorentz-invariant setup throughout, to assure that all constructions are observer independent and valid to all orders in the
Lorentz-violating coefficients. Both the cases of classical (Maxwell-Boltzmann) and quantum (Fermi-Dirac and Bose–Einstein)
statistics are treated. We generalize the definition of the entropy current and show that Boltzmann’s H-theorem continues to be
valid. We then derive the equilibrium solutions and from it obtain expressions for the particle density, the energy density, the
isotropic pressure and the entropy per particle, for fluids with a single species of particles, and derive the Lorentz-violating effects
in Bose–Einstein condensation. Finally, a scenario is considered with nonelastic collisions between multiple species of particles
corresponding to chemical or nuclear reactions.

While only the cases corresponding to the aμ and the cμν coefficients are treated explicitly, our transparent approach makes a
generalization to other SME-type Lorentz violation straightforward.

a e-mail: rpotting@ualg.pt (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-023-03889-3&domain=pdf
http://orcid.org/0000-0001-6915-3994
mailto:rpotting@ualg.pt


  342 Page 2 of 19 Eur. Phys. J. Plus         (2023) 138:342 

This paper is organized as follows. In Sect. 2, we introduce Lorentz-violating dynamics and derive the relativistic Boltzmann
equation, both for classical (Maxwell-Boltzmann) as well as quantum (Bose–Einstein and Fermi-Dirac) statistics. In Sect. 3, we
define the entropy current and show that Boltzmann’s H-theorem applies in the presence of Lorentz violation. Next, in Sect. 4, the
particle number current and the energy-momentum tensor are introduced and their equilibrium properties are evaluated. In Sects. 5
and 6, we treat the special cases of Maxwell-Boltzmann statistics and massless particles, respectively. Multiple species of particles
are considered in Sect. 7. Finally, we look at Lorentz-violating effects in Bose–Einstein condensation in Sect. 8 and then present
our conclusions in Sect. 9.

2 The Boltzmann equation and Lorentz violation

We consider the relativistic Boltzmann equation for a particle satisfying a Lorentz-violating dispersion relation

D(pμ) � 1
2 ((ημλ + cμλ)pλ − aμ)((ημκ + cμκ )pκ − aμ) − 1

2m
2 � 0. (1)

It corresponds to the dispersion relation of a Dirac fermion in the SME with nonzero values of the coefficients cμν and aμ. In this
work, we will assume that cμν � cνμ. The dispersion relation (1) can be derived from the covariant particle action

S �
∫

dτ L(ẋμ) �
∫

dτ
( 1

2e
−1((η + c)−2)μν ẋ

μ ẋν + 1
2em

2 + ẋμ((η + c)−1)μν A
ν
)

(2)

where Aμ is an external field, and we defined ẋμ � dxμ/dτ . The presence of the einbein e(τ ) renders the action invariant under
reparametrizations

τ → τ ′, e → e′ � dτ

dτ ′ e. (3)

The equation of motion of the einbein yields the constraint
(
(η + c)−2)

μν
ẋμ ẋν − e2m2 � 0 (4)

which can be expressed in terms of the canonical momentum

pμ � ∂L

∂ ẋμ
� e−1((η + c)−2)

μν
ẋν +

(
(η + c)−1)

μν
aν (5)

as Eq. (1), upon identifying Aμ with the vector coefficient aμ. It is useful to note that the covariant Hamiltonian

H (pμ) � pμ ẋ
μ − L(ẋμ) (6)

is equal to eD(pμ) and therefore vanishes by the einbein equation of motion.
For the velocity, we find

vi � dxi

dx0 � ẋ i

ẋ0 � (ηiν + ciν)((ηνλ + cνλ)pλ − aν)

(η0ν + c0ν)((ηνλ + cνλ)pλ − aν)
� p̃i

p̃0 , (7)

where we defined the observer four-vector

p̃μ � e−1 ẋμ � (ημν + cμν)((ηνλ + cνλ)pλ − aν). (8)

We will now fix the gauge of reparametrization invariance by setting the einbein equal to the conventional choice

e � 1

m
(9)

In the absence of Lorentz violation, this corresponds to taking τ equal to the proper time on the particle (see Eq. (4)). Note that the
gauge (9) is only possible for nonzero mass. In Sect. 6, we will analyze the massless case.

It then follows from Eq. (5) that

dτ � mdx0

p̃0 (10)

which is evidently a Lorentz scalar.
We want to consider the Boltzmann equation in the presence of the Lorentz-violating coefficients cμν and aμ, describing a

relativistic gas of particles satisfying the dispersion relation (1). We will need the relativistic version of the Boltzmann equation; for
an introduction, see, e.g., [17]. Basic ingredient is the one-particle phase-space distribution function f (�x, �p, t), defined such that

dN (t) � g

h3 f (�x, �p, t) d3x d3 p (11)
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denotes the number of particles in the volume element d3x about �x with momenta in a range d3 p around �p at time t. Here h is
Boltzmann’s constant, while g is the degeneracy factor of the quantum states; for massive particles with spin s, we have g � 2s + 1.

It is important that we set up a consistent description invariant under observer Lorentz-transformations. First of all, note that

d4 p δ(D(pμ)) � d3 p

p̃0 (12)

is the correct Lorentz-covariant generalization of the usual expression d3 p/p0. Noting, furthermore, that d4x as well as, from Eq.
(10),

dx0

p̃0 (13)

is Lorentz covariant, it follows that this is also true for

d3x p̃0. (14)

Combining Eqs. (12) and (14), it follows that the phase-space element d3x d3 p ≡ d6ξ is invariant under observer Lorentz-
transformations.

From Eq. (11) it follows

dN (t + dt) � g

h3 f

(
�x + dt

d �x
dt

, �p + dt
d �p
dt

, t + dt

)
d6ξ (t + dt) (15)

If we assume a force field �F(�x, �p, t) such that

d �p
dt

� �F (16)

we have, with Eq. (7) and

d6ξ (t + dt) � d6ξ (t) det

(
(∂(�x + �vt, �p + �Ft)

∂(�x, �p)

)

� d6ξ

(
1 + dt

(
∂

∂ �x · �v +
∂

∂ �p · �F
)

+ O(dt2)

)
(17)

that

dN (t + dt) − dN (t) � g

h3 d
6ξ dt

(
∂ f

∂t
+

∂

∂ �x · (�v f ) +
∂

∂ �p · ( �F f )

)
. (18)

From Eq. (7) it follows that �v depends only on �p, not on �x , and therefore the first two terms on the right-hand side can be written as

∂ f

∂t
+ �v · ∂ f

∂ �x � ∂ f

∂t
+

p̃i

p̃0

∂ f

∂xi
� p̃μ∂μ f

p̃0 . (19)

Writing Newton’s law (16) in covariant form

dpμ

dτ
� Kμ. (20)

it follows, using Eq. (10), that

dt
∂

∂ �p · ( �F f ) � dτ
∂(Kμ f )

∂pμ
. (21)

Altogether Eq. (18) is then written as

dN (t + dt) − dN (t) � g

h3 d
6ξ dτ

(
1

m
p̃μ ∂ f

∂xμ
+

∂(Kμ f )

∂pμ

)
(22)

from which we find, using again Eq. (10), that

d

dt
dN � m

p̃0

g

h3 d
6ξ

(
1

m
p̃μ ∂ f

∂xμ
+

∂(Kμ f )

∂pμ

)
(23)

In the absence of collisions, dN (t + dt) � dN (t) by construction, and thus the right-hand side of Eq. (23) will then vanish. In the
presence of collisions, however, there will be particles that are scattered out of the volume element, and others that are scattered into
it, and thus

dN � dN+ − dN−. (24)

In order to determine its form, we follow Boltzmann’s Stoßzahlansatz, according to which
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• the gas is sufficiently dilute so that only elastic collisions between pairs of particles are relevant;
• the momenta of two colliding particles before the collision are uncorrelated (molecular chaos assumption);
• the one-particle distribution function varies slowly over a time interval which is much larger than the duration of the collision but

much smaller than the time between collisions, and neither does f change much over a distance of the order of the interaction
range.

