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Abstract Monkeypox is a zoonotic disease caused by a virus that is a member of the orthopox genus, which has been causing an
outbreak since May 2022 around the globe outside of its country of origin Democratic Republic of the Congo, Africa. Here we
systematically analyze the data of cumulative infection per day adapting model-free analysis, in particular, statistically using the
power law distribution, and then separately we use reservoir computing-based Echo state network (ESN) to predict and forecast
the disease spread. We also use the power law to characterize the country-specific infection rate which will characterize the growth
pattern of the disease spread such as whether the disease spread reached a saturation state or not. The results obtained from power
law method were then compared with the outbreak of the smallpox virus in 1907 in Tokyo, Japan. The results from the machine
learning-based method are also validated by the power law scaling exponent, and the correlation has been reported.

1 Introduction

Monkeypox is a virus [1, 2] that belongs to the Poxviridae family under the genus orthopox virus, which originated in the Democratic
Republic of the Congo, Africa, in the 1970s and has been endemic there in African countries. But its worldwide outbreak has resulted
in over 50,000 cases, as of 27th September, 2022, across 50+ countries since May 2022 [1, 3]. It is the second largest outbreak of
this century followed by COVID-19 [4]. A study [5] has reported that the withdrawal of smallpox vaccine in the late 1980s could
be a reason for this outbreak which is efficient in preventing the monkeypox spread as well. This poses a serious threat as a large
number of people could be susceptible to the disease. Moreover, several studies indicated that the efficacy of the smallpox vaccine
has been waning posing an increasing probability for the disease to spread. Though monkeypox is severe but not fatal in adults and
cures on its own, it is severe among children and young adults who have poor health conditions and malnutrition.

Due to the widespread of COVID-19 around the globe [4], we have seen the possibility for the virus to mutate into more virulent
ones and can cause damage to people from personal level to societal scale. So proper prediction of the outbreak needs to be done
which might help to monitor the disease spread and to implement appropriate control measures by the health care system in bringing
the disease spread under control. A well-augmented prediction of the disease spreading is deemed to be necessary for the benefit of
the policymakers and the health care systems to strategize to limit the disease spread. A broad spectrum of model-based techniques
such as parameterized compartmental SIR models [6, 7], time-series modeling [8], probabilistic master equation-based models [9],
iterative maps, fractal-based models [10, 11] and logistic equation [12] are available to predict the disease spread. These methods
can be useful only if we have proper information about the epidemiological parameters. The less amount of data and the lack of
information on epidemiological parameters would pose serious limitations on the above methods for their prediction. Fortunately,
on the other hand, we have model-free data-driven methods such as statistical modeling [13–15] and the machine learning model
[16], which were helpful in prediction.

For our current investigation, we consider the realtime cumulative monkeypox infection per day data from its initial spread to
its spread on 27th September 2022 and use the power law [15] to estimate the scaling exponent of the disease spread in nine most
infected countries. We find that the USA stands first in the list of nine countries with highest scaling exponent elucidating the degree
of the spread of the monkeypox infection. In contrast, small values of the scaling exponent for the countries like Brazil and Peru are
observed. Being a virus from the orthopox family, we have also calculated the scaling exponent for the smallpox outbreak in Tokyo,
Japan, during 1907–1908 and found a high degree of scaling exponent quite close to that of the scaling exponent for the monkeypox
spread in the USA providing a vital clue about the current spread of the monkeypox virus. Further, we have also analyzed the number
of infections using the scale-free echo state network (ESN), which is actually a system of modified recurrent neural networks (RNN)
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[16, 17]. We have predicted the cumulative monkeypox infection, which agrees fairly well with the realtime cumulative spread
for the last ten days from 18th September 2022 to 27th September 2022 and forecasted the cumulative infection for the next ten
days from 28th September 2022, which is then used to estimate the scaling exponent. The results from the scaling exponents and
those from the machine learning technique are found to be in excellent agreement with each other. Usually, the predictions from the
machine learning approach are more accurate in prediction than any other models, but the downside of it is that the results cannot
be quantified which severely affects the interpretability of the prediction. In this paper, we combine the results from the power law
method along with the machine learning approach and bring out the two important features of prediction, namely accuracy and
its interpretability. When it comes to forecasting in realtime systems, our study puts together the better predictability of machine
learning and quantitative results from power law approach provide interpretability to the results that help health care system in
making more tangible predictions.

