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Abstract Given the limited medical resources in most cholera endemic countries, in this paper, a nonlinear fractional SVIR-B
(Susceptible-Vaccinated-Infected-Recovered, Bacterial) cholera epidemic model with imperfect vaccination and saturated treat-
ment is proposed and investigated. The model performs well-posed in both epidemiologically and mathematically, especially, we
demonstrate the positivity and boundedness of all solutions using the generalized mean value theorem. The control reproduction
number Rvt is derived using the next generation matrix method and both local and global stability analyses for the disease-free
equilibrium is performed by analyzing the characteristic equation and using Lyapunov functional. Then, the existence and stability
of endemic equilibria are further addressed. Sufficient conditions for the existence of backward bifurcation and Hopf bifurcation
are also derived. Subsequently, an optimal control problem with vaccination, media coverage, treatment, and sanitation as control
strategies is proposed and analyzed, providing a rationale for cholera control and prevention. In addition, several numerical examples
are employed to illustrate our theoretical results.

1 Introduction

Cholera is a highly contagious acute watery dehydrating diarrheal disease caused by Vibrio cholerae and commonly transmitted
by contaminated water and food [1]. Vibrio cholerae not only causes secretory diarrhea but also may be accompanied by serious
complications such as renal failure and acute pulmonary edema, which can cause diarrhea, dehydration, and even death within a few
hours. The mortality rate of cholera exceeded 50% if left untreated [2]. According to the World Health Organization (WHO), cholera
causes about 1.3 million to 4 million cases, and 21,000 to 143,000 deaths annually worldwide [3]. Since 2022, cholera outbreaks
have occurred in multiple countries including Cameroon and South Sudan and Pakistan, among others, which has caused nearly
100 deaths and more than 6,000 infections in Cameroon (Cameroon Ministry of Public Health). This disease poses still a threat to
public health, especially in developing and underdeveloped countries with high population densities.

Mathematical models have evolved into an effective tool for analyzing the spread of various infectious diseases dynamics and
providing useful information, especially in terms of prediction. In recent years, various mathematical models have already been
proposed to investigate the complex dynamic behavior of cholera. In 1979, Capasso and Paveri-Fontana [4] used two differential
equations describing the number of the infected individuals and the concentration of the aquatic pathogenic bacteria to study the spread
of the 1973 cholera in the Mediterranean region. Codeço [5] subsequently extended the basic model of Capasso and Paveri-Fontana
by adding a compartment of susceptible individuals. Then, they discussed on the role of aquatic reservoirs in the persistence of
endemic cholera, as well as derived minimum conditions for epidemic and endemic cholera. Hartley et al. [6] considered two classes
of bacterial concentrations: less-infective stage and hyper-infective stage, and combined with a regular SIR (Susceptible-Infectious-
Recovered) type model to construct a new high-dimensional dynamic model. It was shown that incorporating the hyper-infectious
stage of Vibrio cholerae into the model can better fit observed data. Also, the study suggested that the reduction in the hyper-
infectious form of Vibrio cholerae may contribute to reduce the scale of the epidemic effort. Several studies have demonstrated that
cholera is largely transmitted not only through the fecal-oral route, but also through human-to-human contact. For this, Mukandavire
et al. [7] proposed a mathematical model consisting of multiple transmission pathways to estimate the reproduction number for the
2008-2009 Zimbabwe cholera outbreak. In [8], Tien and Earn constructed a water-borne disease model with the dual transmission
pathways using bilinear incidence rates. In the same way, Wang and Cao [9] also constructed cholera model that incorporate the
dual transmission pathways, nonlinear incidence and removal rates to study the global dynamical properties of cholera. These works
have made significant contributions to advancing the study of cholera dynamic.
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Access to safe and sustainable water and sanitation is crucial for effective prevention and control of cholera transmission [3].
However, one in three humans worldwide still lack access to safe drinking water according to WHO and UNICEF (United Nations
International Children’s Emergency Fund) [10]. Current strategies for cholera prevention and control mainly include oral cholera
vaccine, treatment, and sanitation, and so on. To this end, many researchers have constructed and studied cholera models containing
some control strategies. Wang and Chairat [11] analyzed the effects of vaccination, therapeutic treatment, and water sanitation on
the cholera outbreaks with the help of a mathematical model in Mukandavire et al. [7]. Zhou et al. [12] considered the impact of
imperfect vaccination on the global results dynamics of cholera. Posny et al. [13] combined three types control strategies (vaccination,
treatment, and sanitation) with multiple transmission pathways to analyze the transmission of cholera. Lemos-Paião et al. [14]
presented SIQRB model to control the transmission of cholera via quarantine treatment. Tian et al. [15] studied a cholera model that
considers not only environment-to-human transmission but also waning vaccine-induced immunity as well, and several reasonable
optimal control strategies were suggested. In addition, considering that cholera affects mainly the developing and underdeveloped
countries with limited treatment facilities, Sharma and Singh [1] developed and studied a new cholera model with vaccination and
saturated treatment function.

Clearly, all the above-mentioned works are based on classical integer-order derivatives. However, to some extent, the integer-order
model cannot fully account for the natural behavior of the disease [16]. The main reason is that the local operator of the integer-
order calculus does not carry any information about the learning and memory mechanisms of the population that influences disease
transmission. Conversely, the non-local operator of the fractional-order calculus can expound the global characteristics of disease
transmission process, and the derived results are more general nature. In fact, Cole [17] deduced that biological cell membranes
possess fractional-order conductivity, so the model of the biological systems are supposed to partition in groups of non-integer
order. Currently, there is considerable research on the applications of the fractional-order derivatives in describing different various
diseases, such as malaria [18], dengue fever [16], Ebola [19], Covid-19 [20], HIV-AIDS [21], measles [22], cholera [23, 24], and so
on.

Motivated by [12] and subsequent works, such as Tian et al. [15] studied some cholera models with imperfect vaccination,
and Sharma and Singh [1] studied a cholera model with perfect vaccination and saturated treatment. Currently, there has been
comparatively little work on the dynamic behavior of cholera with both imperfect vaccination and saturated treatment functions,
to our knowledge. As a result, this paper focuses on the investigation of a fractional-order SVIR-B cholera model with imperfect
vaccination and saturated treatment.

The remainder of this paper is structured as follows. In Sect. 2, we formulate a fractional SVIR-B cholera model and discuss the
basic properties of its solutions. In Sect. 3, we present a detailed study on the dynamic behavior of the proposed model including
the existence of equilibria, the basic reproductive number, the stability analysis and the bifurcation analysis. After that, in Sect. 4,
an optimal control problem established and investigated. Numerical simulations are given in Sect. 5. At last, the conclusions are
summarized in Sect. 6.

2 Model formulation and basic properties

2.1 Model formulation

In this paper, we first propose a fractional SVIR-B model for cholera transmission, as depicted in Fig. 1. To better understand the
proposed model, some descriptions or assumptions are concisely listed here.

(i) Human population is described by SVIR type model, that is, the total human population N is divided into four mutually
compartments subclasses: susceptible S, vaccinated V , infected I , and the recovered R. Then, a class of bacterial concentration
(V. cholerae) is be considered and denoted by B.

(ii) New recruitment (including birth, travel, etc.) is assumed to enter the population at a constant rate Λ, with a fraction ρ is
regarded as under vaccination control and directly enters the vaccinated class. Besides, the natural death rate of all individuals
μ and the death rate due to disease of infected individuals ε are also considered.

(iii) Cholera transmission is discussed only through environment-to-human pathway. More specifically, susceptible individuals are
infected by ingesting environmental V. cholerae, and the infection rate is βB/K + B, where β and K denote the ingestion rate
of the bacteria through contaminated sources and the half saturation constant of the bacteria population, respectively.

(iv) Assuming that vaccine is imperfect, individuals who received vaccines may become infected through contact contaminated
sources, thus, σ denotes the vaccine efficacy, in which σ � 0 indicates that the vaccine is completely effective, while σ � 1
indicates that the vaccine is completely ineffective. In addition, it is assume that susceptible individuals enter the vaccinated
compartment at a constant rate φ through inoculation, and the vaccine protection wears off at a constant rate η over time.

(v) An infectious individual can become recovered in two main ways: the natural recovery without treatment and treatment. In
general, the untreated self-cure rate γ is less than the treated cure rate r. As the number of patients could exceed the capacity
of the health system, a saturated treatment rate can be applied to characterize this saturation effect, and α is half saturation
constant.
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Fig. 1 The flow diagram of the
model (1)

(vi) Assume that the growth rate of V. cholera concentration is proportional to the infected individual I , i.e., each infected individual
promoted the increase in V. cholerae concentration at the rate of θ . Further, V. cholerae is assumed to decay at a rate constant
ξ .