The number of collisions dNcoll(p1, p2 → p′
1, p

′
2) of particles with momenta around �p1 and �p2 scattering to particles with momenta

around �p′
1 and �p′

2 should be proportional to f1(�x, �p1, t)d3 p1 f2(�x, �p2, t)d3 p2 and also to d3x dt and d3 p′
1 d

3 p′
2. Imposing as well

that it should be a Lorentz-covariant expression, we can express it in terms of the invariant transition rate per unit volume:

dNcoll(p1, p2 → p′
1, p

′
2) � d4x

d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

× g2

h6 f1(�x, �p1, t) f2(�x, �p2, t)W (p1, p2 → p′
1, p

′
2) (25)

Because of momentum conservation the invariant W (p1, p2 → p′
1, p

′
2) is proportional to δ4(p′

1 + p′
2 − p1 − p2). In the absence of

Lorentz violation, it can be related to the differential scattering cross section through

dσ � d3 p′
1

p′
01

d3 p′
2

p′
02

W (p1, p2 → p′
1, p

′
2)

vrel p1 · p2
, (26)

where the invariant vrel is equal to the relative velocity between particles 1 and 2 in the “laboratory frame” where �p2 � 0 [17].
Identifying pμ ≡ pμ

1 , it follows that dN−
1 is equal to expression (25) integrated over all values of p2, p′

1 and p′
2. An analogous

expression follows for dN+
1 , after switching primed and unprimed momenta. It then follows that

dN1

dt
� dN+

1

dt
− dN−

1

dt

� d6ξ1
1

p̃01

∫
d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

× g2

h6 ( f1′ f2′W (p′
1, p

′
2 → p1, p2) − f1 f2W (p1, p2 → p′

1, p
′
2)). (27)

An important assumption we will now make is that of detailed balance:

W (p′
1, p

′
2 → p1, p2) � W (p1, p2 → p′

1, p
′
2). (28)

From Eqs. (23), (24) and (27), we then find the Boltzmann equation in covariant form

p̃μ
1

∂ f

∂xμ
+ m

∂(Kμ f )

∂pμ
1

� g

h3

∫
d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

( f1′ f2′ − f1 f2)W (p1, p2 → p′
1, p

′
2). (29)

Equation (29) is valid for a “classical gas”, that is, one in which the quantum states have low occupation numbers.

2.1 The cases of Fermi–Dirac and Bose–Einstein statistics

Equation (29) can be generalized to a single degenerate fermion gas satisfying the Pauli exclusion principle by noting that a
phase-space element d6ξ is completely occupied if the number of particles in it equals the number of available states, i.e.,

g

h3 f d6ξ � g

h3 d
6ξ ⇒ f � 1. (30)

Consequently, 1 − f gives the proportion of vacant states in a phase-space element. Therefore, Eq. (29) can be generalized to the
case of a gas of fermions by making the substitution

f1′ f2′ → f1′ f2′(1 − f1)(1 − f2) (31)

in the “gain” term, and the substitution

f1 f2 → f1 f2(1 − f1′)(1 − f2′) (32)

in the “leave” term. For bosons, it can be shown that the factor (1 − f ) must be replaced by (1 + f ) [18]. This way we obtain the
relativistic Uehling–Uhlenbeck equation

p̃μ
1

∂ f

∂xμ
+ m

∂(Kμ f )

∂pμ
1

� g

h3

∫
d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

× ( f1′ f2′ f̄1 f̄2 − f1 f2 f̄1′ f̄2′)W (p1, p2 → p′
1, p

′
2) (33)
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where ε � +1 or −1, for Bose–Einstein or Fermi–Dirac statistics, respectively, and

f̄ � 1 + ε f. (34)

The case of Eq. (29) representing Maxwell–Boltzmann statistics corresponds to the case ε � 0.
From Eq. (33), we obtain the so-called equation of transfer by multiplying with an arbitrary function ψ(�xμ, �pμ

1 ) and integrating
with respect to d3 p1/ p̃01. It follows that

∫
d3 p1

p̃01
ψ(x, p1)

[
p̃μ

1 ∂ f1 + m
∂(Kμ f )

∂pμ
1

]
� Coll[ψ] (35)

with on the right-hand side the collisional functional

Coll[ψ] � g

h3

∫
d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

ψ(x, p1)W (p1, p2 → p′
1, p

′
2)

× ( f1′ f2′ f̄1 f̄2 − f1 f2 f̄1′ f̄2′)

� g

h3

∫
d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

(ψ1′ − ψ1)W (p1, p2 → p′
1, p

′
2) f1 f2 f̄1′ f̄2′

� g

2h3

∫
d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

(ψ1′ + ψ2′ − ψ1 − ψ2)

× W (p1, p2 → p′
1, p

′
2) f1 f2 f̄1′ f̄2′ (36)

where in the second equality we used detailed balance (28). By rewriting the partial derivative on the left-hand side of Eq. (35) with
respect to xμ in the first term, and doing a partial integration with respect to pμ

1 in the second term, we obtain the transfer equation

∂

∂xμ

(∫
d3 p1

p̃01
f1ψ1 p̃

μ
1

)
−

∫
d3 p1

p̃01

(
p̃μ

1
∂ψ1

∂xμ
+ mKμ

1
∂ψ1

∂pμ
1

)
� Coll[ψ]. (37)

3 The H-theorem

In this section, we will derive the so-called H-theorem [19] in the presence of the Lorentz-violating effects.
First we consider the case ε � 0. Take ψ(ξ ) � − ln( f (ξ )) + 1 in the transfer equation; it follows that

∂

∂xμ

(
−

∫
d3 p1

p̃10
f1(ln f1 − 1) p̃μ

1

)
+

∫
d3 p1

p̃10

(
p̃μ

1
∂ f1
∂xμ

+ mKμ
1

∂ f1
∂pμ

1

)

� − g

2h3

∫
d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

ln

(
f1′ f2′

f1 f2

)
W (p1, p2 → p′

1, p
′
2) f1 f2 (38)

From Eq. (35), we see that the second term on the left-hand side equals Coll[1], which vanishes identically. Defining the entropy-
density four-current

sμ(x) � −kg

h3

∫
d3 p

p̃0
p̃μ f (x, p)(ln f (x, p) − 1) (39)

where k is Boltzmann’s constant, we find from Eq. (38), after adding 1
2 Coll[1] � 0 to the right-hand side:

∂sμ

∂xμ
� kg

2h3

∫
d3 p1

p̃01

d3 p2

p̃02

d3 p′
1

p̃′
01

d3 p′
2

p̃′
02

× f1 f2

[
f1′ f2′

f1 f2
− ln

(
f1′ f2′

f1 f2

)
− 1

]
W (p1, p2 → p′

1, p
′
2). (40)