The plan of the paper is as follows: In Sect. 2, we provide the description of the power law approach and the scaling exponent of
monkeypox outbreak for the USA, Spain, Brazil, France, Canada, Peru, Netherlands, UK and Germany were calculated and reported.
We also compare the smallpox outbreak of 1907 in Japan [18] with the current monkeypox outbreak. We present the description of
ESN network that we used for prediction and forecasted the results along with its interpretation through the power law fit in Sect. 3.
Finally, we provide a conclusion in Sect. 4.

2 Power law approach

For our analysis, throughout this paper, we took the data from the website (https://ourworldindata.org/monkeypox) accessed on 27th
September 2022. Epidemiological models make the assumption that the number of person n(t) infected by a sick person will grow
exponentially over time ‘t’ as

n(t) � Btγ , (1)

where B is a proportionality constant and γ is the scaling exponent which reveals the growth pattern of the disease in the chosen
demography or a particular nation. We determine the range of power law behavior by plotting the cumulative infection per day data
corresponding to different countries in a log-log plot. The scaling exponent for each country was then calculated. To illustrate this
method, we took the cumulative infection data for the United States of America (USA) as an example. The cumulative cases of the
monkeypox outbreak in the USA are plotted in Fig. 1. The two vertical lines (see Fig. 1b) indicate the range used to extract the
scaling exponent. The data points are overlaid with the best fit as determined by linear regression.

We have also carried out the aforementioned analysis for the nine most infected countries by the monkeypox, listed in the first
column of Table 1. We found the scaling exponent during the initial power law growth for all the nine countries and tabulated the
results in the second column of Table 1 against the respective countries. We have calculated the scaling exponent for all the other
eight countries for the window (days) where there exists a power law growth similar to that calculated for the USA as in Fig. 1.
From the table, one can say that the USA tops the tabulated list of countries with the highest scaling exponent of 4.421, whereas in
countries like Brazil and Peru still a significant amount of growth of the disease is yet to occur, which can be inferred from rather
smaller values of their scaling exponents. Further, we have also calculated the scaling exponent for the last ten days (from 27th
Sep. 2022) from which one can infer whether the disease spread is either in the growth state or slowing down phase or saturated.
The scaling exponent calculated for the last ten days was given in the third column of Table 1. It is evident from the table that in
all the nine countries the disease spread was significantly dropped with Germany having the lowest scaling exponent γ � 0.219
elucidating that the disease spread is in the state of getting saturated in Germany. Countries like Germany, the UK, the USA and Spain
with significantly low values of the scaling exponent unveil the reduced rate of the spread of the disease, whereas in Brazil scaling
exponent only dropped a little revealing that there lies an imminent power law growth. The results from these scaling exponents
were also helpful in validating the corresponding results predicted from the machine learning approach.

There were studies that showed the withdrawal of the smallpox vaccination in the late 1980s could be the reason for the outbreak
of monkeypox as the efficacy of the smallpox vaccine is found to be around 80 percent against the monkeypox virus also. As it has
been withdrawn, the waning of immunity due to the vaccine could be a reason for the emergence of the orthopox virus. We have

Fig. 1 a Total number of
monkeypox infections in the USA
was plotted as a function of time
from 3rd June, 2022 to 27th
September 2022. b Log–Log plot
of number of infections of the
USA as a function of time, the two
vertical lines indicate the spectrum
of scale-free behavior. The data
points are overlaid with a linear
regression’s best fit
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Table 1 Country-wise scaling
exponent (γ ) for initial power law
growth

