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Abstract Microfluidic biosensors have played an important and challenging role for the rapid detection of the new severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2). Previous studies have shown that the kinetic binding reaction of the target
antigen is strongly affected by process parameters. The purpose of this research was to optimize the performance of a microfluidic
biosensor using two different approaches: Taguchi optimization and artificial neural network (ANN) optimization. Taguchi L8(25)
orthogonal array involving eight groups of experiments for five key parameters, which are microchannel shape, biosensor position,
applied alternating current voltage, adsorption constant, and average inlet flow velocity, at two levels each, are performed to minimize
the detection time of a biosensor excited by an alternating current electrothermal force. Signal to noise ratio (S/N ) and analysis of
variance were used to reach the optimal levels of process parameters and to demonstrate their percentage contributions, in terms
of improved device response time. The principal results of this study showed that the Taguchi method was able to identify that the
kinetic adsorption rate is the most influential parameter at 93% contribution, and the reaction surface position is the least influential
parameter at 0.07% contribution. Also, the ANN model was able to accurately predict the optimal input values with a very low
prediction error. Overall, the major conclusion of this study is both the Taguchi and ANN approaches can be effectively utilized to
optimize the performance of a microfluidic biosensor. These advances have the potential to revolutionize the field of biosensing.

Abbreviations

SARS-COV-2 Severe acute respiratory syndrome coronavirus-2
ANN Artificial neural network
DOE Design of experiments
ACET Alternating current electrothermal
S/N Signal to noise
ANOVA Analysis of variance
ACE2 Angiotensin-converting enzyme 2
RT-PCR Reverse transcription polymerase chain reaction
POC Point-of-care
DF Degree of freedom
SS Sum of square
MS Mean squares

1 Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic which was registered in 2019 in Wuhan, China [1],
causes the coronavirus disease (COVID-19) responsible for the death of many people in the whole world. Scientific data indicates
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that SARS-CoV-2 is more contagious than the former severe acute respiratory syndrome coronavirus SARS CoV [2] and uses
angiotensin-converting enzyme (ACE2), like SARS -CoV, to bind to human cells via its structural S-spike glycoprotein (S protein)
[3].

Detection of the SARS-CoV-2 virus has been performed and approved with real-time reverse transcription polymerase chain
reaction (RT-PCR) [4]. However, diagnosis by RT-PCR generally requires expensive reagents, specific equipment, and qualified
personnel [5]. In addition, the preparation stage is complicated, it takes time, which affects the accuracy of the diagnosis [6]. In
order to reduce the detection time of COVID-19 disease, several types of point-of-care (POC) biosensors have been developed [4,
7–9] to detect antigens, antibodies or nucleic acids [10]. Antibody tests are suitable for detecting late-stage infections, while nucleic
acid tests detect the presence of nucleic acids (viruses) at an early stage of infection, showing sensitivity and specificity superior
to antibody tests. However, nucleic acid testing requires more complicated processes than antibody testing such as nucleic acid
extraction, amplification, and detection [11]. Compared to existing POC biosensors, RT-PCR has higher clinical sensitivity and
specificity.

Immunoassays, based on the interactions between antigen and antibodies, have attracted tremendous interest in several fields
such as medicine and the environment [12, 13]. The detection of SARS-CoV-2 virus can be realized by immunodiagnostic assays
by improving specific immunoassays for desired antigen proteins to be reliable and inexpensive. Traditional immunoassays include
complex detection protocols and demand skilled professionals. In addition, the inherent diffusion-limited reaction kinetics and the
incubation step that sometimes takes hours to reach a detectable level limit their broad applications [14, 15]. Due to unmet medical
needs such as early and rapid diagnosis of diseases by detecting very low concentration antigens, immunoassays are increasingly
being transferred to microfluidic formats [16]. This emerging miniaturization technology has improved analysis performance by
integrating multiple processes into a single chip, so analysis time can be reduced, and sensitivity and reliability can be increased even
with low amounts of reagents. Microfluidic chip technology offers the possibility of simultaneously detecting different samples,
which are very useful in protein chips. However, the use of microfluidic chips is still limited, due to the limitations of the diffusion
transport of antigen in the laminar flow, where lack of target antigen acts as a resistance to its detection and thus for lower antigen
concentrations the time required to deliver the antigen to the biosensor becomes longer [14, 15, 17].