Next consider the cases ε � ±1. Under transformation f → −ε − f , or, equivalently

f → −ε f̄ and f̄ → −ε f, (41)

with f̄ given by Eq. (34), the collisional functional Coll[ψ] given by Eq. (36) switches sign. Therefore we have from the transfer
Eq. (37)

∂

∂xμ

(∫
d3 p1

p̃0
1

f1ψ p̃μ
1

)
−

∫
d3 p1

p̃0
1

f1

(
p̃μ

1
∂ψ

∂xμ
+ mKμ

1
∂ψ

∂pμ
1

)
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� ε
∂

∂xμ

(∫
d3 p1

p̃0
1

f̄1ψ p̃μ
1

)
− ε

∫
d3 p1

p̃0
1

f̄1

(
p̃μ

1
∂ψ

∂xμ
+ mKμ

1
∂ψ

∂pμ
1

)
(42)

for arbitrary function ψ(x, p1). Now take ψ1 � − ln f1, ψ̄1 � − ln f̄1, and consider the expression

∂

∂xμ

(∫
d3 p1

p̃0
1

f1(ψ1 − ψ̄1) p̃μ
1

)
−

∫
d3 p1

p̃0
1

f1

(
p̃μ

1
∂(ψ1 − ψ̄1)

∂xμ
+ mKμ

1
∂(ψ1 − ψ̄1)

∂pμ
1

)
. (43)

From the transfer Eq. (37), it follows that this is equal to Coll[ψ − ψ̄]. On the other hand, by applying identity (42) to the terms
involving ψ̄1 we see that expression (43) is equal to

∂

∂xμ

(∫
d3 p1

p̃0
1

( f1ψ1 − ε f̄1ψ̄1) p̃μ
1

)
−

∫
d3 p1

p̃0
1

f1

(
p̃μ

1
∂ψ1

∂xμ
+ mKμ

1
∂ψ1

∂pμ
1

)

+ ε

∫
d3 p1

p̃0
1

f̄1

(
p̃μ

1
∂ψ̄1

∂xμ
+ mKμ

1
∂ψ̄1

∂pμ
1

)
(44)

The second and third terms are both proportional to Coll[1] � 0. Generalizing the definition (39) of the entropy-density four-current
to

sμ(x) � kg

h3

∫
d3 p

p̃0
p̃μ

[
ε−1 f̄ ln f̄ − f ln f

]
(45)

the first term is proportional to ∂sμ/∂xμ. Applying the transfer equation it follows, upon adding 1
2 Coll[1] � 0 to the right-hand

side, that

∂sμ

∂xμ
� kg

2h3

∫
d3 p1

p̃01
. . .

d3 p′
2

p̃′
02

f1 f2 f̄1′ f̄2′

×
[
f1′ f2′ f̄1 f̄2
f1 f2 f̄ ′

1 f̄
′
2

− ln

(
f1′ f2′ f̄1 f̄2
f1 f2 f̄1′ f̄2′

)
− 1

]
W (p1, p2 → p′

1, p
′
2) (46)

(note that ε � ε−1 for ε � ±1). Equations (45) and (46) reduce to Eqs. (39) and (40) in the limit ε → 0, and thus they actually
cover all three cases ε � 0, ±1.

Now the (real) function f (z) � z − 1 − ln z is positive for z > 0, z �� 1, taking its absolute minimum zero at z � 1. Therefore,
as long as all the phase-space factors p̃i0 and p̃′

i0 are positive, the right-hand side of Eq. (46) is nonnegative. Integrating over
three-space, we can write ∫

d3x ∂μs
μ �

∫
d3x

(
∂t s

0 + �∇ · �s
)

� d

dt

(∫
d3x s0

)
+

∫
sr→∞

d2σ (n̂ · �s). (47)

For a localized distribution, the last term tends to zero, and thus we conclude that the total entropy

S �
∫

d3x s0 � kg

h3

∫
d6ξ

[
(ε−1 + f (x, p)) ln(1 + ε f (x, p)) − f (x, p) ln f (x, p)

]
(48)

will never decrease.
Moreover, it follows that S will be stationary iff z � f1′ f2′ f̄1 f̄2/( f1 f2 f̄1′ f̄2′ ) � 1, or, defining φ(x, p) � − ln( f (x, p)/ f̄ (x, p)),

φ1′ + φ2′ − φ1 − φ2 � 0. (49)

Now note that the momenta pμ
1 , pμ

2 , p′
1
μ and p′

2
μ satisfy the constraint

pμ
1 + pμ

2 − p′
1
μ − p′

2
μ � 0. (50)

It can be shown [17] that the most general solution of the equilibrium condition (49) with momenta constrained by condition (50)
(amounting to a so-called summational invariant) is given by

φ(x, p) � −α(x) + βμ(x)pμ ⇒ f (x, p) � 1

e−α(x)+βμ(x)pμ − ε
. (51)

for arbitrary scalar function α(x) and four-vector function βμ(x).
The equilibrium solution has to satisfy the Uehling–Uhlenbeck Eq. (33). As the collision term is guaranteed to vanish, the left-

hand side of the Uehling–Uhlenbeck equation has to vanish as well. Let us consider the case Kμ � 0 in which there is no external
force. It then follows that α(x) and βμ(x) have to satisfy

p̃μ∂μα − p̃μ pν∂μβν � 0, (52)
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where p̃μ is given by Eq. (8). Equation (52) can be written as

p̃μ
(
∂μα − ∂μβκ((δ + c)−1)κλa

λ
) − p̃μ p̃ν ∂μβκ((δ + c)−2)κ ν � 0. (53)

As this identity has to be satisfied for arbitrary momentum, it follows that both terms of Eq. (53) have to vanish independently. The
second term yields the Killing equation

∂μβ̃ν + ∂νβ̃μ � 0 (54)

with β̃μ � βκ((δ + c)−2)κμ. It can be shown that the most general solution of this condition is [20]

β̃μ(x) � ωμνx
ν + β̃μ0 (55)

where β̃μ0 is an arbitrary constant four-vector, and the constant two-tensor ωμν satisfies

ωμν � −ωνμ. (56)

Next, by substituting the result (55) into the first term of Eq. (53) and imposing it to vanish, it follows that the most general solution
for α(x) is

α(x) � α − xμωμλ(δ + c)λνa
ν (57)

where α is a constant. For a time-independent distribution, we must have ω0μ � 0. Then the ω-dependent terms represent a fluid
which is rigidly rotating. In the following, we will assume ωμν � 0, and we obtain for the equilibrium distribution

feq(x, p) � 1

e−α+θμ pμ − ε
(58)

with θμ � β̃λ0((δ + c)−2)λμ, which is now independent of x.

4 The particle number current and the energy-momentum tensor

We obtain the particle number density by integrating g. f (x, p)/h3 over all three-momenta:

J 0(x) � g

h3

∫
d3 p f (x, p), (59)

while the particle number current density is given by

J i (x) � g

h3

∫
d3 p vi f (x, p). (60)

Combining expressions (59) and (60), we obtain the observer Lorentz-covariant expression

Jμ(x) � g

h3

∫
d3 p

p̃0 p̃μ f (x, p) (61)

where we used Eq. (7) defining the particle number four-current density. It can be checked that it is conserved, ∂μ Jμ(x) � 0, by
taking ψ(x, p) � 1 in the transfer Eq. (37). Note that its space-like part involves the Lorentz-violating coefficients cμν and aμ.