Country γ (for initial growth) γ (for last 10 days)

USA 4.424 1.260

Brazil 3.445 3.091

Peru 2.707 1.492

UK 2.543 0.254

Spain 2.377 0.427

Germany 2.213 0.219

France 2.115 0.308

Netherlands 2.015 0.244

Canada 1.770 0.521

considered the daily disease spread data of smallpox outbreak in Tokyo, Japan, in 1907–1908 (see Fig. 2a) and investigated the
similarities among the disease spreading rate of the current monkeypox outbreak with that of smallpox. From the daily infection
data, we have calculated the cumulative cases and estimated the power law fit for the time window (days) represented by two vertical
dotted lines depicted in Fig. 2b. The scaling exponent for the smallpox outbreak is found to be 4.983 which is quite close to that of
the scaling exponent for the monkeypox spread in the USA. This is an important and interesting result, and is also an alarming one
as the recent monkeypox spread is similar to the spread of the smallpox virus in Japan in 1907–1908, which accounts for one of the
long spanning epidemics causing a significant amount of loss at both individual and societal levels in the human history.

3 Machine learning approach

3.1 Architecture of echo state network (ESN)

In this section, we use a machine learning technique known as reservoir computing, a class of recurrent neural networks called
echo state network for prediction [16, 17]. The primary reason for the choice of the ESN over the other schemes is that the echo
state network has all the advantages of the recurrent neural network (RNN). Note that ESN also avoids the training issues such as
vanishing and exploding gradient problems that are inherent to the traditional RNNs. Furthermore, the training process in ESN is
also relatively straightforward since most of the weights are chosen randomly and only once. Only the output weights need to be
trained in the ESN, which is not the case in the traditional RNNs. Nevertheless, ESN can imbibe the characteristics of the dynamical
systems and capture complicated dynamics throughout time. ESN showed encouraging results of handling multiple different inputs
of temporal data in a wide spectrum of works [19, 20]. Its ability to trace the correlation between the sequential data, inspired us
to use the power of the ESN to create a method for forecasting the spread of monkeypox outbreak. In this model, for a given input
vector there is a reservoir that drives the model to train the weights of the output layer accordingly so as to learn the specific temporal
pattern of the input data points. The schematic representation of this ESN model is given in Fig. 3. An ordinary leaky tanh governs
the dynamics of the nodes of the ESN, which is represented by the following recursive relation

x(t + 1) � (1 − α)x(t) + α. tanh(Wresx(t) + Winu(t)). (2)

Here, u(t) is a M-dimensional input vector and x(t) is a Nres-dimensional vector corresponding to the state of the reservoir nodes
at the time instant t. The weights of the internal connections between reservoir nodes are embedded in the matrix Wres (dimension:
Nres ∗ Nres) and the matrix Win (dimension: Nres ∗ M) represents the input weight matrix. The leakage constant, denoted by the
parameter α, can indeed vary in the range of zero to unity. It is important to remember that the tanh function is the activation function
for each node constituting the reservoir. The initial reservoir weight matrix Wres is created by uniformly distributed random values
in the range (−1, 1).

Fig. 2 a Total number of
infections for the smallpox
outbreak of Tokyo, Japan, in 1907
was plotted as a function of time
from 18th December 1907 to 25th
July 1908. b Log–Log plot of
number of infections as a function
of time, the two vertical lines
indicate the spectrum of scale-free
behavior. The data points are
overlaid with a linear regression
best fit
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Fig. 3 Schematic depiction of
architecture of Echo state model

Now, we consider the time-series data consisting of N data points corresponding to the cumulative infection per day for N days.
This includes the cumulative infection per day for M days that is to be fed as the input to the reservoir for training and the remaining
(N − M) days of the cumulative infection data points are used as a benchmark to test the predicted cumulative infection per day
by the model. The initial goal is to determine appropriate input weights of the input layer and connection weights of the reservoir
to mimic the specific data pattern embedded in the first M (when t � 0, 1, . . . , tr ) data points of the input corresponding to the
cumulative infection per day during the training phase. At each time step, t, the evolution of the input connection weight matrix of
the reservoir nodes can be given as

⎛
⎜⎜⎜⎝

Win(1, 1) · · · Win(1, M)
Win(2, 1) · · · Win(2, M)

...
...

