Correction

THE EUROPEAN PHYSICAL JOURNAL PLUS

Check for updates

Correction to: Expoloriting of graphene oxide for improving physical properties of $TiO_2(NPs)$: toward photovoltaic devices and wastewater remediation approaches

O. O. Alameer¹, A. Timoumi^{2,a}, N. El Guesmi^{3,b}, S. N. Alamri⁴, W. Belhadj^{2,c}, K. Althagafy², Saleh A. Ahmed^{3,5}

¹ 4616, king Fahd, Makkah, Saudi Arabia

² Department of Physics, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia

³ Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia

⁴ Department of Physics, Science Faculty, Taiba University, Madinah, Saudi Arabia

⁵ Chemistry Departement, Faculty of Science, Assiut University, Assiut 71516, Egypt

© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Correction to: Eur. Phys. J. Plus (2022) 137:1160

https://doi.org/10.1140/epjp/s13360-022-03289-z

In this article, the author name K. Althagafy was incorrectly written as K. Althagafi.

The wrong figures appeared as Figs. 2–13; the figures should have appeared as shown below. The original article has been corrected.

Fig. 2 Experimental setup of photocatalytic reactor for degradation of MO dye

The original article can be found online at https://doi.org/10.1140/epjp/s13360-022-03289-z.

^ae-mail: aoteoume@uqu.edu.sa (corresponding author)

^be-mail: naguesmi@uqu.edu.sa (corresponding author)

^c e-mail: wbbelhadj@uqu.edu.sa (corresponding author)

Fig. 3 FTIR spectra of a TiO₂ (NPs), b (0.2 wt.%) GO-TiO₂, c (0.4 wt.%) GO-TiO₂, d (0.6 wt.%) GO-TiO₂ nanocomposites thin films

Fig. 4 SEM images and the grain size distribution of \mathbf{a} TiO₂ (NPs), \mathbf{b} (0.2 wt.%) GO-TiO₂, \mathbf{c} (0.4 wt.%) GO-TiO₂, \mathbf{d} (0.6 wt.%) GO-TiO₂ nanocomposites thin films

Fig. 5 EDX spectrum of a $\rm TiO_2$ and of b--d GO-TiO_2 nanocomposite

Fig. 6 XRD analysis of a TiO_2 and of **b-d** GO- TiO_2 nanocomposite

Fig. 7 a UV–Visible Spectroscopy transmission and ${\bf b}$ absorption spectra

Fig. 10 a The Nyquist plot of (Z' vs. - Z'') of TiO₂ nanocomposite in pellet form at different temperatures and b equivalent proposal circuit

Fig. 11 The absorption spectra of the degradation of MO under UV light irradiation at different time intervals using **a** TiO₂ (NPs) **b** (0.2 wt.%) **c** (0.4 wt.%) and **d** (0.6 wt.%) GO-TiO₂ nanocomposites

Fig. 12 The kinetic spectra of MO degradation using TiO₂ (NPs), (0.2 wt.%), (0.4 wt.%) and (0.6 wt.%) GO-TiO₂ nanocomposites