Similarly, we define the components of the canonical energy-momentum tensor as

T 00(x) � g

h3

∫
d3 p p0 f (x, p) (energy density) (62)

T 0i (x) � g

h3

∫
d3 p pi f (x, p) (momentum density) (63)

T i0(x) � g

h3

∫
d3 p vi p0 f (x, p) (energy density flow) (64)

T i j (x) � g

h3

∫
d3 p vi p j f (x, p) (momentum density flow) (65)

which can be combined in the manifestly Lorentz-covariant expression

Tμν(x) � g

h3

∫
d3 p

p̃0 p̃μ pν f (x, p) (66)

upon using expression (7). Note that it is nonsymmetric, Tμν �� T νμ, because the velocity four-vector p̃μ/m is not proportional
to the four-momentum pμ, due to the presence of the Lorentz-violating coefficients cμν and aμ. By taking ψ(x, p) � pν in the
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transfer Eq. (37), one obtains ∂μTμν � 0. That is, Tμν is conserved (in the absence of external forces!). However, note that, in
general, ∂νTμν �� 0!

The appearance of the nonsymmetric energy-momentum tensor (66) is not a surprise. It is well known that the presence of
Lorentz-violating coefficients in quantum field theory gives rise to nonsymmetric canonical energy-momentum tensors [1, 21].

Let us try to evaluate the current density and the energy-momentum tensor for the equilibrium distribution (58). To this effect,
we define the generating function

I �
∫

d3 p

p̃0

1

e−α+θμ pμ − ε
. (67)

It then follows that

∂ Jμ

∂α
� − g

h3 (η + c)μλ

(
(δ + c)λ

ν ∂

∂θν
+ aλ

∂

∂α

)
I (68)

∂Tμν

∂α
� −∂ Jμ

∂θν

. (69)

We can evaluate the integral in Eq. (67) by introducing

p̄ μ � (δ + c)μλ p
λ − aμ ⇔ pμ � ((δ + c)−1)μα( p̄ + a)α. (70)

The dispersion relation (1) then becomes

p̄ · p̄ − m2 � 0 (71)

and we can write

I � 2
∫

d4 p δ
(
((δ + c)μλ p

λ − aμ)((δ + c)μ
ν pν − aμ) − m2)

)θ((δ + c)0
λ pλ − a0)

e−α+θμ pμ − ε

� 2

| δ + c |
∫

d4 p̄ θ ( p̄0)δ( p̄ · p̄ − m2)
1

e−α+θμ pμ − ε

� 2

| δ + c |
∫

d4 p̄ θ ( p̄0)δ( p̄ · p̄ − m2)
1

e−α+θ̃ ·( p̄+a) − ε
(72)

where θ̃μ � θν((δ + c)−1)ν
μ, |δ + c| denotes the determinant of the matrix (δ + c)μν and θ ( p̄0) the Heaviside function of p̄0. Going

to a frame in which θ̃μ is purely timelike, i.e.,

θ̃μ � (θ̄ ; �0)

gt, θ̄ �
√

θ̃ · θ̃ �
√

θμ((δ + c)−2)μνθν, (73)

it follows, upon parametrizing | �̄p |� m sinh x , that

I � 4πm2

| δ + c |
∫ ∞

0

sinh2 x dx

e−α+θ̃ ·a+θ̄ cosh x − ε
� 4πm2

| δ + c | J20(mθ̄ , α − θ · ã) (74)

where

ãμ � ((δ + c)−1)μλa
λ, (75)

and

Jnm(ζ, α) �
∫ ∞

0

sinhn x coshm x

eζ cosh x−α − ε
dx . (76)

Note that we have assumed here that the mass m is nonzero. The massless case will be treated separately in Sect. 6. The functions
Jnm(ζ, α) satisfy the identities

∂ Jnm
∂α

� n − 1

ζ
Jn−2,m+1 +

m

ζ
Jn,m−1 (n ≥ 2) (77)

∂ Jnm
∂ζ

� −n − 1

ζ
Jn−2,m+2 − m + 1

ζ
Jnm � −∂ Jn,m+1

∂α
. (78)

By using Eqs. (77) and (78), one readily finds

∂ I

∂θμ
� − 4πm2

| δ + c |
∂

∂α

[
m

θ̄
J21(mθ̄ , α − θ · ã) θν((δ + c)−2)νμ
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− J20(mθ̄ , α − θ · ã)ãμ

]
. (79)

From identity (68), it then follows after integrating over the parameter α that

Jμ � 4πgm3

h3θ̄ | δ + c | J21(mθ̄ , α − θ · ã)θμ. (80)

Note that there is no additional term independent of α (i.e., integration constant) as both of the expressions (67) and (61) vanish in
the α → −∞ limit.

Similarly, it follows from Eqs. (69), (77) and (78) that

Tμν � 4πgm4

h3| δ + c |
[
−1

3
J40η

μν +

(
J22 +

1

3
J40

)
θμθλ((δ + c)−2)λ

ν

θ̄2
+ J21

θμãν

mθ̄

]
, (81)

where we abbreviated Jnm(mθ̄ , α − θ · ã) � Jnm .
Defining the observer scalar quantity

n �
√
Jμ((δ + c)−2)μ

ν Jν � 4πgm3

h3| δ + c | J21(mθ̄ , α − θ · ã) (82)

it follows from Eq. (80) that

Jμ � n

θ̄
θμ (83)

and from Eq. (81) that

Tμν � −n

θ̄

[
mθ̄ J40

3J21
ημν − J22 + 1

3 J40

J21

m

θ̄
θμθλ((δ + c)−2)λ

ν − θμãν

]
. (84)

It is useful to define the four-vector

uμ � Jμ

n
� θμ

θ̄
. (85)

It satisfies the normalization condition

uμ((δ + c)−2)μ
νuν � 1. (86)

Comparison with Eq. (4) (in the gauge e � 1/m) shows that uμ can be interpreted as the four-velocity of the fluid. Observer frames
in which the space-like components of uμ are identically zero define the rest frame of the fluid. For such a frame, the time component
of uμ is equal to

u0 � (
((δ + c)−2)0

0)−1/2
(87)

(rather than one, in the Lorentz-symmetric case). In the rest frame of the fluid, we can identify θ0, the time component of θμ, with
(kT )−1. It then follows from Eqs. (85) and (87) that

θ̄ � 1

u0kT
�

√
((δ + c)−2)0

0

kT
. (88)

The latter expression is valid in any frame.
In order to extract the physically relevant quantities from the energy-momentum tensor, such as the pressure and the energy

density, one defines projective tensors �
μν
‖ and �

μν
⊥ � ημν − �

μν
‖ such that

�
μβ
‖ �‖,β ν � �

μν
‖ (89)

�
μβ
⊥ �⊥,β

ν � �
μν
⊥ (90)

�
μβ
‖ �⊥,β

ν � �
μβ
⊥ �‖,β ν � 0 (91)

�
μν
‖ uν � uμ (92)

�
μν
⊥ uν � 0. (93)

One then defines the energy density in the rest frame of the fluid as

E � �
νμ
‖ Tμν, (94)
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the pressure as

P � −1

3
�

νμ
⊥ Tμν, (95)

and the energy-momentum tensor can be written, in any frame, as

Tμν � E�
μν
‖ − P�

μν
⊥ . (96)