In order to improve the sensitivity of microfluidic chips, many numerical and experimental studies have been made [18, 19].
Magnetic effect [20], optical forces [21], electrokinetic effect [22–27], etc., are physical mechanisms that have been applied to
agitate the flows in the microchannel to improve the rate of the biosensor binding reaction. Several studies [28, 29] have analyzed
the effect of the reaction surface and electrodes shapes for a biosensor excited by an electrothermal force in order to improve the
topology of the flow and thus decrease the detection time compared to the same biosensor having a rectangular binding surface.
Recently, microfluidic biosensor have been proposed and numerically analyzed and optimized using the finite element method and
Taguchi method [30]. Shahbazi et al. [31] showed that the location of the reaction surface relative to the channel inlet has a significant
effect on the microfluidic biosensor efficiency. In their study, the authors showed that setting the reaction surface 500 μm from the
channel inlet reduced the saturation time by more than 50%.

The detection process in microfluidic biosensors is based on multiple controllable and uncontrollable parameters. The optimal
combination of key controllable parameters is essential for the entire process, in terms of device efficiency, decreasing the effects of
uncontrollable parameters, as well as reducing process time. Due to the many variables involved in the biosensors detection process,
it can be difficult to attribute the individual result to specific parameters. Classical optimization studies involve the variation of
one controllable parameter, while the other controllable parameters remain constant. However, these techniques are very painful
that can be both expensive and time-consuming [32]. In order to determine the optimal conditions for better manipulation, a time-
efficient orthogonal factorial design method known as the Taguchi method was used in this paper because it offers the advantage of
optimizing the procedure with less numerical tests required [33]. The Taguchi method is a robust systematic experimental design
technique to minimize uncontrollable factors [34] and has been widely used in several fields such as physics [35], medicine [33],
environmental science [32, 36], chemical processes [37] and statistics [34]. The Taguchi method is a powerful tool for identifying
the optimal combination of design parameters to reduce cost, improve quality and/or increase efficiency. In combination with the
Taguchi technique, the analysis of variance (ANOVA) method is a proven method that is used to test the percentage contribution
of each parameter on the desired outputs [38]. To optimize a process or a product by the Taguchi approach, three main steps are
required, namely system design, parameter design and tolerance design. The design of the system means the clear formulation of
the problem to be studied, the definition of the main objectives and the synthesis of knowledge in the fields of application of science
and technology. The design of the parameters aims to list the control factors likely to have an influence on the performance of the
process under consideration. The optimal condition is chosen such that the effect of noise factors results in minimal variation in
system performance.

Tolerance design is a means of refining the results of parameter design by tightening the tolerance of factors that have a significant
influence on the product. There are three categories of quality characteristics for signal to noise (S/N ) analysis which are the higher-
the-better (HB), the lower-the-better (LB), and the nominal-the better. Regardless of the category of the quality characteristic, a
higher S/N ratio corresponds to a higher quality characteristic. Therefore, the optimal level of the process parameters corresponds to
the one with the highest S/N ratio [39]. Optimizing the biosensor through the design of experiments helps guide efforts to improve
the performance of future sensing devices.

123



Eur. Phys. J. Plus          (2023) 138:96 Page 3 of 17    96 

Fig. 1 Design of three types of microfluidic biosensor models. a and b Straight microfluidic chip; c and d 1-cycle microfluidic chip; e and f 2-cycles
microfluidic chip

Another area of focus has been on optimizing the use of artificial neural networks (ANNs) in microfluidic biosensors. This
has involved exploring different network architectures, training algorithms, and hardware configurations in order to maximize the
accuracy and efficiency of the network. The use of ANNs in biosensor optimization is motivated by the ability of these networks to
analyze complex data and make predictions based on this analysis, as well as to reduce the need for labor-intensive manual analysis.

In this paper, numerical tests on microfluidic biosensors were first performed to find the optimal combination of design parameters
(including microchannel shape, biosensor position, applied AC voltage, adsorption constant, and average flow velocity) using the
Taguchi technique, then to examine the contribution of these parameters using the ANOVA method. The global goal is to identify
optimal values of key parameters for rapid and efficient detection of SARS-CoV-2. Further, the results of the numerical simulation
and the multiple regression model are correlated with the results predicted by the artificial neural network (ANN).

The novelty and significance of the results obtained using the Taguchi method and ANN approach to optimize a biosensor
depend on the specific application and the extent to which the optimization improves the performance of the device. In general, any
improvement in accuracy or efficiency can be considered significant, as it has the potential to impact a wide range of applications,
including rapid disease diagnosis.