As mentioned above, the cholera model can be described as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

q
t S(t) � (1 − ρ)Λ − μS(t) − βS(t)B(t)

K + B(t)
− φS(t) + ηV (t),

C
0 D

q
t V (t) � ρΛ + φS(t) − σβV (t)B(t)

K + B(t)
− (μ + η)V (t),

C
0 D

q
t I (t) � βS(t)B(t)

K + B(t)
+

σβV (t)B(t)

K + B(t)
− (μ + ε + γ )I (t) − r I (t)

1 + α I (t)
,

C
0 D

q
t R(t) � γ I (t) − μR(t) +

r I (t)

1 + α I (t)
,

C
0 D

q
t B(t) � θ I (t) − δB(t),

(1)

with initial conditions

S(0) ≥ 0, V (0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0, B(0) ≥ 0, (2)

where all the parameters are assumed to be non-negative, and C
0 D

q
t denotes the Caputo fractional derivative (CFD) of order q ∈ (0, 1]

for function f (t) such that [25]

C
0 D

q
t f (t) � 0 I

1−q
t

d f (t)

dt
� 1

Γ (1 − q)

∫ t

0

f ′(z)
(t − z)q

dz, (3)

in which 0 I
q
t f (t) � 1

Γ (q)

∫ t
0 (t − z)q−1 f (z)dz represents the Riemann-Liouville integral, and Γ (z) � ∫∞

0 t z−1e−tdt is the Gamma
function.

2.2 Basic properties

In the following analyses, we shall demonstrate that the model performs well-posed in both epidemiologically and mathematically.

Theorem 1 For the given initial conditions (2), the solutions of system (1) are positive and bounded for all t ≥ 0.

Proof For the proof of the positivity of the solutions, we proceed by contradiction. Assume that S(t) first reaches and crosses the
t-axis at time t̄ , it follows that S

(
t̄
) � 0 and other state variables are greater than or equal to zero for t ∈ [0, t̄

]
. Then, recall from

the first equation of system (1), it is not difficult to observe that

C
0 D

q
t S(t)|t�t̄� (1 − ρ)Λ + ηV

(
t̄
)

> 0.

Using the generalized mean value theorem, S(t) is a non-decreasing function on t ∈ (0, t̄], which contradicts S(t) � 0 for t � t̄ .
Hence, S(t) ≥ 0 for all t ≥ 0. The bounds for other state variables can be obtained similarly.

Then, the boundedness of the solutions are performed in two parts: the human population and bacterial population. For the human
population, the first four equations of system (1) are summed to give

C
0 D

q
t N (t) � Λ − μN (t) − ε I (t) ≤ Λ − μN (t). (4)

123



 1361 Page 4 of 22 Eur. Phys. J. Plus        (2022) 137:1361 

Applying the Laplace transform of the above inequality, one has

λqL [N (t)] − λq−1N (0) ≤ Λ

λ
− μL [N (t)], (5)

that can be written as

L [N (t)] ≤ λ−1

λq + μ
Λ +

λq−1

λq + μ
N (0), (6)

applying the inverse of the Laplace transform on inequality (6) gives

N (t) ≤ Λtq Eq,q+1(−μtq ) + Eq,1(−μtq )N (0)

�
(

−Λ

μ
+ N (0)

)

Eq,1(−μtq ) +
Λ

μ
,

(7)

where Ea,b(z) � ∑∞
k�0

zk
Γ (ak+b) is Mittag-Leffler function with parameters a and b. It is clear that N (0) ≤ Λ/μ when t � 0. Then,

N (t) ≤ Λ/μ can be derived from Eq,1(−μtq ) ≥ 0. From the first equation of system (1), one has
C
0 D

q
t S(t) ≤ (1 − ρ)Λ − (μ + φ)S(t) + ηV (t)

≤ (1 − ρ)Λ − (μ + φ)S(t) + η

(
Λ

μ
− S(t)

)

,
(8)

the following analysis process is similar to N(t), thus, one has S(t) ≤ Λ[μ(1 − ρ) + η]/μ(μ + φ + η). Similarly, from the second
equation of system (1), it is easy to obtain V (t) ≤ Λ(μρ + φ)/μ(μ + φ + η). Next, for the bacterial population, it follows that

C
0 D

q
t B(t) ≤ θΛ

μ
− δB(t), (9)

thus, one has B(t) ≤ Λθ/μδ. Based on analysis and discussion described above, the solutions of the system (1) remain positive and
bounded. Hence, system (1) is both mathematically and epidemiologically well-posed. As such, the feasible region for system (1)
is given by

Ξ �
{

(S, V, I, R, B) ∈ R
5
+

∣
∣
∣N ≤ Λ

μ
, S ≤ Λ[μ(1 − ρ) + η]

μ(μ + η + φ)
, V ≤ Λ(μρ + φ)

μ(μ + η + φ)
, B ≤ Λθ

μδ

}

. (10)

The proof is completed. �

3 Analysis of the model

As the variable R(t) does not appear in the other equations of system (1), for brevity, we omit the fourth equation and consider the
subsystem of system (1), that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

q
t S(t) � (1 − ρ)Λ − μS(t) − βS(t)B(t)

K + B(t)
− φS(t) + ηV (t),

C
0 D

q
t V (t) � ρΛ + φS(t) − σβV (t)B(t)

K + B(t)
− (μ + η)V (t),

C
0 D

q
t I (t) � βS(t)B(t)

K + B(t)
+

σβV (t)B(t)

K + B(t)
− (μ + ε + γ )I (t) − r I (t)

1 + α I (t)
,

C
0 D

q
t B(t) � θ I (t) − δB(t),

(11)

with initial conditions S(0) ≥ 0, V (0) ≥ 0, I (0) ≥ 0 and B(0) ≥ 0 in Ξ .

3.1 Disease-free equilibrium and the control reproduction number

The disease-free equilibrium of system (11) is given by

E0 � (S0, V0, 0, 0) �
(

Λ[μ(1 − ρ) + η]

μ(μ + η + φ)
,

Λ(μρ + φ)

μ(μ + η + φ)
, 0, 0

)

. (12)

In the epidemiology, the basic reproduction number R0 is a essential concept to characterize sustainability threshold, which depends
on pathogen and host population, defined as the expected number of secondary infections caused by introducing a single infected
individual into otherwise susceptible population in the absence of control measures [26]. Since system (11) involves two control
measures, therefore we refer the basic reproduction number as the control reproduction number Rvt , which can be calculated using
the next-generation matrix method [27].

Let Z � [I, B]T denote a vector of infectious variables, then
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C
0 D

q
t Z (t) � F(Z ) − V (Z ) �

[
βSB
K+B + σβV B

K+B
0

]

−
[

(μ + ε + γ )I + r I
1+α I−θ I + δB

]

,

with the next-generation matrices

F � ∂F(Z)

∂Z

∣
∣
∣
∣
E0

�
[

0 β(S0+σV0)
K

0 0

]

, V � ∂V (Z)

∂Z

∣
∣
∣
∣
E0

�
[
μ + ε + γ + r 0

−θ δ

]

,

which leads to

FV −1 �
[

βθ(S0+σV0)
K δ(μ+ε+γ +r)

β(S0+σV0)
K δ

0 0

]

,

then, Rvt is determined by the spectral radius of the next-generation matrices

Rvt � ρ(FV −1) � βθ (S0 + σV0)

K δ(μ + ε + γ + r )
� Λθβ[(1 − ρ)μ + η + φσ + ρσμ]

μδK (μ + ε + γ + r )(μ + η + φ)
, (13)

where ρ is the largest magnitude eigenvalues.

(i) If the vaccine is completely ineffective, and new recruitment are susceptible, i.e., σ � 1 and ρ � 0 or φ � 0 and ρ � 0,
system (11) becomes an SI-B type model with a single treatment control measure, then the treatment reproduction number is

Rt � Λθβ

μδK (μ + ε + γ + r )
. (14)

(ii) If there is no treatment control measure only with vaccination, i.e., r � 0, then the vaccination reproduction number is

Rv � Λθβ[(1 − ρ)μ + η + φσ + ρσμ]

μδK (μ + ε + γ )(μ + η + φ)
. (15)

(iii) If there is in the absence of control measures, then the basic reproduction number is

R0 � Λθβ

μδK (μ + ε + γ )
. (16)

According to the above analysis, the following the relationships hold

Rvt � (1 − ρ)μ + η + φσ + ρσμ

μ + η + φ
Rt � μ + ε + γ

μ + ε + γ + r
Rv,

which indicates Rvt < min{Rt , Rv}.
Also,

R0 � μ + ε + γ + r

μ + ε + γ
Rt � μ + η + φ

(1 − ρ)μ + η + φσ + ρσμ
Rv,

which indicates R0 > max{Rt , Rv}. It is clear that R0 > max{Rt , Rv} > min{Rt , Rv} > Rvt , implying that the more control
measures are carried out, the less likely the disease spreads among the host population.

After that, we shall discuss the stability of disease-free equilibrium E0, and state the results in the form of theorems and prove
them.

Theorem 2 The disease-free equilibrium E0 is locally asymptotically stable if Rvt < 1 and unstable if Rvt > 1.

Proof The Jacobian matrix of system (11) evaluated at E0 is given as:

JE0 �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ − φ η 0 −βS0
K

φ −μ − η 0 − σβV0
K

0 0 −(ν1 + r) β(S0+σV0)
K

0 0 θ −δ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (17)

with the characteristic equation

(λ + μ)(λ + ν2)[λ2 + (ν1 + r + δ)λ + δ(ν1 + r )(1 − Rvt )] � 0, (18)
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where ν1 � μ+ε +γ and ν2 � μ+η +φ. According to Ahmed et al. [28], the Routh-Hurwitz conditions are necessary and sufficient
for the Matignon criterion |arg(eig(J ))| � |arg(λs)| > qπ/2. It is obvious that, if Rvt < 1, then all eigenvalues have negative real
parts, which implies that E0 is locally asymptotically stable. But if Rvt > 1, then there is a positive real eigenvalue, which is not
satisfied the Matignon criterion. This finishes the proof. � �

Theorem 3 If Rv < 1, then the disease-free equilibrium E0 is globally asymptotically stable.