In the Lorentz-symmetric case, one simply has �
μν
‖ � uμuν . For the Lorentz-violating case the bi-vector uμuν no longer satisfies

the identities (89)–(93). It turns out that the appropriate generalization satisfying identities (89)–(93) and also yielding the correct
decomposition (96) is given by

�
μν
‖ � uμ

[
m(J22 + 1

3 J40)((δ + c)−2)νλuλ + J21ãν
]

m(J22 + 1
3 J40) + (ã.u)J21

(97)

It follows from Eqs. (94) and (95) that

E � nm

(
J22

J21
+
ã · u
m

)
(98)

P � nm

3

J40

J21
. (99)

Next consider the entropy density current (45) for the equilibrium distribution (58). A little algebra shows that

sμ � kg

h3

∫
d3 p

p̃0
p̃μ

[
−1

ε
ln(1 − ε eα−θ ·p) +

θ · p − α

eθ ·p−α − ε

]

� sμ
1 + sμ

2 + sμ
3 . (100)

where

sμ
1 � − kg

εh3

∫
d3 p

p̃0
p̃μ ln(1 − εeα−θ ·p) (101)

sμ
2 � kg

h3

∫
d3 p

p̃0
p̃μ θ · p

eθ ·p−α − ε
� kTμνθν (102)

sμ
3 � −kαg

εh3

∫
d3 p

p̃0
p̃μ 1

eθ ·p−α − ε
� −kα Jμ (103)

In order to evaluate sμ
1 , we note that

∂sμ
1

∂α
� − 1

α
sμ

3 � k Jμ. (104)

From Eq. (77), we have

∂ J40(ζ, α)

∂α
� 3

ζ
J21(ζ, α) (105)

which allows to express Eq. (80) as

Jμ � 4πgm4

3h3| δ + c |
∂ J40(mθ̄ , α − θ · ã)

∂α
θμ. (106)

It then follows from Eq. (104) after integrating over α that

sμ
1 � 4πkgm4

3h3| δ + c | J40(mθ̄ , α − θ · ã)θμ. (107)

Note that there is no term independent of α (integration constant) as both sμ
1 and J40 vanish in the α → ∞ limit.

We can compute sμ
2 by evaluating Tμνθμ from Eqs. (84) and (85). It follows that

Tμνθμ � n

(
m

J22

J21
+ ã · u

)
θμ (108)

From Eqs. (100)–(103), (83), one finds

sμ � kn

(
m

J22 + 1
3 J40

J21
+ ã · u

)
θμ − kαnuμ
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� kθ̄ (E + P)uμ − kαnuμ, (109)

where we used Eqs. (94) and (95). Considering Eq. (109) in the rest frame, we can write the time component as

αkT � E + P − T s0

nu0 . (110)

On the right-hand side of Eq. (110), we recognize the Gibbs function (free energy) per particle (note that nu0 � J 0 is equal to the
particle density in the rest frame). Relation (110) corresponds to the Gibbs-Duhem equation for one type of particle, and we can
identify

α � μE

kT
. (111)

where μE is the chemical potential.

5 The Maxwell–Boltzmann case

For either of the cases ε � ±1 the above results simplify, in the limit e−α � e−μE/(kT ) � 1, to the Maxwell-Boltzmann case ε � 0.
The equilibrium distribution function (58) then simplifies to the Maxwell-Jüttner distribution

feq(x, p) � eα.e−θμ pμ

(112)

while the functions Jnm(ζ, α) defined in Eq. (76) reduce to

Jnm(ζ, α) → eα

∫ ∞

0
sinhn x coshm xe−ζ cosh xdx . (113)

These functions can be related the modified Bessel functions of the second kind which have the representation

Kn(ζ ) �
∫ ∞

0
cosh(nx)e−ζ cosh xdx . (114)

They satisfy the recurrence relation

Kn+1(ζ ) − Kn−1(ζ ) � 2n

ζ
Kn(ζ ). (115)

By using relation (115), together with the identities

sinh2 x cosh x � 1
4 (cosh(3x) − cosh x) (116)

sinh2 x cosh2 x � 1
8 (cosh(4x) − 1) (117)

sinh4 x � 1
8 (cosh(4x) − 4 cosh(2x) + 3) (118)

it is then straightforward to show that, in the Maxwell–Boltzmann limit,

J21(ζ, α) → eα

ζ
K2(ζ ) (119)

J22(ζ, α) → eα

4ζ
(3K3(ζ ) + K1(ζ )) (120)

J40(ζ, α) → 3eα

ζ 2 K2(ζ ). (121)

The expressions (82) for n, (98) for E and (99) for P reduce to

n � 4πgm2

h3| δ + c | e
α−θ ·ã K2(mθ̄ )

θ̄
(122)

E � n

(
mG(mθ̄ ) − 1

θ̄
+ ã · u

)
(123)

P � n

θ̄
. (124)

Here we followed [17] in defining G(u) � K3(u)/K2(u). It can be checked that relation (122) is consistent with Eqs. (31) and (27)
of Ref. [5], if we identify 〈N (C)〉/V with our J 0 and take g � 2 (as Ref. [5] considers a spin 1/2 system) and take into account that
the chemical potential considered in Ref. [5] does not include the rest energy of the particle.
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In the rest frame, we can write Eq. (124) as P � J 0/θ0. As in that frame J 0 can be identified with the particle density and θ0

with the inverse temperature, Eq. (124) thus amounts to the ideal gas law.
Equation (123) can be used to determine the specific heat per particle in the rest frame. As the energy per particle equals

e � E/J 0 � E/(nu0), it is straightforward to compute the specific heat per particle at constant volume (i.e., at constant n):

cV �
(

∂e

∂T

)
n

� 1

u0n

∂θ̄

∂T

(
∂E
∂θ̄

)
n

� −kθ̄2
(
m2G ′(mθ̄ ) +

1

θ̄2

)

� k
[
(mθ̄ )2(1 − G(mθ̄ )2) + 5mθ̄ G(mθ̄ ) − 1

]
(125)

where we used the identity G ′(u) � G(u)2 −5G(u)/u−1. Note that cV does not depend on the LV parameter aμ. Its only difference
from the Lorentz-symmetric result (see [17]) is through the replacement T → (kθ̄ )−1 � u0T . One can also compute the specific
heat per particle at constant pressure by introducing the enthalpy per particle h � e + P/J 0. One obtains cP � cV + k as usual,
essentially as a consequence of the ideal gas law (124). The low-temperature limit θ̄ → ∞ yields the familiar results cV → 3k/2
and cP → 5k/2, while in the ultrarelativistic limit θ̄ → 0, cV → 3k and cP → 4k.

Expression (84) for the energy-momentum tensor becomes

Tμν � n

θ̄

(
m

θ̄
G(mθ̄ )θμ((δ + c)−2)νλθ

λ − ημν + θμãν

)
, (126)

, while with the use of Eq. (124) the entropy current density (109) simplifies to

sμ � k
[
θ̄E + (1 − α)n

]
uμ. (127)

We can use expression (122) to express the equilibrium value of the parameter α in terms of the particle density. It follows that

α � ln

( | δ + c | nθ̄h3

4πgm2K2(mθ̄ )

)
+ θ · ã (128)

which means that the Maxwell–Boltzmann equilibrium distribution (112) can be written as

feq(x, p) � | δ + c | nθ̄h3

4πgm2K2(mθ̄ )
e−θ ·(p−ã) (129)

Using Eqs. (123) and (128), we then find for the entropy current density (127)

sμ � kn

[
mθ̄G(mθ̄ ) − ln

( | δ + c | nθ̄h3

4πgm2K2(mθ̄ )

)]
uμ. (130)

Note that the right-hand side of Eq. (130) is independent of aμ; this is not the case for the corresponding expression in Eq. (109)
which still depends on aμ through the arguments of the functions Jnm in the definitions (98) and (99) of E and P.