2 Numerical procedure

2.1 Geometrical conceptions

Figure 1 illustrates three microfluidic chip designs with different microchannel structures (straight, 1-cycle, and 2-cycles). A pair of
electrodes of length LE � 10 μm each was integrated on the lower wall of each microfluidic chip. A reaction surface of length lS is
located at the upper wall, for cases (b), (d) and at the lower wall for cases (a), (c). Two reaction surfaces of length ls

2 each are located
at the upper wall, for case (f) and at the lower wall for case (e). All the geometric dimensions for the three types of microfluidic
chips are presented in Table 1.
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Table 1 Geometrical parameters
for the three types of microfluidic
chips

Design Parameters Value

L1 (μm) 110

H (μm) 20

L2 (μm) 110

L3 (μm) 50

L4 (μm) 190

ls (μm) 10

LE (μm) 10

2.2 Electric field calculation

The electric field E was calculated using the Poisson equation (Eq. 1) where V is the electric potential due to the external potential
applied across the electrodes.

�V � 0 and E � −∇V (1)

2.3 Temperature field calculation

The temperature field in the microchannel fluid was calculated by means of the following thermal energy equation (Eq. 2):

ρCpu · ∇T � λ∇2T + σ |E|2 (2)

where ρ, λ, σ , Cp and u are the density, the thermal conductivity, the electrical conductivity, the specific heat at constant pressure
and the velocity field of the fluid, respectively.

The non-uniform Alternating Current (AC) electric field applied on the fluid induces the variations of the electrical conductivity
σ and permittivity ε of the solution due to the temperature gradient generated from the inhomogeneous Joule heating serving as the
heat source of the fluid, and it is defined as σ |E |2.

Although the electrothermal force applied causes heating of the fluid, the dependence of the specific heat at constant pressure
Cp and of the thermal conductivity λ of the fluid as a function of the temperature T can be neglected, since the conduction of the
ambient heat allows this received heat to dissipate, thereby the growth of the temperature in the fluid mostly stands low [40]. Here,
the viscous dissipation term is smaller than the Joule effect [41], so it has been neglected.

2.4 Flow field calculation

The fluid carrying antigens, supposedly Newtonian and incompressible, flows in a stationary regime inside the microchannel. The
Navier–Stokes equations in 2D are thus used to determine the fluid velocity field u in the microchannel as below (Eqs. 3 and 4)
where 〈Fe〉 describes the electrothermal force.

∇.u � 0 (3)

ρ(u.∇)u � −∇ p + μ∇2u + 〈Fe〉 (4)

Here, p, ρ and μ are the pressure, density, and dynamic viscosity of the fluid, respectively. The applied non-uniform electric
field causes non-uniform Joule heating of the fluid inside the microfluidic channel which gives rise to a temperature gradient and
therefore to gradients of permittivity and electrical conductivity thus generating the electrothermal force responsible of the agitation
of the fluid. The expression of the electrothermal force is given by (Eq. 5):

〈Fe〉 � −1

2

(∇σ

σ
− ∇ε

ε

)
· E εE

1 + (ωτ)2 − 1

4
∇ε|E|2 (5)

where τ � ε/σ is the fluid charge relaxation time and ω is the angular frequency of the electric field E. The used transporter fluid
is water at a temperature close to 293 K, which allowed to consider, according to Green et al. [42], the following equations (Eqs. 6
and 7):

1

ε

∂ε

∂T
� −0.004 ⇒ ∇ε

ε
� 1

ε

∂e

∂T
∇T � −0.004∇T (6)

1

σ

∂σ

∂T
� 0.02 ⇒ ∇σ

σ
� 1

σ

∂σ

∂T
∇T � 0.02∇T (7)
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Fig. 2 Antigen–Antibody Kinetic
reaction

Therefore, the electrothermal force is given by (Eq. 8):

〈Fe〉 � −ε0εr

[
0.012(∇T · E)

E

1 + (ωτ)2 − 0.001
(|E|2)∇T

]
(8)

where ε0 is the permittivity of free space and εr is the relative permittivity of the fluid.

2.5 Antigen concentration field calculation

The diffusion-convection transport of target antigen is modeled by the following Fick’s second law (Eq. 9):

∂[A]

∂t
+ u · ∇[A] � D�[A] (9)

where [A] and D denote the concentration and the diffusion constant of the target antigen, respectively. The binding reaction is
confined on the reaction surface ant it is involved only on the boundary condition.