Proof It is clearly that Rv < 1, then Rvt < 1. Consider the following Lyapunov function

L1(I, B) � I +
ν1

θ
B,

where ν1 is defined in Eq. (18). Then, taking on Caputo fractional-order derivative on both sides, one has

C
0 D

q
t L1 � βSB

K + B
+

σβV B

K + B
− r I

1 + α I
− ν1δ

θ
B

≤ βS0B

K + B
+

σβV0B

K + B
− r I

1 + α I
− ν1δ

θ
B

≤
[

β(S0 + σV0)

K
− ν1δ

θ

]

B

� δν1

θ
(Rv − 1)B.

It obvious that C
0 D

θ
t L1 < 0 if Rv < 1. Moreover, E0 is the largest invariant compact set in Ξ . Hence, using LaSalle invariance

principle [29], the disease-free equilibrium E0 is globally asymptotically stable when Rv < 1. The proof is completed. �

3.2 Existence of endemic equilibria and its stability

Let the right-hand terms of system (11) be equal to zero resulting in the endemic equilibria, after simplification, one can obtain

S � Λ[(μ(1 − ρ) + η)(K + B) + (1 − ρ)σβB](K + B)

[(μ + η)(K + B) + σβB][(μ + φ)(K + B) + βB] − φη(K + B)2 ,

V � Λ[(μρ + φ)(K + B) + ρβB](K + B)

[(μ + η)(K + B) + σβB][(μ + φ)(K + B) + βB] − φη(K + B)2 ,

I � δB

θ
,

and B satisfies the following cubic equation

Q(B) :� a3B
3 + a2B

2 + a1B + a0 � 0, (19)

with

a3 � αν1δ
2[μ(ν2 + σβ + β) + β(σβ + σφ + η)],

a2 � θδ(ν1 + r )[μν2 + βν3 + σβ(μ + β)] + αν1δ
2K [μν2(2 − Rv) + βν3 + σβμ(1 − R0)],

a1 � θδ(ν1 + r )K [μν2(2 − Rvt ) + βν3 + σβμ(1 − Rt )] + αμν1ν2δ
2K 2(1 − Rv),

a0 � μδθ (ν1 + r )ν2K
2(1 − Rvt ),

where ν3 � μ + η + σφ. That is, there exists a one-to-one correspondence between the endemic equilibria and the positive real roots
of Q(B). It can be observed that the coefficient a3 is always positive and the sign of a0 is determined by Rvt .

Next, the existence and stability of endemic equilibria are discussed in two cases.

3.2.1 Case I: Treatment conditions with ample medical resources, i.e., α � 0.

In this case, a3 � 0, and Q(B) can be then simplified as

Q(B) :� a2B
2 + a1B + a0 � 0, (20)

with

a2 � θδ(ν1 + r )[φ(μ + σβ) + (μ + β)(μ + η + σβ)](> 0),

a1 � θδ(ν1 + r )K [μν2(2 − Rvt ) + βν3 + βσμ(1 − Rt )],

a0 � μδθ (ν1 + r )ν2K
2(1 − Rvt ).
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(i) If Rvt > 1, in this case, a0 < 0, then Eq. (20) has a unique positive real root.
(ii) If Rvt < 1, in this case, a0 > 0, then a1 > 0. For the proof of a1 > 0, we will proceed by contradiction. Assume that a1 < 0

when Rvt < 1, in terms of the expression of Rvt < 1, one has

Λθβ[(1 − ρ)μ + η + φσ + ρσμ] < μδK (ν1 + r )ν2,

then

Λθβ < δK (ν1 + r )ν2. (21)

Besides, combining the expression of Rt with a1 < 0, one has

θδ(ν1 + r )K [μν2(2 − Rvt ) + βν3 + βσμ] < θδ(ν1 + r )KβσμRt ,

then

δK (ν1 + r )[μν2(2 − Rvt ) + σβν2 + β(μ + η − ση)] < σΛβ2θ,

this implies,

δK (ν1 + r )ν2 < Λβθ, (22)

which contradicts to the inequality (21), and thus a1 > 0 when Rvt < 1. Then, in this case, Eq. (20) has no positive real root.
We can thus conclude the following result.

Theorem 4 Assume α � 0. Then, system (11) has a unique endemic equilibrium when Rvt > 1, and no endemic equilibrium when
Rvt < 1.

Then, the stability analysis of the endemic equilibrium Ē � (S̄, V̄ , Ī , B̄) will be performed in detail below.

Theorem 5 Assume α � 0. Then, the endemic equilibrium Ē is locally asymptotically stable if Rvt > 1.

Proof The Jacobian matrix of system (11) at Ē is given by

JĒ �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
μ + φ + β B̄

K+B̄

)
η 0 − βK S̄

(K+B̄)
2

φ −
(
μ + η + σβ B̄

K+B̄

)
0 − σβK V̄

(K+B̄)
2

β B̄
K+B̄

σβ B̄
K+B̄

−(ν1 + r ) βK (S̄+σ V̄ )

(K+B̄)
2

0 0 θ −δ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

giving the following characteristic equation

λ4 + b3λ
3 + b2λ

2 + b1λ + b0 � 0, (23)

where

b3 � μ + δ + r + ν1 + ν2 +
β B̄

K + B̄
+

σβ B̄

K + B̄
,

b2 �
(

μ + φ +
β B̄

K + B̄

)(

μ +
σβ B̄

K + B̄

)

+ (ν1 + r + δ)

(

μ + ν2 +
β B̄

K + B̄
+

σβ B̄

K + B̄

)

+ η

(

μ +
β B̄

K + B̄

)

+ δ(ν1 + r)
B̄

K + B̄
,

b1 � θKβ2 B̄(S̄ + σ 2V̄ )

(K + B̄)3
+ δ(ν1 + r)

(

μ + ν2 +
β B̄

K + B̄
+

σβ B̄

K + B̄

)
B̄

K + B̄

+ (ν1 + r + δ)

[(

μ + φ +
β B̄

K + B̄

)(

μ +
σβ B̄

K + B̄

)

+ η

(

μ +
β B̄

K + B̄

)]

,

b0 � δ(ν1 + r)

(

μ + φ +
β B̄

K + B̄

)(

μ +
σβ B̄

K + B̄

)

+ ηδ(ν1 + r)

(

μ +
β B̄

K + B̄

)

− μθ

(

ν2 +
σβ B̄

K + B̄

)
βK S̄

(K + B̄)2
− μθ

(

ν2 +
β B̄

K + B̄

)
σβK V̄

(K + B̄)2
.
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In the following, for simplicity, some notation are defined as:

A0 � ν1 + r, A1 � μ + φ +
β B̄

K + B̄
, A2 � μ +

σβ B̄

K + B̄
, A3 � μ +

β B̄

K + B̄
, A4 � μ + ν2 +

β B̄

K + B̄
+

σβ B̄

K + B̄
.

Besides, the relationships β(S̄+σ V̄ )
K+B̄

� (ν1+r )δ
θ

� A0δ
θ

and 0 < σ < 1 will be used in the following steps. Details of the specific
analyses are provided below.

Step 1. The first step is to demonstrate b0 > 0. The process is briefly described as follows.

b0 > δA0A1A2 + ηδA0A3 − μθ

(

ν2 +
β B̄

K + B̄

)
βK

(
S̄ + σ V̄

)

(
K + B̄

)2

� μδA0

(

ν2 +
β B̄

K + B̄

)
B̄

K + B̄
+ δA0A1

σβ B̄

K + B̄
+ ηδA0

β B̄

K + B̄

> 0.

Step 2. The second step is to demonstrate b2b3 − b1 > 0. Then,

b2b3 − b1 > A4
[
δ2 + A1A2 + (A0 + δ)(A0 + A4) + ηA3

]
+ δA0

σβ B̄K
(
K + B̄

)2

+ δA0

[

μ + ν2 +
B̄

K + B̄

(

A0 + δ +
β B̄

K + B̄
+

σβ B̄

K + B̄

)]

> 0.

Step 3. The last step is to demonstrate b1b2b3 − b0b2
3 − b2

1 > 0. A direct calculation shows that

b1b2b3 − b0b
2
3 − b2

1 >(A1A2 + ηA3)A4
[
(A0 + δ)(A1A2 + ηA3) +

(
A2

0 + δ2)(A4 + A0 + δ)
]

+ δA0(A1A2 + ηA3)
[
(A0 + δ)2 − δA0 + A2

4

] B̄

K + B̄

+ (A1A2 + ηA3)

[

δA2
0A

2
4 + (A4 + A0 + δ)

θKβ2 B̄
(
S̄ + σ 2V̄

)

(K + B̄)
3

]

+ δA0(A0 + δ)(A4 + A0 + δ)
[
(A2 + η)2 + η(A3 + 2φ) + A1(A1 + A2)

] B̄

K + B̄

+ δA0(A0 + δ)

[

δA0A4
B̄2

(K + B̄)
2 +

θKβ2 B̄2(S̄ + σ 2V̄ )

(K + B̄)
4

]

+ μδA0A4

(

ν2 +
σβ B̄

K + B̄

)

(A4 + 2A0 + 2δ)
K

K + B̄

+ (A0 + δ)
[
(η + A2)

2 + A2
1 + 2ηφ

]θKβ2 B̄2
(
S̄ + σ 2V̄

)

(K + B̄)
3

+ δA0

(

μ +
β B̄

K + B̄

)
[
(A0 − δ)2 + δA0

] Kβ B̄

(K + B̄)
2

+ δ2A2
0

(

ν2 +
σβ B̄

K + B̄

)
Kβ B̄3

(K + B̄)
3 +

μθ2K 2β3 B̄(S̄ + σ 2V̄ )
2

(K + B̄)
5

> 0.