5.1 Nonrelativistic limit

Let us now consider the nonrelativistic limit, in which the thermal kinetic energy of the particles is much less than their rest mass.
In this case, we have that ζ ≡ mθ̄ � 1, and we can use the large-ζ expansion [22]:

Kn(ζ ) �
√

π

2ζ
e−ζ

[
1 +

4n2 − 1

8ζ
+

(4n2 − 1)(4n2 − 9)

2! (8ζ )2 + . . .

]
. (131)

It follows that

G(ζ ) � K3(ζ )

K2(ζ )
� 1 +

5

2ζ
+

15

8ζ 2 + . . . (132)

and we get for the energy per particle in the rest frame

e � E
u0n

� 1

u0

(
mG(mθ̄ ) − 1

θ̄
+ ã · u

)

� m

u0 +
3

2
kT + O

(
k2T 2

m

)
+ ã0. (133)

The first term corresponds to the rest energy of the particle m∗, which should be identified with its mass (note that we are taking
natural units with c � 1). Thus we have

m∗ � m

u0 � m
√

((δ + c)−2)0
0. (134)
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From Eq. (130), we find

sμ

n
� k

[
ζG(ζ ) − ln

( | δ + c | nθ̄h3

4πgm2K2(mθ̄ )

)]
uμ

� k

[
5

2
+ ln

(
g(2πmkTu0)3/2

h3| δ + c | n
)

+
15

4ζ
+ . . .

]
uμ

� k

[
5

2
+ ln

(
g(2πm∗kT )3/2(u0)3

h3| δ + c | n
)

+
15kT

4m∗ + . . .

]
uμ (135)

The first two terms inside the square brackets correspond to the Sackur-Tetrode formula with Lorentz-violating correction; the third
term is the lowest-order relativistic correction.

6 Massless particles

Let us now consider the case m � 0 in which the particles are massless. This will affect, first of all, the construction of the covariant
Boltzmann equation. In this case, it is no longer possible to fix the reparametrization gauge by setting e � 1/m as in Eq. (9).
Instead, one can simply fix e � 1, turning τ to be equal to an affine parameter of mass dimension −2 instead of −1. Similarly, the
four-force Kμ � dpμ/dτ now becomes of mass dimension 3, while the only change in the Boltzmann equation (29) (as well as the
Uehling–Uhlenbeck equation (33)) is the elimination of the factor m in front of the force term. The demonstration of the H-theorem
as well as the derivation of the equilibrium distributions in Sect. 3 then go through practically unchanged.

Let us now analyze the evaluation of the particle number current and the energy-momentum tensor for the equilibrium distribution
(58). We can no longer perform the parametrization | �̄p|� m sinh x leading to Eq. (74). Instead, we write, analogously to Eq. (72),

I �
∫

d3 p

p̃0

1

e−α+θ ·p − ε

� 2

| δ + c |
∫

d4 p θ ( p̄0)δ( p̄ · p̄)
1

e−α+θ̃ ·( p̄+a) − ε

� 1

| δ + c |
∫

d3 p̄

p̄0

1

eα−θ̃ ·a+θ̃ · p̄ − ε
. (136)

The final integral can be carried out in the rest frame of θ̃μ, yielding the result

I � 4πε−1

| δ + c | θ̄2
Li2(ε e

α−θ ·α̃), (137)

where Lis(z) represents the polylogarithm function of order s, defined, for |z|< 1, by the power series

Lis(z) �
∞∑
k�1

zk

ks
. (138)

With the help of relation (68), it follows, after integrating over α, that

Jμ � n
θμ

θ̄
� nuμ (139)

with

n � 8πgε−1

h3| δ + c | θ̄3
Li3(ε e

α−θ ·α̃) (140)

where we used the identity

Lis+1(z) �
∫ z

0

Lis(t)

t
dt. (141)

Using relation (69), one then finds, after once more integrating over α and using identity (141), that

Tμν � − 8πgε−1

h3| δ + c | θ̄4

[
Li4(ε e

α−θ ·ã)
(

ημν − 4
θμ((δ + c)−2)νλθ

λ)

θ̄2

)
− Li3(ε e

α−θ ·ã)θμãν

]
. (142)

Next we construct the projectors �
μν
‖ and �

μν
⊥ satisfying the identities (89)–(96). We find

�
μν
‖ � uμ

[
4K (ε eα−θ ·ã)((δ + c)−2)νλuλ + θ̄ ãν

]
4K (ε eα−θ ·ã) + (ã · u)θ̄

, (143)
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where we defined

K (z) � Li4(z)

Li3(z)
. (144)

We then find for the energy density

E � �
νμ
‖ Tμν � n

[
3

θ̄
K (ε eα−θ ·ã) + ã · u

]
(145)

and the pressure

P � n

θ̄
K (ε eα−θ ·ã). (146)

Using the decomposition (100)–(103), we can compute the entropy density for the massless case, with the use of expressions (139),
(140) and (142). It follows that

sμ � kn
[
4K (ε eα−θ ·ã) + ã · θ − α

]
uμ. (147)

Note that the Gibbs-Duhem relation (110) continues to hold.
Let us apply these results to a photon gas. While the Boltzmann equation would seem to be inapplicable to this case, as photons

are essentially noninteracting, they are nevertheless usually in thermal equilibrium, due to the fact that they are in thermal contact
with matter. For this case, we take α � 0, ε � 1 and g � 2 (corresponding to the two photon helicities). Moreover, we will only
assume a nonzero value for the Lorentz-violating coefficient cμν . To leading order, this coefficient equals cμν � − 1

2 (kF )μαν
α ,

where kμνρλ
F is the four-index Lorentz-violating coefficient in the photon sector of the minimal SME [2]. It then follows from the

identity Li4(1) � π4/90 that

E �
(

8π5k4(u0)4

15h3| δ + c |

)
T 4. (148)

This corresponds to the usual result accompanied by the Lorentz violation correction (u0)4/| δ + c |. The photon gas pressure, the
entropy density and the energy density, are related by P � E/3 and s0 � 4E/(3T ), just as in the Lorentz-symmetric case.

7 Multiple species of particles

In the previous sections, we considered the case in which there is only one type of particle subject to the dispersion relation (1). In
this case, one may wonder whether the Lorentz-violating effects are really physically measurable. It is well known that in the SME
the effects associated with the aμ coefficient on a single fermion field can be absorbed by a field redefinition ψ → exp(−iaμxμ)ψ

[2]. Moreover, the symmetric cμν coefficient of the SME can be eliminated by applying the linear transformation [23]

xμ → (x ′)μ � (δμ
ν + cμ

ν)x
ν (149)

on the spacetime coordinates.1

In this work, we don’t have a quantum field theory, but nevertheless, the Lorentz-violating effects associated with the cμν

coefficient can be eliminated by applying the same spacetime transformation (149) in the defining particle Lagrangian (2). Similarly,
we can absorb the effect of the aμ coefficient by performing an appropriate momentum shift redefining the zero point of energy
momentum. Clearly such an operation is compatible with momentum conservation in the scattering process (p1, p2 → p′

1, p
′
2).