2.6 Reaction kinetics calculation

Antigen molecules (analytes A) are transported by diffusion and convection to free binding sites (ligands B) immobilized on the
sensitive surface and an analyte-ligand complex (AB) is formed (Eq. 10):

A + B ⇀↽ AB (10)

According to the first-order Langmuir–Hinshelwood adsorption model [43], the antigen–antibody complex (AB) formation can
be described as (Eq. 11):

∂[AB]

∂t
� kon[Asurf ].[Bfree] − kof f [AB] (11)

where [AB]; [Asurf ]; [Bfree], kon and koff are the complex surface concentration, the volume analyte concentration (at the binding
surface), the surface concentration of free ligands, the complex association kinetic rate and the complex dissociation kinetic rate. The
equilibrium of the reaction is described by the equilibrium dissociation constant Kd � koff

kon
. As explained in Fig. 2, the concentration

of available binding sites on the sensitive surface, [Bmax ], is equal to the sum of the concentrations of free binding sites,
[
B f ree

]
,

and that of bound complexes [AB] (Eq. 12):

[Bmax] � [Bfree] + [AB] (12)

The Eq. (11) is then written as (Eq. 13):

∂[AB]

∂t
� kon[Asurf ].([Bmax − [AB]]) − koff [AB] (13)

3 Boundary and initial conditions

An electric potential of ±Vrms and a temperature T0 equal to that of the ambient have been applied to the electrodes. The walls,
reaction surface, inlet, and outlet are assumed to be electrically insulated. In the matter of the thermal boundary conditions, the
walls and reaction surface are presumed to be thermally insulated. Heat flow is exchanged at the inlet and outlet of the channel.
For the modeling of the laminar flow, at the inlet of the microfluidic channel the fluid flows with a parabolic velocity profile of
average value Uave and, at the outlet the flow is supposed to be completely developed. For the lower and upper microchannel walls
including the reaction surface, the no-slip condition was applied. Concerning the modeling of antigen transport, a constant volume
concentration [A]0 and a convective flow condition, −→n .(D∇[A]) � 0, were imposed, respectively at the inlet and at the outlet of
the microchannel. for the reaction surface, the condition of diffusive flux balanced by the temporal flow rate was applied and for
the rest of the microchannel walls, it is assumed to be impermeable (do not interact with the target antigens) and the homogeneous
Neumann condition was adopted [31]. For the initial conditions concerning Eqs. (12) and (13), the analyte and surface complex
concentrations were initially set to zero: [A](t�0) � 0 and [AB](t�0) � 0.
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Table 2 Model parameters Constant Name Value

λ(W/(K·m)) Thermal conductivity 0.6

ρ(kg/m3) Fluid density 1000

μ(Pa.s) Dynamic viscosity 1.08×10–3

Cp(kJ/(kg·K)) Specific heat capacity 4.184

σ (S/m) Electrical conductivity 5.75×10–2

εr Relative permittivity 80.2

f (kHz) Frequency 100

D(m2/s) Diffusion coefficient 10–11

[Bmax]mol/m2 Surface ligand concentration 3.3×10–8

[A0]mol/m3 Analyte input concentration 10–9

4 Numerical simulations

In order to solve the model equations, the finite element method was adopted [44]. The 2D domain has been discretized into triangular
cells and refined near the sensitive surface. First the electric field has been calculated by means of the electrostatic equation, then the
fields of temperature and velocity are obtained by solving together the steady-state Navier–Stokes and thermal energy equations.
Finally, the concentration of the target antigen, [A](x, y, t) in the microchannel and the concentration of the antigen–antibody
complex, [AB](x, t) on the sensitive surface were obtained by simultaneously solving the antigen transport and the binding reaction
equations in a time-dependent regime. Here, the target antigen is the SARS-CoV-2 virus, and the ligand is its antibody (b1 or h12)
[31, 45].

The detection time of the microfluidic biosensor constitutes the main parameter of the analyte-ligand chemical kinetics, and
it corresponds to the time during which the concentration of the analyte-ligand complex reaches 95% of its threshold value. To
obtain the total concentration of the formed complexes (SARS-CoV-2-antibody), the local concentration was integrated over the
entire length of the binding surface (Eq. 14) and the normalized surface concentration of these complexes, [AB], was calculated by
dividing the total concentration by the concentration of binding sites on the surface of the biosensor, [Bmax].