It obvious that all eigenvalues of the characteristic equation (23) have negative real parts, which means that Ē is locally asymptotically
stable. This completes the proof. �

Then, to prove the global stability of Ē , in particular, the following lemma is stated.

Lemma 1 [30] Let z(t) ∈ R+ be a continuous and derivative function. Then,

C
0 D

q
t

[

z(t) − z̄ − z̄ ln
z(t)

z̄

]

≤
(

1 − z̄

z(t)

)
C
0 D

q
t z(t), z̄ ∈ R+, ∀ q ∈ (0, 1). (24)

Theorem 6 Assume α � 0. Then, the unique endemic equilibrium Ē is globally asymptotically stable provided Rvt > 1.
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Proof To prove this, the Lyapunov function is defined as follows

L2(t) � S̄Ψ

(
S(t)

S̄

)

+ V̄Ψ

(
V (t)

V̄

)

+ ĪΨ

(
I (t)

Ī

)

+
ν1 + r

θ
B̄Ψ

(
B(t)

B̄

)

, (25)

where Ψ (z) � z − 1 − ln(z). It is clear that Ψ (z) ≥ 0 for all z ∈ (0, +∞) and Ψ (z) � 0 if and only if z � 1. Computing Caputo
fractional derivative on both sides, and using Lemma 1, it follows that

C
0 D

q
t L2 ≤

(

1− S̄

S(t)

)
C
0 D

q
t S(t)+

(

1− V̄

V (t)

)
C
0 D

q
t V (t)+

(

1− Ī

I (t)

)
C
0 D

q
t I (t)+

ν1+r

θ

(

1− B̄

B(t)

)
C
0 D

q
t B(t)

�
(

1 − S̄

S(t)

)[

(1 − ρ)Λ − μS(t) − βS(t)B(t)

K + B(t)
− φS(t) + ηV (t)

]

+

(

1 − V̄

V (t)

)[

ρΛ + φS(t) − σβV (t)B(t)

K + B(t)
− (μ + η)V (t)

]

+

(

1 − Ī

I (t)

)[
βS(t)B(t)

K + B(t)
+

σβV (t)B(t)

K + B(t)
− (ν1 + r )I (t)

]

+
ν1 + r

θ

(

1 − B̄

B(t)

)

[θ I (t) − δB(t)].

From system (11), it is easy to see that Ē (α � 0) satisfies the following relations

(1 − ρ)Λ � μS̄ +
β S̄ B̄

K + B̄
+ φ S̄ − ηV̄ , ρΛ + φ S̄ − σβ V̄ B̄

K + B̄
− (μ + η)V̄ � 0,

β S̄ B̄

K + B̄
+

σβ V̄ B̄

K + B̄
� (ν1 + r )δ

θ
B̄.

As a consequence, we directly get that

C
0 D

q
t L2 ≤ μS̄

(

2 − S̄

S(t)
− S(t)

S̄

)

+ μV̄

(

2 − V̄

V (t)
− V (t)

V̄

)

+ φ S̄

(

1 − S̄

S(t)
− S(t)

S̄

V̄

V (t)
+

V̄

V (t)

)

+ ηV̄

(

1 +
S̄

S(t)
− S̄

S(t)

V (t)

V̄
− V̄

V (t)

)

− Kβ
(
S̄ + σ V̄

)

(
K + B̄

)2
(K + B(t))

(
B(t) − B̄

)2

+
β S̄ B̄

K + B̄

(

4 − S̄

S(t)
− I (t)

Ī

B̄

B(t)
− K + B(t)

K + B̄
− S(t)

S̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

+
σβ V̄ B̄

K + B̄

(

4 − V̄

V (t)
− I (t)

Ī

B̄

B(t)
− K + B(t)

K + B̄
− V (t)

V̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

. (26)

Denote h1(t) � 1 − S̄
S(t) − S(t)

S̄
V̄

V (t) + V̄
V (t) and h2(t) � 1 + S̄

S(t) − S̄
S(t)

V (t)
V̄

− V̄
V (t) , then

h1(t) + h2(t) � 2 − S(t)

S̄

V̄

V (t)
− S̄

S(t)

V (t)

V̄
≤ 0,

which implies that h1(t) and h2(t) satisfy the following three cases

i) h1(t) ≤ 0 and h2(t) ≤ 0;
ii) h1(t) ≥ 0 and h2(t) ≤ 0 and |h2(t)|≥ |h1(t)|;

iii) h1(t) ≤ 0 and h2(t) ≥ 0 and |h1(t)|≥ |h2(t)|.
For item i), it obvious that C0 D

q
t L2 ≤ 0.

For item ii), we have φ S̄ � σβ V̄ B̄
K+B̄

+ (μ + η)V̄ − ρΛ =⇒ φ S̄ <
σβ V̄ B̄
K+B̄

+ (μ + η)V̄ , thus, inequality (26) can be further simplified as

C
0 D

q
t L2 < μS̄

(

2 − S̄

S(t)
− S(t)

S̄

)

+ μV̄

(

3 − S̄

S(t)
− V (t)

V̄
− S(t)

S̄

V̄

V (t)

)

+ ηV̄

(

2 − S̄

S(t)

V (t)

V̄
− S(t)

S̄

V̄

V (t)

)

− Kβ
(
S̄ + σ V̄

)

(
K + B̄

)2
(K + B(t))

(
B(t) − B̄

)2

+
β S̄ B̄

K + B̄

(

4 − S̄

S(t)
− I (t)

Ī

B̄

B(t)
− K + B(t)

K + B̄
− S(t)

S̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

+
σβ V̄ B̄

K + B̄

(

5 − S̄

S(t)
− S(t)

S̄

V̄

V (t)
− I (t)

Ī

B̄

B(t)
− K + B(t)

K + B̄
− V (t)

V̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

≤ 0.

For item iii), we have ηV̄ � (μ + φ)S̄ + β S̄ B̄
K+B̄

− (1 − ρ)Λ =⇒ ηV̄ <
β S̄ B̄
K+B̄

+ (μ + φ)S̄, after further simplification,
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Table 1 Possibility of maximum
number of positive real roots
(denoted by n)

Coefficient Rvt < 1 Rvt > 1

a3 + + + + + + + +

a2 + + − − + + − −
a1 + − + − + − + −
a0 + + + + − − − −
n 0 2 2 2 1 1 3 1

C
0 D

q
t L2 < μS̄

(

3 − S(t)

S̄
− V̄

V (t)
− S̄

S(t)

V (t)

V̄

)

+ μV̄

(

2 − V̄

V (t)
− V (t)

V̄

)

+ φ S̄

(

2 − S̄

S(t)

V (t)

V̄
− S(t)

S̄

V̄

V (t)

)

− Kβ
(
S̄ + σ V̄

)

(
K + B̄

)2
(K + B(t))

(
B(t) − B̄

)2

+
β S̄ B̄

K + B̄

(

5 − V̄

V (t)
− S̄

S(t)

V (t)

V̄
− I (t)

Ī

B̄

B(t)
− K + B(t)

K + B̄
− S(t)

S̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

+
σβ V̄ B̄

K + B̄

(

4 − V̄

V (t)
− B̄

B(t)
− K + B(t)

K + B̄
− V (t)

V̄

Ī

I (t)

B(t)

B̄

K + B̄

K + B(t)

)

≤ 0.

Thus, it is easy to observe that C
0 D

q
t L2 ≤ 0 in all three cases. In addition, we can also verify that C

0 D
q
t L2(t) � 0 if and only if

S(t) � S̄, V (t) � V̄ , I (t) � Ī , B(t) � B̄. It follows that the largest invariant compact set in
{
(S, V, I, B) ∈ Ξ : C

0 D
q
t L2(t) ≤ 0

}
is

Ē . As consequence, the globally asymptotically stable of Ē has been shown via the Lasalle invariance principle [29]. This finishes
the proof. �

Remark 1 For q � 1, α � 0, in [12], applying the second compound matrix techniques and autonomous convergence theorems, the
authors of that study derived the condition for the global stability of endemic equilibrium as follows

max

{

−
(

βK S

(K + B)2

B

I
+

σβKV

(K + B)2

B

I
+ μ

)

, ε + γ + r − βS

K + B

B

I
− σβV B

(K + B)2

B

I
− βB

K + B
− σβB

K + B
− μ − η

}

< −χ,

where χ > 0 is a constant. However, in the present study, the endemic equilibrium is globally asymptotically stable without any
additional restrictions for α � 0. In addition, we also analyzed the locally asymptotically stable of the endemic equilibrium, which
is no studies in the literature [12].

3.2.2 Case II: Treatment conditions with limited medical resources, i.e., α > 0.

In this case, the coefficients a2 and a1 change their sign according to different parameter values, and thus, Q(B) may have multiple
positive real roots. In terms of Descartes’ rules of signs, we can get the number of all the possible positive real roots of Q(B) (defined
in Eq. (19)), as shown in Table 1.