...
Win(Nres, 1) · · · Win(Nres, M)

⎞
⎟⎟⎟⎠ ×

⎛
⎜⎜⎜⎝

I1(t)
I2(t)

...
IM (t)

⎞
⎟⎟⎟⎠,

where I(t) is the input data corresponding to the realtime cumulative infection per day for M days. In the training phase, at each
instant t, the reservoir state x(t) and input u(t) are accumulated in V (t) � [1; u(t); x(t)]. The output vector Y (t) can be written in the
form as

Y (t) � WoutV (t), (3)

where Y (t) is a column vector of length (1 + M + Nres) and V (t) is the column vector of length of (1 + M + Nres), which is represented
as

V (t) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
I1(t)
I2(t)

...
IM (t)
x(1, t)
x(2, t)

...
x(Nres, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Here t is the time duration that runs from 0, 1, . . . , tr . Ridge regression method is used to determine the output weight matrix Wout,
represented as

Wout � YV T (VV T + λI )−1, (5)

where λ is the regularization factor used to match the forecasted data to the test data. I is the identity matrix of dimension same as
VV T . Using the output weight matrix Wout, the output data corresponding to the prediction of cumulative infection per day made
by the model is given by the vector Y (t) expressed as [16],

Y (t) �

⎛
⎜⎜⎜⎝

IM+1(tr+1)
IM+2(tr+2)

...
IN (tfinal)

⎞
⎟⎟⎟⎠. (6)
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Fig. 4 Prediction of monkeypox
cumulative infection per day for
nine most infected countries listed
in the Table 1. Red solid line
indicates the realtime cumulative
infection data, and open blue
circles represent the prediction of
the test set by the ESN model and
forecasting done by the ESN
model is represented by green
triangles extended from the
predicted set

Table 2 Country-wise ReMSE
values for different Nres

Country Nres � 5000 Nres � 2000 Nres � 1000

USA 0.0175 0.0197 0.0223

Brazil 0.0835 0.0982 0.0994

Peru 0.0553 0.0687 0.0712

UK 0.0798 0.1024 0.1453

Spain 0.0178 0.0937 0.2474

Germany 0.0505 0.0861 0.0934

France 0.0749 0.0958 0.1427

Netherlands 0.0749 0.0862 0.1284

Canada 0.03281 0.0723 0.1003

3.2 Analysis of realtime cumulative infection

To perform the prediction of realtime cumulative infection per day, we divide the real-world infection data to the proportion of 9:1,
in which 9/10th of the data has been given as input to the system and let the machine evolve the input weight and the connection
weight to mimic the input data pattern and the rest 1/10th of the data has been used as a metric to validate the system prediction. The
data was pre-processed, that is smoothed using Savitzky-Golay filter [21], before being fed into the reservoir. For this prediction,
the system has to be fed with proper hyper-parameters based on the nature of the data to be trained. For this optimization process,
the hyperopt package [22] in python has been used, which will provide the best parameters that can be used for the prediction. Note
that in all our simulations, we use the hyper-parameter ρ to be negative because of non-chaotic nature of the infection data and the
magnitude of the spectral radius is scaled to be less than unity. The value of Nres is taken to be 5000.