〈[AB]〉 � 1

l s

∫ l s

0
[AB](x, t)dx (14)

where l s is the length of the binding surface.
All the physical and biological (binding) parameters of SARS-CoV-2 S protein/Antibody [24, 31] used for this numerical study

are illustrated in Table 2. In cases of 2-cycles microfluidic chips, the concentration of binding sites on the reaction surface is [Bmax]/2.

5 Results and discussions

5.1 Model validation

First, the numerical model was tested by comparison with experimental existing data of Berthier and Silberzan [31], as shown
in Fig. 3. The time-normalized surface concentration during the adsorption phase was calculated using the same experimental
parameters using a microfluidic channel with 1 mm high and 1 cm wide. The concentration of the target antigens and their diffusion
constant are respectively 2.5×10–6 Mol/m3 and 7×10−11m2/s. The flow rate of the carrier fluid is 10–6 m3/s. The density of binding
sites, association and dissociation constant are 1.668×10–8 Mol/m2, 75 m3/Mol.s and 10−2 s−1, respectively. We can note that the
average error between the two results is very small which makes it possible to consider that the model is proven, and that it can be
used for other topics.

5.2 Binding enhancement by electrothermal force

ACET agitation flow can be used to accelerate the transport of antigen in suspension to the reaction surface, providing more
opportunities for binding between antigens and antibodies. The normalized concentrations of the antigen/antibody complexes
predicted by the numerical model during the association phase, without and with an applied electric field (10 V) and when the
reaction surfaces are placed on the lower or the upper walls are shown in the Fig. 4.

As shown in Fig. 4, the antigen–antibody binding efficiency increases with the electrothermal effect, especially for the 2-cycles
structure regardless of the position of the reaction surface.

123



Eur. Phys. J. Plus          (2023) 138:96 Page 7 of 17    96 

Fig. 3 Comparison of present
model with the experimental
results of Berthier and Silberzan
[26]
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Fig. 4 Normalized surface
concentration during the
adsorption phase for the three
microfluidic chips without and
with electrothermal effect. a The
reaction surfaces are on the
bottom and b The reaction
surfaces are on the top
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5.3 Experimental design

The Taguchi method for the “design of experiments” (DOE) was considered in this numerical simulation in order to reduce the list
of tests to be performed to obtain the lowest detection time of the microfluidic biosensor. Table 3 shows the five factors acting on the
detection system, each taking two levels. If there are five factors called A, B, C, D and E, all of them are examined with two levels
called "-1" and "1", which represent the lowest and highest levels, respectively, then according to the complete plan, the number
of experiments to be carried out should be 25 � 32 trials. To reduce this number, the orthogonal table L8(25), based on Taguchi’s
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Table 3 Selected optimization
factors and respective levels

Symbol Optimization Factor (Unit) Low level (-1) High level (1)

A Microchannel type 1-cycle 2-cycles

B Biosensor position Bottom Top

C Applied voltage, Vrms (V) 0 10

D Adsorption constant, kon (m3/ (Mol.s)) 100 10,000

E Average inlet velocity, Uave(m/s) 0.0001 0.0005

Table 4 The Taguchi L8

(
25

)
orthogonal table

Experiment run Factors levels

A B C D E

1 − 1 − 1 − 1 − 1 − 1

2 − 1 − 1 − 1 1 1

3 − 1 1 1 − 1 − 1

4 − 1 1 1 1 1

5 1 − 1 1 − 1 1

6 1 − 1 1 1 − 1

7 1 1 − 1 − 1 1

8 1 1 − 1 1 − 1

Fig. 5 Normalized complex
concentration versus time for the
nine Taguchi tests
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method, was used, and was presented in Table 4. This plan requires only eight experiments with five critical parameters at two levels
each, while neglecting the interactions between them.

For each test, the factors are defined at levels − 1 or 1. Figure 5 illustrate the average normalized antigen–antibody complex
concentration versus time for all experiment tests of Table 4.

For Taguchi design of experiments, we can manipulate the noise factors to force the variability and fix, from the obtained results,
the optimal parameters that make the detection process robust or resistant to the variation due to these noise factors. When the
values of a signal-to-noise ratio (S/N ) are high, it means that the control factor parameters limit the effects of the noise factors. The
values of S/N ratio for the three experimental objectives which are the nominal is the best, smaller is the best and the lager is the
best, are resumed on Table 5. S is the signal value, N is the noise value, n is the number of simulation test and yi is the measured
response value (response of the simulation ith). A high value of S/N indicates a good performance [39] and the optimal level of
each parameter is then specified by a greater S/N values.