Theorem 7 Assume α > 0.

(i) When a2 > 0, a1 > 0 or a2 > 0, a1 < 0 or a2 < 0, a1 < 0, then system (11) consists of a unique a endemic equilibrium Ẽ1

for Rvt > 1.
(ii) When a2 > 0, a1 < 0 or a2 < 0, a1 > 0 or a2 < 0, a3 < 0, then system (11) consists maximum two endemic equilibria Ẽ2

and Ẽ3 for Rvt < 1.
(iii) When a2 < 0, a1 > 0, then system (11) consist maximum three endemic equilibria Ẽ4, Ẽ5 and Ẽ6 for Rvt > 1.

Notably, item (ii) of Theorem 7 indicates that the system may exist two endemic equilibria provided Rvt < 1, which normally
suggests the existence of backward bifurcation (i.e., a stable disease-free equilibrium coexists with a stable endemic equilibrium).
At this time, Rvt < 1 is necessary but no longer sufficient for disease elimination. In addition, item (iii) of Theorem 7 indicates the
system may have multiple endemic equilibria when Rvt > 1, implying that system may exhibit capable of more complex behavior,
such as periodic oscillations and bifurcations. From this, the limited treatment conditions result in the system becomes substantially
more complex. The possible existence of bifurcation phenomena will be elaborated later in the next subsection.

Next, we shall discuss the local stability of the endemic equilibria for system (11) under the conditions of limited treatment. Let

Ẽ �
(
S̃, Ṽ , Ĩ , B̃

)
denote an endemic equilibrium of system (11). Then, the Jacobian matrix at Ẽ is given by
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JẼ �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
(
μ + φ + β B̃

K+B̃

)
η 0 − βK S̃

(K+B̃)
2

φ −
(
μ + η + σβ B̃

K+B̃

)
0 − σβK Ṽ

(K+B̃)
2

β B̃
K+B̃

σβ B̃
K+B̃

−ν1 − r
(1+α Ĩ )2

βK (S̃+σ Ṽ )

(K+B̃)
2

0 0 θ −δ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with the characteristics equation of JẼ is

λ4 + c3λ
3 + c2λ

2 + c1λ + c0 � 0, (27)

where

c3 � μ + δ + ν1 + ν2 +
β B̃

K + B̃
+

σβ B̃

K + B̃
+

r

(1 + α Ĩ )2
,

c2 �
(

μ + φ +
β B̃

K + B̄

)(

μ +
σβ B̃

K + B̃

)

+

(

ν1 + δ +
r

(1 + α Ĩ )2

)(

μ + ν2 +
β B̃

K + B̃
+

σβ B̃

K + B̃

)

+ η

(

μ +
β B̃

K + B̃

)

+ δ

(

ν1 +
r

1 + α Ĩ

θ − αδK

θ + αδ B̃

)
B̃

K + B̃
,

c1 � θKβ2 B̃(S̃ + σ 2Ṽ )

(K + B̃)3
+ δ

(

ν1 +
r

1 + α Ĩ

θ − αδK

θ + αδ B̃

)(

μ + ν2 +
β B̃

K + B̃
+

σβ B̃

K + B̃

)
B̃

K + B̃

+

(

ν1 + δ +
r

(1 + α Ĩ )2

)[(

μ + φ +
β B̃

K + B̃

)(

μ +
σβ B̃

K + B̃

)

+ η

(

μ +
β B̃

K + B̃

)]

,

c0 � δ

(

ν1 +
r

(1 + α Ĩ )2

)(

μ + φ +
β B̃

K + B̃

)(

μ +
σβ B̃

K + B̃

)

+ ηδ

(

ν1 +
r

(1 + α Ĩ )2

)(

μ +
β B̃

K + B̃

)

− μθ

(

ν2 +
σβ B̃

K + B̃

)
βK S̃

(K + B̃)2
− μθ

(

ν2 +
β B̃

K + B̃

)
σβK Ṽ

(K + B̃)2
.

Denote

Δ1 � c0, Δ2 � c2c3 − c1, Δ3 � c1c2c3 − c0c
2
3 − c2

1. (28)

Theorem 8 Assume α > 0.

(i) The necessary and sufficient condition for the endemic equilibrium Ẽ, to be locally asymptotically stable is that the roots of
the characteristic equation (27) satisfy |arg(λs)| >

qπ
2 .

(ii) A sufficient condition for the endemic equilibrium Ẽ, to be locally asymptotically stable is Δi > 0, i � 1, 2, 3.
(iii) The necessary condition for the the endemic equilibrium Ẽ, to be locally asymptotically stable is c0 > 0.

Remark 2 Note that, the analytical results of Theorem 8 do not give more specific conditions about the stability of the endemic
equilibrium. Currently, there are explicit criteria for the stability of fractional-order systems of 3rd-order and below (reviewed in
[28]), but it is very difficult to give an explicit criteria for 4th-order and above.

3.3 Bifurcations analysis

As is well known, characterizing the types of bifurcations that the system may undergo is instructive for the disease control. In the
following, we shall discuss the possible existence of bifurcations for the present model.

3.3.1 Backward and forward bifurcations

As mentioned before, we note that Rvt � 1 is equivalent to

β � K δ(ν1 + r )

θ (S0 + σV0)
:
Δ� β̂, (29)
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according to Theorem 2, the disease-free equilibrium E0 is locally asymptotically stable if β < β̂ and unstable if β > β̂. Hence,
β � β̂ is a bifurcation value. Then, taking β as the bifurcation parameter, we investigate the possibility of backward bifurcation,
which should be noted herein that is similar to that presented in [31] but for the case of integer-order derivative. Hence, we shall go
through the major outlines of it.

Theorem 9 If Rvt < 1, then

α >
θ(ν1 + r)

K δr
+

(ν1 + r)2[μ
(
S0 + σ 2V0

)
+ (η + σφ)(S0 + σV0)

]

μrν2(S0 + σV0)
2 :

Δ� α̂, (30)

then system (11) exhibits a backward bifurcation at Rvt � 1. If the inequality holds reversed, then the system exhibits a forward
bifurcation at Rvt � 1.

Proof The Jacobian matrix of the system (11) at E0 and β̂ is expressed as

J(E0,β̂) �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−μ − φ η 0 − β̂S0
K

φ −μ − η 0 − σ β̂V0
K

0 0 −(ν1 + r) β̂(S0+σV0)
K

0 0 θ −δ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with the eigenvalues are given by

λ1 � 0, λ2 � −μ, λ3 � −ν2, λ4 � −ν1 + r + δ,

it follows that J(E0,β̂) have a simple zero eigenvalue and the rest of eigenvalues have negative real parts, which indicates E0 is a

nonhyperbolic equilibrium when β � β̂.

Step 1. Calculate the eigenvectors of J(E0,β̂) associated with λ1 � 0. The right eigenvector w � (w1, w2, w3, w4)
T is derived from

J(E0,β̂) · w � 0, thus,

w1 � −δ(ν1 + r)[μS0 + η(S0 + σV0)]

μθν2(S0 + σV0)
, w2 � −δ(ν1 + r)[μσV0 + φ(S0 + σV0)]

μθν2(S0 + σV0)
, w3 � δ

θ
, w4 � 1.

Also, the left eigenvector v � (v1, v2, v3, v4) is derived from v · J(E0,β̂) � 0, and such that the property v · w � 1, thus

v1 � 0, v2 � 0, v3 � θ

δ + ν1 + r
, v4 � ν1 + r

δ + ν1 + r
.

Step 2. Calculate bifurcation coefficients a and b. Then, the coefficients a and b are given by

a �
4∑

k,i, j�1

vkwiw j
∂2 fk

∂xi∂x j

(
E0, β̂

)
, b �

4∑

k,i�1

vkwi
∂2 fk
∂xi∂β

(
E0, β̂

)
,

where fk’s denote the right-hand side of system (11) and xi denote the corresponding state variables, i.e., (x1, x2, x3, x4) �
(S, V, I, B). It follows that the coefficients a and b are simplified to

a � 2v3w1w4
∂2 f3
∂S∂B

(
E0, β̂

)
+ 2v3w2w4

∂2 f3
∂V ∂B

(
E0, β̂

)
+ v3w

2
3
∂2 f3
∂ I 2

(
E0, β̂

)
+ v3w

2
4
∂2 f3
∂B2

(
E0, β̂

)
,

b � v3w1
∂2 f3
∂S∂β

(
E0, β̂

)
+ v3w2

∂2 f3
∂V ∂β

(
E0, β̂

)
+ v3w4

∂2 f3
∂B∂β

(
E0, β̂

)
,

then,

a � −2δ2(ν1 + r)2[μ
(
S0 + σ 2V0

)
+ (η + σφ)(S0 + σV0)

]

θμν2(ν1 + r + δ)(S0 + σV0)
2 +

2δ2rα

θ(ν1 + r + δ)
− 2δ(r + ν1)

K (ν1 + r + δ)
,

b � θ(S0 + σV0)

K (ν1 + r + δ)
.