Both the predicted and forecasted data for the nine most infected countries listed in Table 1 are shown in Fig. 4. The predicted data
represented by blue open circles is depicted in Fig. 4 and is superimposed along with the realtime cumulative infections (red solid
line). It is evident that the ESN model has predicted the realtime cumulative infections fairly well. For this, we took the cumulative
infection data from initial infection up to 27th September 2022. The last ten data point from the initial infection data is used as the
test set, which is used for the validation of the model. We have forecasted the evolution for the next ten days. From the predicted
data, represented by green triangles, it is evident that countries like France, Brazil, Peru and the USA show still a growth pattern
despite that the growth pattern is slowed down.

Moreover, one can infer that for countries like Germany, the Netherlands and the UK the infection spread curve looks like a
logistic one which shows that in those countries the disease spread is reduced as the value of cumulative cases reaches a constant. It
is to be noted that these results were in good agreement with the results obtained from the power law method given in Table 4, where
the above-said countries like Germany, Netherlands and the UK have the scaling exponent being dropped below one. This shows
that the ESN model is well suited for forecasting the spread for a week or two from the current state. But the drawback of the ESN
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Table 3 Country-wise ReMSE
values with various training and
testing time split ratio

Country Split ratio Split ratio Split ratio Split ratio Split ratio Standard
9:1 8:2 7:3 6:4 5:5 Deviation

USA 0.0176 0.0358 0.1006 0.2407 0.3343 0.1226

Brazil 0.0841 0.1172 0.1449 0.1742 0.2821 0.0678

Peru 0.0553 0.1774 0.2313 0.3921 0.4615 0.1331

UK 0.0797 0.1015 0.1793 0.2813 0.4936 0.1508

Spain 0.0178 0.0351 0.0751 0.1298 0.2506 0.0838

Germany 0.0505 0.0913 0.1179 0.1643 0.1987 0.0523

France 0.0749 0.0809 0.1813 0.2273 0.2614 0.0757

Netherlands 0.0738 0.1298 0.2801 0.3391 0.4615 0.1406

Canada 0.0828 0.1183 0.2678 0.3241 0.4226 0.0523

Table 4 Country-wise scaling
exponent for forecasted data

Country γ (for forecatsed data)

USA 0.525

Brazil 0.917

Peru 0.504

UK 0.0362

Spain 0.0175

Germany 0.0418

France 0.181

Netherlands 0.0267

Canada 0.117

model is that it might not be suited for long-term prediction because, during the initial spread, the curve looks like an exponential
one, so the model might misinterpret the growth as an exponential one forever, which might not a meaningful result. To overcome
this limitation, we need to update the data in realtime and then the prediction needs to be done.

Now, we validate the predictions of our model with the realtime data using the normalized root mean square value error defined
by

ReMSE �
√

1
T

∫ T
0 (Ia(t) − Im(t))2dt

max(Ia)
, (7)

where Ia is the realtime data of the total number of infected individuals, and Im is the number of infected individuals predicted by
the proposed model. The ReMSE values of all the nine most infected countries for the various output weights are calculated and
tabulated in Table 2. It is evident from the table that increasing Nres, correspondingly increase in the output weights Wout, results
in better accuracy of the predictions made by the model. Further, the ReMSE values of the nine most infected countries for various
data proportions are estimated and tabulated along with their standard deviation in Table 3, which elucidates that the prediction
error will be minimized only when a large data set is used for the training. Note that we have used a proportion of 9:1 of the input
data for training and testing because of the availability of relatively less realtime data. The model can be provided with a reasonably
large data for training than that for the testing process by using this proportion.