In order to assure that the Lorentz-violating effects are physically observable one needs to introduce other species of particles
subject to different Lorentz-violating sets of coefficients. The spacetime transformation (149) can at most absorb the Lorentz-
violating effects of the cμν coefficients for one of the species of particles. Similarly, we can only consistently apply a momentum
shift to eliminate the effects of the aμ coefficients for one particle species. Any differences between the coefficients of different
species are unaffected by either of the transformations.

Therefore, let us assume that there are n > 1 species of particles present, labeled a � 1, . . . , n. Each species a is defined by its
mass ma , and by its own set of Lorentz-violating coefficients cμν

a and aμ
a .

First we will assume that only elastic collisions take place, in which each particle maintains its identity. Considering the Maxwell-
Boltzmann case ε � 0, the Boltzmann equation (29) for species a becomes

p̃μ
a ∂μ fa + m

∂(Kμ
a fa)

∂pμ
a

�
n∑

b�1

g

h3

∫
d3 pb
p̃0b

d3 p′
a

p̃′
0a

d3 p′
b

p̃′
0b

( fa′ fb′ − fa fb)W (pa, pb → p′
a, p

′
b) (150)

1 The transformation (149) also affects the photon sector, if present. For details, see Refs. [23, 24].
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and the corresponding transfer equation

∂

∂xμ

(∫
d3 pa
p̃0a

faψa p̃
μ
a

)
−

∫
d3 pa
p̃0a

(
p̃μ
a

∂ψa

∂xμ
+ mKμ

a
∂ψa

∂pμ
a

)
� Coll[ψ], (151)

where now, applying detailed balance,

Coll[ψ] � g

2h3

n∑
b�1

∫
d3 pa
p̃0a

d3 pb
p̃0b

d3 p′
a

p̃′
0a

d3 p′
b

p̃′
0b

(ψa′ + ψb′ − ψa − ψb) × W (pa, pb → p′
a, p

′
b) fa fb. (152)

Now define the species-dependent currents and energy-momentum tensors

Jμ
a (x) � g

h3

∫
d3 pa
p̃0a

p̃μ
a fa(x, pa)

gt, Tμν
a (x) � g

h3

∫
d3 pa
p̃0a

p̃μ
a pν

a fa(x, pa). (153)

Let us assume, as before, that the external force vanishes. It then follows, by taking ψ � 1 in Eq. (151), that

∂μ J
μ
a � 0 (154)

and by taking ψ � pμ
a that

∂μT
μν
a � 0. (155)

In other words, for any species the particle number current and the energy-momentum tensor are separately conserved. It is easy to
verify that the ansatz (58) for the equilibrium distribution

fa(x, p) � eαa−θ ·p (156)

with arbitrary species-dependent chemical potentials αa satisfies Eq. (150), as the collision term (152) vanishes. Note that the
four-vector θμ is common to all species.

The equilibrium expressions (80) and (81) for Jμ and Tμν continue to apply, with the species-dependent values of the Lorentz-
violating coefficients. This is also the case for the expressions (73) for θ̄ , (82) for n and (85) for uμ. The four-vectors uμ are
proportional to θμ for any species, with species-dependent normalization θ̄−1. The temperature, which is defined in the rest frame
as 1/(kθ0), is common to all particle species.

The total energy density and the pressure are given by

E �
n∑

a�1

Ea

gt, P �
n∑

a�1

Pa (157)

where Ea and Pa correspond to the partial energy density and the partial pressure of the species a given by formulas (123) and (124).
Next consider the case where there are also inelastic collisions, corresponding to chemical or nuclear reactions. Following [17],

we will consider the case of four species a � A, B,C, D subject to the reaction

A + B

gt �
gtC + D

gt. (158)

The right-hand side of Eq. (150) then includes the additional term Ra defined as

RA � g

h3

∫
d3 pB
p̃0B

d3 p′
C

p̃′
0C

d3 p′
D

p̃′
0D

( fC ′ fD′ − f A fB )W (pA, pB → p′
C , p′

D) (159)

RC � g

h3

∫
d3 pA
p̃0A

d3 pB
p̃0B

d3 p′
D

p̃′
0D

( f A fB − fC ′ fD′ )W (p′
C , p′

D → pA, pB ) (160)

and analogous expressions for RB and RD . Similarly, the collisional functional (152) gets an additional term∫
ψa Ra

d3 pa
p̃0a

. (161)
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It then follows that the Jμ
a are no longer separately conserved, but satisfy

∂μ J
μ
a � νal (162)

where

l �
∫

RA(pA)
d3 pA
p̃0A

� −
∫

RC (p′
C )

d3 p′
C

p̃′
0C

� g

h3

∫
d3 pA
p̃0A

d3 pB
p̃0B

d3 p′
C

p̃′
0C

d3 p′
D

p̃′
0D

( fC ′ fD′ − f A fB)W (pA, pB → p′
C , p′

D) (163)

and

νA � νB � −νC � −νD � 1. (164)

We see that the total current Jμ � ∑D
a�A Jμ

a is conserved. This is also the case for the total energy-momentum tensor Tμν �∑D
a�A Tμν

a , as can be shown by summing the transfer equation over all species and substituting ψa � pμ
a .

However, if we substitute the ansatz (156) into the (modified) transfer equation, the extra term in the collisional functional no
longer vanishes, due to the fact that

fC ′ fD′ − f A fB � (
eαC+αD − eαA+αA

)
e−θ ·(p′

C+p′
D ) (165)

Evidently, for this to vanish one needs the equilibrium condition

αA + αB − αC − αD �
D∑
aA

νaαa � 0 (166)

relating the chemical potentials of the 4 particle species.

8 Bose–Einstein condensation

As an application, we investigate the effects of the Lorentz-violating coefficients on Bose–Einstein condensation for a monospecies
gas. Relativistic Bose–Einstein condensation without Lorentz violation has been worked out by Landsberg and Dunning-Davies
[25] (see also [17]). For simplicity, we will consider aμ � 0, with nonzero cμν .

As a starting point, we take the expression for the particle density for the case ε � 1, which equals the zero-component of the
current density given by Eq. (80):

J 0 � 4πgm3u0

h3| δ + c | J21(mθ̄ , α). (167)

where we used definition (85).
Denoting mθ̄ � ζ , we have

J21(ζ, α) �
∫ ∞

0

sinh2 x cosh x

e−α+ζ cosh x − 1
dx

� 1

ζ 3

∫ ∞

0

√
u2 + 2ζu (u + ζ )

e−α+ζ+u − 1
du

�
∫ ∞

0

√
y2 + 2y (y + 1)

e−α+ζ (y+1) − 1
dy (168)

where we introduced the variables u and y defined by

y � u

ζ
� cosh x − 1. (169)

Note first of all that J21(ζ, α) is only well defined for ζ ≥ α. Now let us fix the particle density J 0 to some value. Working in the
rest frame of the fluid, Eq. (167) represents an implicit relation between the variables ζ � mθ̄ � m/(u0kT ) and α � μE/(kT ).
From the third identity of Eq. (168), it follows that:

• For fixed α, J21(ζ, α) is monotonically decreasing as a function of ζ ;
• for fixed ζ , J21(ζ, α) is monotonically increasing as a function of α;
• for ζ > 0, J21(ζ, ζ ) is finite and monotonically decreasing as a function of ζ , tending to zero if ζ → ∞ and tending to ∞ if

ζ → 0.
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Fig. 1 Curves in the (ζ, α) plane
on which J21(ζ, α) equals, from
left to right, 5, 3, 2, 1.25 and 0.8,
each one ending on the line α � ζ
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This means that in the (ζ, α) plane the tangents to the curves defined by fixed values of J 0 always have a slope that is strictly larger
than unity. Therefore these curves will intersect the 45◦ line α � ζ at some point and cease there, defining a critical, maximum
value ζc for ζ , corresponding to a minimum, critical value Tc for the temperature. Below this temperature relation (167) between
the particle density and the temperature cannot be maintained. In Fig. 1 we have plotted, for illustration, a number of curves in the
(ζ, α) plane on which J21(ζ, α) is constant, each one ending on the line α � ζ .