Clearly, the coefficient b is always positive, and the sign of coefficient a determines the direction of bifurcation for the system at
Rvt � 1. Thus, system (11) may exhibit a backward bifurcation at Rvt � 1 if a > 0, i.e., inequality (30) holds, and if a < 0, i.e.,
inequality (30) is reversed, bifurcation is forward. � �
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Remark 3 When α � 0, inequality (30) holds reversed, and the system exhibits a forward bifurcation, which coincides with the
preceding analysis. At this point, the control reproduction number Rvt is usually a necessary and sufficient condition for disease
elimination.

3.3.2 Existence of periodic solutions through Hopf bifurcation

Recall from Sec. 3.2 that system (11) with adequate treatment condition has a unique endemic equilibrium when Rvt > 1, whereas
the system with limited treatment condition may exist multiple endemic equilibria at this point. This implies that the system may
exhibit the complex behavior, such as periodic oscillations arising from the Hopf bifurcation. At present, there have been many
studies on Hopf bifurcations of fractional-order systems. Some literature can be found in [32–35].

Let us consider α as the bifurcation parameter when Rvt > 1, that is, Ẽ is locally asymptotically stable when α < α̃ and unstable
when α > α̃. At α � α̃, the equilibrium Ẽ loses its stability, at which point it begins periodic oscillations. Indeed, there exists a
simple Hopf bifurcation as long as Eq. (27) satisfies the following conditions

(i) Eq. (27) admits a pair of purely imaginary eigenvalues and the other eigenvalues have negative real parts;

(ii) d[Re(λ)]
dα

∣
∣
∣
∣
α�α̃

> 0.

For item (i), according to the literature [36], the coefficients of characteristics equation (27) are required to satisfy the following
conditions

(a) c0 > 0, c1 > 0 and c1c2 − c0c3 > 0;
(b) Δ3 � 0, which is defined in Eq. (28).

Next, we shall derive the transversely condition (ii). Differentiate Eq. (27) with respect to α, one has
(
4λ3 + 3c3λ

2 + 2c2λ + c1
) dλ

dα
+ λ3 dc3

dα
+ λ2 dc2

dα
+ λ

dc1

dα
+

dc0

dα
� 0,

which gives
(

dλ

dα

)−1

� − 4λ3 + 3c3λ
2 + 2c2λ + c1

λ3 dc3
dα

+ λ2 dc2
dα

+ λ dc1
dα

+ dc0
dα

:� −P(λ)

I(λ)
.

Assume that λ � ±iw is a pair of purely imaginary root of Eq. (27) corresponding to α̃. Substituting λ � iw into the above equation,
one has

[
dRe(λ)

dα

]

λ�iw
� sign

[

Re

(
dλ

dα

)−1
]

λ�iw

� sign

{

Re

[

−P1 + iP2

I1 + iI2

]}

� sign

[

−P1I1 + P2I2

I2
1 + I2

2

]

,

where

P1 � Re[P(λ)] � −3c3w
2 + c1; P2 � Im[P(λ)] � −4w3 + 2c2w;

I1 � Re[I(λ)] � −dc2

dα
w2 +

dc0

dα
; I2 � Im[I(λ)] � −dc3

dα
w3 +

dc1

dα
w.

Clearly, if

(H) : P1I1 + P2I2 � (c1 − 3c1w
2)

(
dc0

dα
− dc2

dα
w2
)

+ (2c2w − 4w3)

(
dc1

dα
w − dc3

dα
w3
)

< 0

holds, then d(Re(λ))
dα

∣
∣
∣
α�α̃

> 0. In what follows, we summarize this results.

Theorem 10 Assume that (H) is true, system (11) may occur a periodic oscillations at Ẽ when α � α̃.

4 Optimal control problem

In this section, we aim to control cholera transmission by minimizing the number of infected individuals and reducing the V. cholerae
concentration in environment, as well as to reduce the cost associated with such control measures. As such, we extend system (1) and
formulate a corresponding the control problem by considering the several control measures such as vaccination, media coverage,
treatment, and sanitation. These control measures are discussed in details below.

(i) Vaccination to susceptible individuals: in system (1), the inoculation proportion of susceptible individuals is assumed to be
constant φ throughout. Herein, vaccination rate φ is treated as a control variable and indicated with u1(t).
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(ii) Contact rate reduced through media coverage: it is well-known that media coverage can improve people awareness of prevention
of infectious diseases, which decreases the opportunity and probability of contact transmission. Thus, we introduce control
variable u2(t) to denote the reduced contact rate through media coverage.

(iii) Revaccination to vaccinated individuals: cholera vaccines efficacy and effectiveness can wear off with time, thus, vaccinated
individuals could be vaccinated again for the booster immunization. The control variable u3(t) is another kind of vaccination
strategy used to control for rate of loss vaccine immunity.

(iv) Treatment to infected individuals: despite the constrained medical resources in the community, government may invest more
medical resources when the disease large-scale outbreaks. Introducing new control variable u4(t) denotes intensive treatment
for the infected individuals, that is, increase γ and decrease saturation constant α.

(v) Contaminated water treatment: the control variable u5(t) denotes water sanitation leads to the death rate of vibrios.

Thus, under these control measures, we consider the following fractional optimal control problem:

J (I,U, t) � 0 I
q
t f

[
I (t) +

κ1

2
u2

1(t) +
κ2

2
u2

2(t) +
κ3

2
u2

3(t) +
κ4

2
u2

4(t) +
κ5

2
u2

5(t)
]
, (31)

subject to the fractional control system
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

q
t S(t) � (1 − ρ)Λ − (μ + u1(t))S(t) − β(1 − u2(t))S(t)B(t)

K + B(t)
+ η(1 − u3(t))V (t),

C
0 D

q
t V (t) � ρΛ + u1(t)S(t) − σβ(1 − u2(t))V (t)B(t)

K + B(t)
− μV (t) − η(1 − u3(t))V (t),

C
0 D

q
t I (t) � β(1 − u2(t))S(t)B(t)

K + B(t)
+

σβ(1 − u2(t))V (t)B(t)

K + B(t)
− ν1 I (t) − (r + u4(t))I (t)

1 + αu4(t)I (t)
,

C
0 D

q
t R(t) � γ I (t) − μR(t) +

(r + u4(t))I (t)

1 + αu4(t)I (t)
,

C
0 D

q
t B(t) � θ I (t) − (δ + u5(t))B(t),

(32)

with the nonnegative initial conditions (2). Among them, J (·) is the objective function of fractional control system (32), κi ,
i � 1, 2, 3, 4, 5 denotes proportional weights associated with the cost of that corresponding control measures. Besides, control
variable U � (u1, u2, u3, u4, u5) comes from the following admissible set of control functions:

ℵ � {
U (t) ∈ L∞(0, t f ) : 0 ≤ ui (t) ≤ ui max ≤ 1, i � 1, 2, 3, 4, 5

}
,

where t f denotes the final time of control measures. For notational convenience, we rewrite Eq. (32) in the matrix form, that is

C
0 D

q
t X (t) � G(t, X (t),U (t)), (33)

where X � (S, V, I, R, B)T and G � (gS, gV , gI , gR, gB)T .

Remark 4 In the objective function (31), we use quadratic terms expression to account for the nonlinear costs that may occur at
high intervention levels. Although this is not necessary, it is currently one of the most common way to penalize the use of controls.

4.1 Existence of optimal control solution

Theorem 11 There exists an optimal control solution U∗ � (u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5) ∈ ℵ that minimizes the objective functional in Eq.

(31).

Proof The existence of optimal control solution can be verified using the result of Fleming and Rishel theorem [37]. Namely, the
optimal control problem (31)-(32) is required to satisfy the three conditions. The first condition is to prove the set of control and
corresponding state variables are non-negative and non-empty. Clearly, the solution of system (32) is bounded, and its proof is similar
to that of Theorem 1. Also, the right-hand side functions of system (32) satisfies the Lipschitz condition with respect to the state
variables. From Picard-Lindelöf theorem [38], the first condition holds. Then, the second condition is to demonstrate that the control
set ℵ is closed convex and the integrand of the objective functional in Eq. (31) is also convex with respect to control variable U. This
condition is obviously holds. The final condition is to prove that there exists a continuous function g(U) satisfying the integrand of
objection functional is greater than or equal to g(U), and g(U )/|U |→ ∞ whenever |U |→ ∞. Thus, let g(U ) � κ

2

∑5
i�1 u

2
i where

κ � min{κ1, κ2, κ3, κ4, κ2, κ5}, then

I +
κ1

2
u2

1 +
κ2

2
u2

2 +
κ3

2
u2

3 +
κ4

2
u2

4 +
κ5

2
u2

5 ≥ g(U ),

besides, g(U) is continuous and satisfy g(U )/|U |→ ∞ as |U |→ ∞. Thus, three conditions for existence of optimal control solution
is satisfied. The proof is finished. �
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4.2 Characterization of optimal control solution

According to Pontryagin’s maximum principle [39], and using the results described in [40], if U∗ ∈ ℵ is optimal solution for the
objective functional (31), then there exists an adjoint vector λ(t) � (λS(t), λV (t), λI (t), λR(t), λB (t)) ∈ R

5
+ satisfies:

(i) the control system

C
0 D

q
t S � ∂H

∂λS
, C

0 D
q
t V � ∂H

∂λV
, C

0 D
q
t I � ∂H

∂λI
, C

0 D
q
t R � ∂H

∂λR
, C

0 D
q
t B � ∂H

∂λB
; (34)