3.3 Power law fit for the forecasted data

Using the machine learning technique, we forecasted the disease spread for ten days from the data available (as of 27th September
2022). We have also performed the power law fit for the forecasted cumulative infections, which will provide a quantitative measure
for the disease spreading. The calculated scaling exponent corresponding to the forecasted data is tabulated in Table 4. Using the
power law fit for the forecasted cumulative infection, indicated by green triangles in Fig. 4, by the ESN, one can infer whether the
disease attained the endemic state or not. From that, one can get quantitative information about the infection rate and its trend. These
results elucidate that in all nine countries the power law growth has ended and a saturation stage has been attained. For the countries
like Netherlands, Spain and UK, the regime of power law has completely ended as the number of new infections is dropped near to
zero. Moreover, our results elucidate that even the countries which still show the power law growth in last ten days like the USA,
Brazil and Peru have the trend of moving toward saturation stage over time. Using this method has an advantage over usual machine
learning method because whenever health care systems make decisions it has been backed up by a quantitative measure of scaling
exponent which reveals to us the disease spread rate rather than the results from traditional machine learning methods.
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Fig. 5 Total number of
monkeypox infections in all the
countries that were taken for
analysis is plotted as a function of
time from initial infection to 4th
November 2022

4 Conclusion

In this paper, we have adopted a machine learning-based technique coupled with a power law-based approach for accurate yet
quantitatively interpretable prediction of the monkeypox infection. We have accomplished this by choosing the realtime data
corresponding to the cumulative infection per day for the nine most infected countries listed in Table 1 and performing a power
law fit to the infection data of all these countries. The scaling exponents deduced from the power law fit elucidate the trend of the
infection rate. For instance, the initial scaling exponent for the USA is found to be around γ � 4.424, which reveals the exponential
growth of the infection rate.

The scaling exponent for all nine countries is tabulated in the second column of Table 1, which illustrates us the nature of the
infection trend in the respective countries. For instance, the infection rate for Brazil and Peru is found to be the least, but above unity,
revealing that there lies a possibility of imminent exponential growth of the infection rate in those countries. In order to understand
the complete trend of the outbreak, we have performed the power law fit for the last ten days (from 18th September 2022 to 27th
September 2022) and tabulated the corresponding scaling exponents in the third column of Table 1. The decimal values of the scaling
exponent of the infection rate in several countries for the last ten days elucidate that the infection rate in those countries is in the
saturation state, whereas the scaling exponents for Brazil, Peru and USA are still greater than unity revealing the exponential growth
pattern of the infection rate is still intact. Further, the scaling exponent for the smallpox outbreak in Japan in 1907–1908 is found to
be γ � 4.983, which is in the order of the initial monkeypox spread in the USA depicting the similarity in the infection pattern of
these two viruses signaling that monkeypox could also be potential threat as an epidemic.

We have also used a modified neural network (ESN) to predict and forecast the infection growth pattern. The predicted data is
found to match well with the realtime infection data. We have validated the predictions of our model with the realtime data using
the normalized root mean square value error and the results are tabulated in Tables 2 and 3. The ReMSE values in these tables
elucidates that the accuracy of predictions will be increased for a large output weights and a large input data for the training phase.
We have also estimated the scaling exponents for all nine countries from the forecasted data, listed in Table 4, which largely agrees
with the scaling exponents for the last ten days tabulated in the third column of Table 1. These observations elucidate that the trend
in most countries, other than Brazil, Peru and USA, is almost in saturation phase. It is to be noted that now, at the time of finalizing
the manuscript, we have the realtime data until 3rd November 22 as depicted in Fig. 5. It is evident that our results are in excellent
agreement with the trend observed in Fig. 5 for the forecasted period.

It is also to be noted that though the power law model is simple to interpret, it cannot take into account the pharmaceutical
protocols like quarantine, lockdown, etc. Nevertheless, as of now, there were no such things followed by the infected countries
and hence our model provides a valid and interpretable analysis that might help healthcare systems to back their decisions with a
quantitative measure. We need to carefully track and control the monkeypox outbreak before it spreads all across the globe because
there will be a possibility of this virus getting mutated and intensified. Added to the fact that currently there is no vaccination practice
against any of the viruses from the orthopox family, we need more careful analysis of the realtime infection as well as its spread
until it becomes completely endemic.
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