In our case, the S/N ratio values were calculated based on “smaller is better” criteria for each test because we aimed to minimize
the detection time of the device. Table 6 shows the numerical results for the response time of the biosensor TR , the corresponding
S/N ratios and the fluid tempertaures rise (�T ) using the experimental layout.

The increase in the temperature of the fluid for the eight simulations did not exceed the limit value (5°K) [41, 46], which proves
the good choice of the applied voltage levels.

To assess the effect of each key parameter, the mean values of the responses obtained for each level must be calculated. To do
this, the sum of the results associated with each level of the orthogonal table divided by the number of tests for this level provides the
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Table 5 S/N ratio experimental
aims and equations

S/N ratio Experimental objective S/N Ratio expression

Nominal is the best Negative, zero or positive S/N � −10log
(

1
n

∑n
i�1

(
y2
i − y2

0

))

Smaller is the best Minimize the response S/N � −10log
(

1
n

∑n
i�1 y2

i

)

Larger is the best Maximize the response S/N � −10log

(
1
n

∑n
i�1

1
y2
i

)

Table 6 Taguchi orthogonal array results for the biosensor detection time TR and the respective calculated S/N values

Run Factor Results

Type-mic Position Vrms (V) kon Uave TR (min) S/N ratio �T (°K)

1 1-cycle Down 0 100 0.1 786.25 − 57.91 0.00

2 1-cycle Down 0 10,000 0.5 164.58 − 44.33 0.00

3 1-cycle Up 10 100 0.1 690.41 − 56.78 4.77

4 1-cycle Up 10 10,000 0.5 177.91 − 45.00 4.77

5 2-cycles Down 10 10 0.5 570.83 − 55.13 4.82

6 2-cycles Down 10 10,000 0.1 97.91 − 39.82 4.80

7 2-cycles Up 0 100 0.5 571.25 − 55.14 0.00

8 2-cycles Up 0 10,000 0.1 122.91 − 41.79 0.00

The meaning of the bold is to distinguish the optimal test found

Fig. 6 Main effect plots of each
key parameter on the detection
time of the device
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appropriate averages. Figure 6 shows the average effect of the four factors used in this study. The factor with the strongest influence
was determined by the difference values, Delta, between the maximum value and the minimum value of average values obtained.
The greater the difference, the more influential the control factor. From the Fig. 6 of responses, it is evident that the adsorption
constant rate has the strongest influence.

The importance of each key parameter can be determined as shown in Table 7, by subtracting the maximum S/N ratio from its
minimum value across the two levels. The parameter that has the least difference in the S/N ratio has less role in controlling the
synthesis process [47]. By plotting the S/N ratio against each of the key parameters according to the values of Table 7, it is easily
seen in Fig. 7 that, according to the Taguchi method, the lowest value of the response time of the biochip is reached with 2-cycles
microfluidic channel having a reaction surface on the bottom at the highest levels of the applied voltage (10 V) and the adsorption
rate (104) and lowest level of the average flow velocity (0.1 mm/s). The optimal combination (A1B-1C1D1E-1) was among the eight
runs of the L8 orthogonal network (test6), that Taguchi’s method was able to detect it.

5.4 ANOVA analysis: percentage contribution of the controllable parameters

Following the ANOVA scheme used for the L8 Taguchi method [48], the percentage contribution of each key parameter on the
detection time are determined in this work. The equations used in this analysis are as follows (Eqs. 15–19):
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Table 7 Signal to Noise Ratios for each level

Level Type Position Vrms kon Uave

− 1 − 51.01 − 49.30 − 49.79 − 56.24 − 49.08

1 − 47.97 − 49.68 − 49.18 − 42.73 − 49.90

� � Max − Min 3.04 0.38 0.61 13.51 0.82

Rank 2 5 4 1 3

The meaning of the bold is to show that the difference (� � Max − Min) in the S/N ratios allows determining the effects of the design parameters in the
detection process. Whoever has the least difference has less effect and vice versa

Fig. 7 S/N ratio for the five key
parameters at different levels
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• The average of all response times T R in the Taguchi design is:

T R � 1

8

8∑
i�1

TRi (15)

• The total sum of squares SSTotal is:

SSTotal �
8∑

i�1

(
TRi − T R

)2
(16)

• The sum of squares for microfluidic structure, biosensor position, applied voltage, adsorption constant and average inlet velocity
are respectively:

SSi � 2
2∑

i�1

(
TRxi − T R

)2
(17)

where TRx i is the i-th average response time of the corresponding parameter x (Type, Position, Voltage, kon and average inlet
velocity) in the Taguchi design.