(ii) the adjoint system

C
t D

q
t f λS � ∂H

∂S
, C

t D
q
t f λV � ∂H

∂V
, C

t D
q
t f λI � ∂H

∂ I
, C

t D
q
t f λR � ∂H

∂R
, C

t D
q
t f λB � ∂H

∂B
; (35)

(iii) the stationary condition

∂H
∂u1

� 0,
∂H
∂u2

� 0,
∂H
∂u3

� 0,
∂H
∂u4

� 0,
∂H
∂u5

� 0; (36)

(iv) the transversality conditions

λS(t f ) � 0, λV (t f ) � 0, λI (t f ) � 0, λR(t f ) � 0 and λB (t f ) � 0; (37)

in which the Hamiltonian function is defined as

H(t, X,U, λ) � I (t) +
κ1

2
u2

1(t) +
κ2

2
u2

2(t) +
κ3

2
u2

3(t) +
κ4

2
u2

4(t) +
κ5

2
u2

5(t)

+ λS(t)

[

(1 − ρ)Λ − (μ + u1(t))S(t) − β(1 − u2(t))S(t)B(t)

K + B(t)
+ η(1 − u3(t))V (t)

]

+ λV (t)

[

ρΛ + u1(t)S(t) − σβ(1 − u2(t))V (t)B(t)

K + B(t)
− μV (t) − η(1 − u3(t))V (t)

]

+ λI (t)

[
β(1 − u2(t))S(t)B(t)

K + B(t)
+

σβ(1 − u2(t))V (t)B(t)

K + B(t)
− ν1 I (t) − (r + u4(t))I (t)

1 + αu4(t)I (t)

]

+ λR(t)

[

γ I (t) − μR(t) +
(r + u4(t))I (t)

1 + αu4(t)I (t)

]

+ λB (t)[θ I (t) − (δ + u5(t))B(t)].

Remark 5 Eqs. (34)-(37) give a set of necessary conditions for optimal control problem (31)-(32). Compared with classical optimal
control problems, the derived equations include the left and the right fractional derivatives.

Remark 6 It should be mentioned here that the adjoint system is derived from Riemann-Liouville fractional derivative (RLFD), that
is, tD

q
t f λX � ∂H

∂X , X � (S, V, I, R, B), where tD
q
t f represents right RLFD. Then, with the help of the relation between the right

RLFD and CFD, the right RLFD is replaced with right CFD, shown in Eq. (35).

Theorem 12 Let (S∗, V ∗, I ∗, R∗, B∗) be optimal state variables set related to optimal control solution U∗ � (u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5)

which minimizes the objective function for the optimal control problem (31)-(32), then there exists an adjoint variable λ �
(λS, λV , λI , λR, λB ) satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 D

q
t λS(t ′) � − λS(t ′)

(

μ + u∗
1(t ′) +

β(1 − u∗
2(t ′))B∗(t ′)

K + B∗(t ′)

)

+ λV (t ′)u∗
1(t ′)λI (t

′)
β(1 − u∗

2(t ′))B∗(t ′)
K + B∗(t ′)

,

C
0 D

q
t λV (t ′) � λS(t ′)(1 − u∗

3(t ′))η − λV (t ′)
(σβ(1 − u∗

2(t ′))B∗(t ′)
K + B∗(t ′)

+ μ + η(1 − u∗
3(t ′))

)

+ λI (t
′)

σβ(1 − u∗
2(t ′))B∗(t ′)

K + B∗(t ′)
,

C
0 D

q
t λI (t

′) � 1 − λI (t
′)
(

ν1 +
r + u∗

4(t ′)
(1 + αu∗

4(t ′)I ∗(t ′))2

)

+ λR(t ′)
(

γ +
r + u∗

4(t ′)
(1 + αu∗

4 I (t ′))2

)

+ λB (t ′)θ,

C
0 D

q
t λR(t ′) � − λR(t ′)μ,

C
0 D

q
t λB (t ′) � − λS(t ′)

β(1 − u∗
2(t ′))S∗(t ′)K

(K + B∗(t ′))2 − λV (t ′)
σβ(1 − u∗

2(t ′))V ∗(t ′)K
(K + B∗(t ′))2

+ λI (t
′)
(

β(1 − u∗
2(t ′))S∗(t ′)K

(K + B∗(t ′))2 +
σβ(1 − u∗

2(t ′))V ∗(t ′)K
(K + B∗(t ′))2

)

− λB (t ′)(δ + u∗
5(t ′)),

(38)
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Table 2 Parameter values for the
cholera model (11)

Parameter Interpretation Value References

Λ Recruitment rate 0.5/day [44]
ρ Proportion of vaccination 0.8 [12]

μ Natural human death rate 5.48 × 10−5/day [12, 15]
φ Vaccination rate 0.008/day [12]
β Ingestion rate 0.2143/day [6]

K Half saturation constant 106 cell/ml [14]
η Waning rate of vaccine 0.002/day [12]
σ The reduction in vaccine efficacy 0.2 [12]
ε Cholera-related death rate 0.015/day [45]
γ Recovery rate without hospital treatment 0.004/day [15]
θ Rate of human contribution to vibrios 100 cells/ml-per day [46]
δ Death rate of the vibrios 0.33/day [14]

r Treated cure rate Various –
α Half saturation constant Various –

with t ′ � t f − t , and the transversality conditions

λS(t f ) � 0, λV (t f ) � 0, λI (t f ) � 0, λR(t f ) � 0 and λB (t f ) � 0. (39)

Furthermore, the optimal control U∗ is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
1 � min

{

max

{

0,
(λS − λV )S∗

κ1

}

, u1 max

}

,

u∗
2 � min

{

max

{

0,
(λI − λS)βS∗B∗ + (λI − λV )σβV ∗B∗

κ2(K + B∗)

}

, u2 max

}

,

u∗
3 � min

{

max

{

0,
(λS − λV )ηV ∗

κ3

}

, u3 max

}

,

u∗
4 � min{max{0, ū4}, u4 max},

u∗
5 � min

{

max

{

0,
λB B∗

κ5

}

, u5 max

}

,

(40)

where ū4 is non-negative root of the equation κ4u4(1 + αu4 I ∗)2 + (λR − λI )(1 − αr I ∗)I ∗ � 0.

Remark 7 Generally, the numerical methods of fractional-order differential equations are mostly based on left fractional derivatives.
For subsequent simulation convenience, the adjoint system (35) is rewritten as Eq. (38) by using equivalence relation C

t D
q
t f λ(t) �

C
0 D

q
t λ(t f − t) when q ∈ (0, 1] (see [41–43] and references cited therein).

5 Simulations and discussions

To confirm the theoretical results, in this section, some numerical simulations are performed with MATLAB and Simulink. The
simulation parameters are given in Table 2, in which specific r-value and α-value are presented in Examples.

5.1 The dynamical behavior of the fractional cholera model

First, the disease-free equilibrium is calculated as E0 � (1824.8175, 7299.2701, 0, 0) using the values for the parameters in Table 2.
Then, the simulations of system (11) are performed with different parameter values r and α.

Example 1 Setting α � 0, one can see in Fig. 2a that the system exhibits a forward bifurcation. First, setting r � 1 and q � 0.98
which results in Rvt � 0.2093 < 1, it follows that E0 is globally asymptotically stable from Theorem 3, as shown in Fig. 2b, c.
Next, setting r � 0.02 and q � 0.98, it is easy to show that Rvt � 5.4617 > 1 and thus, the system has a locally asymptotically
stable endemic equilibrium Ē , as predicted by Theorem 5 (see Fig. 2d, e). In addition, Fig. 2f shows the curves related to the infected
individuals under different q-values. It is observed that the curves are stretched to the right as the decrease in q-value, owing to the
increase in the memory effect of the system as q-value decreases, and thus the infection grows slowly, implying that the disease may
take longer to be eradicated.
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(a) α = 0 (b) Rvt = 0.2093, q = 0.98
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(c) Rvt = 0.2093, q = 0.98

(d) Rvt = 5.4617, q = 0.98
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(e) Rvt = 5.4617, q = 0.98
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(f) Rvt = 5.4617, q = 1, 0.98, 0.9

Fig. 2 a Existence of forward bifurcation for α � 0. b, c When Rvt � 0.2093, there are no endemic equilibria and E0 is globally asymptotic stable. d,
e When Rvt � 5.4617, there is a unique equilibrium and Ē is locally asymptotically stable. f When Rvt � 5.4617, all the trajectories converge to Ī under
different q-values

Example 2 Setting α � 5 > 0, in this case, two endemic equilibria appear for Rvt < 1 shown in Fig. 3a. First, it is clear to see that
Δ1 curve is drawn below the x-axis when Rvt < 1 from Fig 3b implying that the endemic equilibrium Ẽ2 always unstable regardless
of whichever q-value is taken from (0, 1]. For the other one endemic equilibrium Ẽ3 when Rvt < 1, in particular, we separately
discuss two cases.

(i) For q � 1 in which reflects the integer-order derivative, it can be seen from Fig. 3c, d that this endemic equilibrium is also
unstable as Routh-Hurwitz criterion is not met. As a result, both of the endemic equilibria are unstable for integer-order system,
which differs from the usual backward bifurcation. At this point, the disease will die out when Rvt < 1.