The physical interpretation of this effect is of course well known: below Tc a finite number of particles condenses in the lowest-
energy state. Denoting the total number of particles at the temperature T as N � V J 0 (with V equal to the volume) and N0 as the
number of particles in the lowest-energy state, we have for T < Tc from Eq. (167)

N � N0 +
4πVgm3u0

h3| δ + c | J21(ζ, ζ ) � 4πVgm3u0

h3| δ + c | J21(ζc, ζc) (170)

which yields the temperature dependence
N0

N
� 1 − J21(ζ, ζ )

J21(ζc, ζc)
. (171)

We can obtain explicit expressions for Tc and N0/N in two limits:

1. In the nonrelativistic regime ζ � 1 it follows from the second identity of Eq. (168) that

J21(ζ, ζ ) ≈
√

2

ζ 3

∫ ∞

0

√
u du

eu − 1
�

√
π

2ζ 3 ζR(3/2) (172)

where ζR(s) is the Riemann ζ function. The critical temperature can now be obtained by inverting relation (167). One finds

Tc � h2

2πmk(u0)5/3

(
J 0| δ + c |
ζR(3/2)

)2/3

� h2

2πm∗k

(
J 0

ζR(3/2)

)2/3( | δ + c |
u0

)2/3

(173)

where in the second line we substituted the effective rest mass (134). The last factor in the second equation of (173) represents
the correction due to the coefficients cμν ; when evaluated to first order, it yields2

( | δ + c |
u0

)2/3

≈ 1 − 2
3 Tr[ci j ]. (174)

For the temperature dependence (171), we obtain from Eq. (172) in the nonrelativistic limit the well-known result

N0

N
� 1 −

(
T

Tc

)3/2

. (175)

2 The correction (174) is consistent with the corresponding one found in Ref. [5].
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2. In the ultrarelativistic limit ζ � 1, we obtain from the second identity of Eq. (168)

J21(ζ, ζ ) ≈ 1

ζ 3

∫ ∞

0

u2 du

eu − 1
� 2

ζ 3 ζR(3). (176)

Inverting relation (167) now yields

Tc � h

2k

(
J 0

πgζR(3)

)1/3

| δ + c |1/3(u0)−4/3 (177)

while the temperature dependence (171) reduces to the usual result

N0

N
� 1 −

(
T

Tc

)3

. (178)

It is interesting to identify the nature of the condensed state. In the Lorentz-invariant case, it corresponds, in the rest frame of the
fluid, to the state with zero three-momentum and zero velocity. In the Lorentz-violating case, the situation requires more careful
consideration. From Eq. (168), or equivalently Eq. (72), we see that the condensed state will be the one in which θμ pμ takes its
minimum value. Moreover, we have to take into account that pμ is constrained to satisfy the dispersion relation Eq. (1). We can
solve this in the standard way by introducing a Lagrange multiplier λ, define the function

Hc(p
μ, λ) � θμ pμ + λD(pμ) (179)

and solve the system

∂Hc

∂pμ
� ∂Hc

∂λ
� 0. (180)

Noting that ∂D(pμ)/∂pμ � 2 p̃μ (with p̃μ defined by Eq. (8)), it follows that p̃μ ∝ θμ. Using definitions (85) and (86) for uμ,
together with the constraint (4), we readily conclude that the four-velocity ẋμ of the condensed state is exactly equal to uμ. Therefore,
the condensate has zero three-velocity in the rest frame of the fluid. Note that its spatial momentum is not zero in that frame, but is
defined by Eq. (5).

9 Summary and discussion

In this work, we presented a treatment of relativistic kinetic theory in the presence of Lorentz-violating dispersion relations associated
to two commonly considered sets of coefficients in the SME. Adopting a manifestly observer-covariant approach, we carefully defined
the phase-space distribution function and the Boltzmann equation, for the cases of classical and quantum (fermionic or bosonic)
statistics. Using the associated transfer equation, we generalized Boltzmann’s H-theorem to the Lorentz-violating case, using an
appropriate definition of the entropy current.

Next we analyzed the equilibrium solutions of the Boltzmann equation. Concentrating on those in which the phase-space dis-
tribution function is independent of the spacetime coordinates, we first constructed the appropriate forms of the particle-density
current and the energy-momentum tensor. Using these, we then extracted the standard thermodynamic variables such as the energy
density, the isotropic pressure, the temperature, the chemical potential and the entropy. We found that these quantities are defined in
a fashion that is parallel to the Lorentz-symmetric case, but with crucial factors accounting for Lorentz-violating effects associated
with the SME parameters. As an application, we analyzed Bose–Einstein condensation in the presence of Lorentz violation. We also
generalized the Boltzmann equation to the case of various species of particles with different sets of Lorentz-violating coefficients,
allowing for the possibility of a chemical reaction in nonelastic collisions. We compared our results to those obtained previously in
the literature in studies using a conventional approach to thermodynamics in the presence of Lorentz violation, based on a partition
function.

While we applied our approach explicitly on to the sets of SME coefficients aμ and cμν , our general setup can be straightforwardly
adapted to accommodate dispersion relations associated to any of the other coefficients in the minimal or nonminimal SME, as well
as other models with SME-like Lorentz-violating dispersion relations. Given any dispersion relation D(p) � 0 involving Lorentz-
violating coefficients, as an alternative to Eq. (1), one defines

p̃μ � ∂D

∂pμ
. (181)

The modified Boltzmann equation and the Uehling–Uhlenbeck equation are then defined by Eqs. (29) and (33), with the new definition
(181) of p̃μ. This also holds for the subsequent analysis. What needs to be adapted on a case-by-case basis is the calculation of the
thermodynamical quantities in Sect. 4. It may not be feasible to compute the relevant integral (67) for all cases. If not, it may be
necessary instead to resort to a simplified analysis to first order in the Lorentz-violating coefficients.
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In this work, we have presented the basic framework for kinetic theory in the presence of Lorentz-violating dynamics, and an
analysis of equilibrium solutions of the Boltzmann equation. There are various relevant issues that are beyond the scope of the current
work. The most obvious one is the application of the Boltzmann equation to analyze out-of-equilibrium processes in the presence
of Lorentz violation. In particular, it should be interesting to develop the Chapman-Enskog method to derive the Lorentz-violating
effects on the equations of hydrodynamics, such as the laws of Navier-Stokes and Fourier. Another interesting open topic is the
derivation and analysis of the Boltzmann equation with Lorentz violation in the presence of gravitational fields [21].
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