• The mean squares (MS) for each parameter i are expressed with:

MSi � SSi
DFi

(18)

where DF is the degree of freedom (1 � number of level– 1).

• The contribution percentages for each parameter i are then:

%Contributioni � SSi
SSTotal

(19)

The obtained results are presented in Table 8 and Fig. 8. Among the selected key parameters, the adsorption constant (kon) has
the highest contribution (93%) to the reduction of the response time of the device, while the position of the reaction surface has the
lowest contribution (0.07%). These results are in agreement with the results of Shahbazi et al. [31] who showed that the saturation
time would increase by 40% when the adsorption and dissociation rates are reduced by a factor of 10. The adsorption rates are very
influential than the other parameters.
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Table 8 ANOVA results on the detection time response

Source DF SS MS % Contribution

Type 1 26,021 26,021 4.6

Position 1 407 407 0.072

Vrms 1 1456 1456 0.26

kon 1 528,099 528,099 93.5

Uave 1 5666 5666 1

Residual Error 2 3131 1565 0.55

Total 7 564,780 – 100

The significance of bold is to show the highest contribution (93%) of the most influential parameter in reducing the response time of the device

Fig. 8 Contributions of key
parameters on biosensor detection
time

5.5 Checking the optimum values

Under the optimal setting conditions, the optimal value of the microfluidic biosensor response time is estimated as follows:

T̂R � T Type1 + T kon 1 − T R � 340.73 + 140.83 − 397.76 � 83.8min (20)

where T T ype1 is the average response time for T ype parameter at high level (level 1) obtained from Table 6, T kon 1 is the average
response time for kon parameter at high level (level 1) obtained from Table 6 and T R is the mean of all response times. By running the

FEM simulation under the optimal tuning conditions, we can get TR � 97.91min, then the relative error:
∣∣∣ TR−T̂R

TR

∣∣∣ × 100 � 14.4%

which is accebtable, knowing that we have taken into account only the two most influential variables.
Figure 9 shows the antigen diffusion boundaries layers just near the reaction surface at the adsorption times (1000 s) for test 3,

test 4, test 5 and test 6 where the electrothermal effect was present. The diffusion boundary layer thickness at the test 6 is very thin,
which shows that the mass transport is sufficient for the analyte-ligand bond for the optimal test, which has led to an improvement
in the efficiency of the biosensor. Moreover, Fig. 10 which shows the velocity field and the flux lines for the four tests having the
ACET effect affirms that the fluid is more agitated in the optimal test 6.

5.6 Multiple regression analysis

Multiple regression is used to predict the relationship between variables. Multiple linear regressions take the following expression:

Y � a0 +
N∑
i�1

ai xi (21)

where Y ≡ TR is the response, a0 is the average of response, xi are the known variables (x1 ≡ T ype, x2 ≡ Position, x3 ≡ Vrms, x4 ≡
kon, x5 ≡ Uave) on which predictions are to be made and ai are the coefficients which are calculated by the least squares method
using the Matlab software:

T R � 397.8 − 57x1 − 7.1x2 − 13.5x3 − 256.9x4 − 26.6x5 (22)
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Fig. 9 Analyte concentration
diffusion boundary layers in
adsorption phase for
electrothermal effect tests

Fig. 10 Velocity field and flow
lines for the four tests having the
ACET effect

The detection time TR of the microfluidic biosensor is calculated by Eq. (22). In multiple regression analysis, the regression
coefficient (R2) is 0.98 indicating that about 98% of the variability in the data has been explained by this model (Eq. 22).

Figure 11 illustrates the direct effects of all the control variables (x1, x2, x3, x4 and x5) on the microfluidic biosensor response
time. These results come from the multiple regression model. The TR isolines as a function of the control variables presented in
Fig. 11 show the direct effect of all the control parameters on the response time of the detection device.