(ii) For q ∈ (0, 1) in which reflects the fractional-order derivative, we take r � 0.2, then the
endemic equilibrium Ẽ3 is calculated as (171.7711, 760.8082, 21.4782, 6508.5595) and the corre-
sponding eigenvalues are λ � [−0.350713797995747,−0.0106210224628660, 0.000245239638796110 +
0.00300145540583674i, 0.000245239638796110 − 0.00300145540583674i], it follows that the endemic equilibrium is
locally asymptotically stable if q ∈ q̄(0, 0.9481). It is clear from Fig. 3e that under the identical initial conditions, the disease
will become endemic when q ∈ q̄, and will die out when q /∈ q̄ . In this case, the fractional system exhibits usual backward
bifurcation phenomenon, providing further evidence that the stability domain of fractional-order system is always larger than
that of integer-order.

In addition, there is an unique endemic equilibrium Ẽ1 when Rvt > 1 from Fig. 3a. We find that the stability of Ẽ1 also depend on
the value q when 1 < Rvt < 1.2533 from Fig. 3f, g, however, Ẽ1 becomes stable when Rvt > 1.2533. Fig. 3h, i show that Ẽ1 is
locally asymptotically stable when r � 0.02 with different values of q.

5.2 Numerical scheme and simulations for fractional optimal control problem

In this subsection, we present the numerical results for the fractional optimal control problem proposed in Sect. 4 by utilizing the
Forward-Backward Sweep Method (FBSM) using Fractional Euler Method (FEM) in Ref [41]. Herein, we highlighted again the
main steps of this algorithm.

Step 0. Set the parameter values and initial conditions;
Step 1. Divide the interval [0, t f ] into N equal subintervals with length h � t f

N and tk � kh, k � 0, 1, 2, ..., N ;
Step 2. Compute U (tk) based on the formula as follows

123



 1361 Page 18 of 22 Eur. Phys. J. Plus        (2022) 137:1361 

0 0.5 1 1.5 2

R
vt

0

1000

2000

3000

4000

5000

6000

7000
B

(a) α = 5
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
vt

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

1

10-9

(b) Rvt < 1 (Ẽ2)
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Fig. 3 a Existence of bifurcation for α � 5. b Waveform plot of Δ1 (Ẽ2). c, d Waveform plot of Δi , i � 1, 2, 3 (Ẽ3). (e) When Rvt < 1, the behavior of
the infected population under different q-values and identical initial conditions. f , g Waveform plot of Δi , i � 1, 2, 3 (Ẽ1). h, i When Rvt � 5.4617, Ẽ1
is locally asymptotically stable with different q-values

u1(tk) � min

{

max

{

0,
(λS(tk) − λV (tk))S(tk)

κ1

}

, u1 max

}

,

u2(tk) � min

{

max

{

0,
(λI (tk)−λS(tk))βS(tk)B(tk)+(λI (tk)−λV (tk))σβV (tk)B(tk)

κ2(K +B(tk))

}

, u2 max

}

,

u3(tk) � min

{

max

{

0,
(λS(tk) − λV (tk))ηV (tk)

κ3

}

, u3 max

}

,

u4(tk) � min{max{0, ū4(tk)}, u4 max},
u5(tk) � min

{

max

{

0,
λB (tk)B(tk)

κ5

}

, u5 max

}

,

in which the initial value of control U (t0) can be determined by the initial conditions (2) and transversality conditions (39).
The remaining values of U (tk) can be obtained from the looping by solve the state and adjoint equations as in the next
steps;

123



Eur. Phys. J. Plus        (2022) 137:1361 Page 19 of 22  1361 

Step 3. Solve the state system (33) forward-in-time by means of the FEM with initial conditions (2) to obtain the new starting
point, that is

X (tk) � X (t0) +
hq

Γ (q + 1)

k−1∑

j�0

a j,kG(t j , X (t j ),U (t j )),

where a j,k � (k − j)q − (k − 1 − j)q .
Step 4. Solve the adjoint equation (38) forward-in-time by applying the FEM subject to terminal conditions and the values of the

controls and state variables. For the sake of brevity, results are given as the matrix form as follows

λX (t f − tN−k−1) � hq

Γ (q + 1)

k∑

j�0

a j,k+1
∂H

∂X

(
t f − tN− j , X

(
t f − tN− j

)
,U
(
t f − tN− j

)
, λ
(
t f − tN− j

))
.

Step 5. Update control U (tk) for k � 1, 2, ..., N by entering the new state and adjoint values from Step 3 and Step 4 into Step 2;
Step 6. Check convergence. If the results of the current iteration are significantly closer to the last iteration, output the current

values as the optimal solutions. If the results are not close, return to Step 3.

Next, we apply the above numerical scheme to illustrate the effectiveness of suggested control measures on the transmission
of cholera. For illustration purposes, we choose initial conditions S(0) � 6000, V (0) � 300, I (0) � 1700, R(0) � 3000, B(0) �
300, 000 together with the parameter values in Table 2. Other parameter values are set to r � 0.02, α � 5, q � 0.98, κ1 � 15, κ2 �
10, κ3 � 5, κ4 � 10, κ5 � 15, t f � 182 and u1 max � 0.6, u2 max � 0.7, u3 max � 0.5, u4 max � 0.6, u5 max � 1.

Subsequently, the above steps of numerical scheme are performed, the optimal control solutions are given in Fig. 4. It can be
observed that during the first 40 days of cholera outbreak, the vaccination strategy u1(t) remained at its highest level followed by a
rapid fall to zero, whereby saving vaccination costs. Similarly, the treatment strategy u4(t) is also canceled gradually after 90 days.
Meanwhile, we find that revaccination strategy u3(t) has a positive effect on control cholera outbreak, but it is not necessary. Thus,
considering the relevant costs, this control strategy is not recommended. Relatively speaking, media coverage strategy u2(t) and the
sanitation strategy u5(t) have been widely used throughout the disease control period.

In order to explain the effectiveness of the control strategies more intuitively, we compare the number of infectious individuals
and bacterial concentration under three separate models, i.e., SI-B model without any control strategy, SVIR-B model (1), and
optimal control model (32), where the simplest SI-B subsystem is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 D

q
t S(t) � Λ − μS(t) − βS(t)B(t)

K + B(t)
,

C
0 D

q
t I (t) � βS(t)B(t)

K + B(t)
− (μ + ε)I (t),

C
0 D

q
t B(t) � θ I (t) − δB(t).

Then, simulate data are also compared with real data on the cholera outbreak that occurred in the Department of Artibonite, Haiti,
from 1st November 2010 to 1st May 2011. As observed from Fig. 5, the implement of control measures could significantly reduce
the number of infectious individuals and bacterial concentration. Besides, we also observe that both of them have slight rise toward
end due to the rapid decay of control functions near final time.

In addition, the changes of the control variables under different q-value are given in Fig. 6. Clearly, the maximum levels of the
controls increase as q-value decreases, in other words, the maximum levels of the controls can be reduced by decreasing the memory
effect.

6 Conclusion

In this paper, we have addressed a fractional SVIR-B epidemic model with imperfect vaccination and saturated treatment to describe
the transmission dynamics of cholera epidemic. First, some fundamental properties of the given model were investigated, such as
the positivity and boundedness of solutions, the expression of the control reproduction number Rvt , the existence and stability of
equilibria, as well as the existence of bifurcations. Analytical study demonstrates that the model exhibits a rich and complex dynamics
behavior due to saturated treatment. More specifically, the saturated treatment may cause the existence of backward bifurcation,
which is important from an epidemiological point of view since it is probably not sufficient to eliminate cholera when the control
reproduction number is reduced to less than unity. At this point, the initial size of the infected population determines whether cholera
is eradicated. Also, the saturated treatment may result in the occurrence of Hopf bifurcation when Rvt > 1, which implies that
cholera persist periodically within the population. As a result, the absence of ample medical resources makes it difficult to effectively
control cholera. This recommends that it is necessary to deploy relatively ample medical resources during the large-scale cholera
outbreak make Rvt lower than unity so that the system will be disease free in the sense of the disease-free equilibrium because it is
globally asymptotically stable.
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Fig. 4 The curves of optimal
control strategies
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Fig. 5 The curves of I(t) and B(t) under three separate models

Subsequently, in order to control and reduce the spread of cholera as soon as possible, an optimal control problem is proposed by
incorporating the different types of control strategies, such as vaccination, media coverage, treatment, and sanitation. Then, applying
the fractional optimal control theory, the existence of optimal control pair was demonstrated, and the optimal control solution was
characterized.

Lastly, to facilitate the understanding of theoretical results, some numerical simulations are performed. From the numerical
simulations, it has been seen that although the integer-order model and fractional-order model possess the identical steady-state
value, the fractional-order model requires a longer period of time to converge to the steady-state value. This suggests that cholera
needs longer time to be eliminated as q-value approaches 0 (increasing memory). Then, the transmission intensity of the cholera
will decrease as q-value decreases. Moreover, an interesting observation from our numerical simulation is that the integer-order
model may have two unstable endemic equilibria when Rvt < 1, which differs from usual backward bifurcation. Nevertheless, it
may be a usual backward bifurcation phenomenon in the corresponding fractional-order model, providing further evidence that the
fractional-order system’s stability domain is clearly larger than that of integer-order. Another interesting result found is that the
maximum levels of the controls increase as q-value decreases. Overall, in order to predict and control the development of disease
more accurately, it is necessary to make a more in-depth analysis of the order q-value to ensure that the best value is chosen.
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