5.7 Artificial neural network

For physical problems with several variables, their dependent models are too complicated. For the case of our problem, the response
time of the microfluidic biosensor depends on several variables. We want to find a simple model to model it. For this, artificial
neural networks (ANN) show their effectiveness for this type of problem. An artificial neuron is a very simple mathematical operator
having inputs which can be the outputs of other neurons, or external signal inputs, and an output. In this section, a multilayer
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Fig. 11 a–j Effects of control parameters on response time TR

backpropagation neural network was adopted in the microfluidic biosensor to predict its performance in terms of detection time.
Artificial Neural Network (ANN) modeling is done through two processes:

• Network formation;
• Analyze the network according to the input data.
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Fig. 12 Block diagram of artificial
neural network

The scaled conjugated gradient algorithm, based on the error correction learning rule, is used to solve complex problems.
The network is validated using all simulation factors (type, position, Vrms , kon , Uave) as input to the network and the predicted

output (detection time) is correlated with the actual values. If the discrepancy between the predicted values and the simulation values
is large, the network is recycled by varying the number of neurons and hidden layers. In this study, 10 neurons in the hidden layers
are used (Fig. 11) and the calculations are performed using the neural network fitting (nft) toolkit available in MATLAB R-2010a.

After processing its input through the activation function, each neuron produces its output. In this ANN model, the hyperbolic
tangent function has been adopted. There are mainly two ways to improve the performance of the neural network: add more training
cases or reduce the number of input factors. In our case, the input data as well as the outputs presented in the Taguchi table are small
(8 inputs for each variable and 8 outputs). For this, we increased the number of data points using a full factorial design (25) based on
ANOVA analysis to improve network performance. The regression between network outputs and corresponding targets during the
training, validation, testing and all data sets processes is shown in Fig. 12. The best match is very close to the ideal model (shown in
the dotted line). An efficient neural network is one that regresses during these various processes with an R value very close to unity.

The high values of R (approximately unity) indicates that the ANN model is very effective in predicting microfluidic biosensor
responses.

Figure 13 presents a comparison of the results of the biosensor detection time calculations found by simulation, ANN and multiple
regression model. The obtained results showed that regression and ANN are effective optimization tools and that ANN was slightly
better than the regression model (Fig. 14).

The design and optimization of an efficient, inexpensive, and reliable microfluidic biosensor in a short time aimed at combating
pandemics may be possible via numerical simulation. On the other hand, the use of a simpler mathematical model for detection
system optimization is possible via multiple regression. In addition, the use of artificial intelligence for complex cases is important.
This new architecture is designed for microfluidic biosensors since it reduces the amount of reagent, energy consumption, and costs.
These results prove the usefulness of numerical simulation and especially the use of artificial intelligence, which makes it possible
to model complex systems with several control factors. On the other hand, the use of the Taguchi method combined with the analysis
of variance (ANOVA) shows its effectiveness in reducing the number of experiments and in determining the significance of the
control factors. In comparison with the literature presented in the introduction, this new optimization method seems the best since
it combines the minimization of the number of tests for simulation as well as artificial intelligence.
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Fig. 13 Regression of estimated
values versus numerical values for
the ANN model

Fig. 14 Comparison of the
estimated values of detection time
obtained with the regression and
ANN models against the
simulation values
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6 Conclusion

This work aims to numerically optimize a microfluidic chip excited with electrothermal force for rapid bioassays for COVID-19
disease. We analyzed the kinetics of the SARS-CoV-2 binding reaction according to some control parameters namely the microfluidic
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chip structure, the position of the reaction surface, the applied voltage, the adsorption rate, and the input fluid velocity. The analysis
shows that the DOE’s approach based on Taguchi method is appropriate to solve this numerical problem. Instead of using full
factor analysis requiring a total of 32 runs of simulations, the L8 orthogonal array consisting of five factors of two levels each and
a total of only 8 runs was used. The results showed that the optimal combination of key parameters tested for the current study is
Type1Position−1Vrms1kon1Uave−1 for the best device answer. Therefore, the optimal combination of high-performance biosensor
enhanced with electrothermal effect and intended for SARS-CoV-2 detection mainly depends on the 2-cycles microfluidic structure,
reaction surface on the bottom wall of the microchannel, applied voltage at level 1 (10 V), adsorption constant at level 1 (10,000) and
average inlet velocity at level − 1 (0,1 mm/s), which reduced the detection time to 97.91 min. The regression model and artificial
neural network (ANN) developed can predict the response time. These advances have the potential to revolutionize the field of
biosensing, enabling the rapid and accurate analysis of a wide range of biological samples in a variety of applications.

Data availability The data included in this manuscript are available and can be discussed (or shared), upon request to the corresponding author Sameh
Kaziz.
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