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Abstract In this world, there are several acute viral infections. One of them is influenza, a respiratory disease caused by the influenza
virus. Stochastic modelling of infectious diseases is now a popular topic in the current century. Several stochastic epidemiological
models have been constructed in the research papers. In the present article, we offer a stochastic two-strain influenza epidemic
model that includes both resistant and non-resistance strains. We demonstrate both the existence and uniqueness of the global
positive solution using the stochastic Lyapunov function theory. The extinction of our research sickness results from favourable
circumstances. Additionally, the infection’s persistence in the mean is demonstrated. Finally, to demonstrate how well our theoretical
analysis performs, various noise disturbances are simulated numerically.

1 Introduction

The respiratory system, which includes the nose, throat, and lungs, is affected by viruses that cause influenza, sometimes known as
the flu [1]. Flu is frequently characterized by acute symptoms and potentially fatal consequences. Viruses with the names influenza
A, B, C, and D are four different varieties [2]. Seasonal diseases brought on by influenza types A and B occur nearly every winter.
The disease brought on by type C influenza is often quite mild and frequently symptomless. Cattle are affected by type D influenza
viruses, which are not known to cause any illnesses in people. All subtype of type A influenza viruses is split into strains, and
each strain is additionally categorized into subcategories. Just viruses of type A have sparked pandemic. The various types of
proteins found on the outside of the influenza virus envelope are designated by the letters H and N. the different influenza subtypes
Hemagglutinin, also known as the HA protein, and neuraminidase, sometimes known as the NA protein, are two types of proteins
that attach to the surface of viruses. The immune system of the body may produce antibodies that can identify these particular viral
proteins (antigens) and hence can combat this particular influenza virus.

Scholars have identified 18 distinct HA protein forms and 11 distinct NA protein types that may co-occur in a wide range of
combinations in influenza viruses that infect birds. According to reports, each of these mixtures represents a unique strain of influenza
virus with a specific number of H(number) and N(number) proteins, such as H7N1, H9N2, H5N1, etc [3, 4]. Although they might be
classified as strains, type B influenza viruses are not classified into sub-types. Rarely does vaccination offer protection against novel
influenza viruses. This was evident during the 2009 H1N1 influenza pandemic. Antiviral medication is thus necessary to prevent
the spread of the flu epidemic [5]. Resistance to the influenza virus is increasingly a problem. As an illustration, consider the H3N2
and H1N1 viruses’ resistance to aminoadamantanes and oseltamivir, respectively [8–10]. Future pandemics might be brought on
through resistance, which is lethal. In comparison to the original strain, a new strain’s force of transmission is typically thought to
be quite weak. According to references [10–12], mutation reduces the viral strength, which is connected to this event.

In epidemiology, mathematical modelling is crucial for a deeper understanding of the numerous facets of many illnesses. Because
there are several diseases in which more than one pathogen strain is noted due to the process of viral mutation, for example, influenza
[32], human immunodeficiency virus [33], tuberculosis [34], and COVID-19 [35], multi-strain epidemics models have attracted the
focus of many researchers. Recently, in [26–28], the research of the two-strain epidemic model by fractional differential equation
was also established, because the fractional-order differential equations can be helpful in modelling biological systems [29–31]. In
actuality, some unknown environmental perturbations invariably affect population dynamics and epidemic systems. As we all know,
real life is filled with randomness and unpredictability. Stochastic models can better conform to the actual situation, because most
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epidemic models are influenced by environmental factors, such as percipitation, temperature, relative humidity. Thus, the variability
of epidemic growth and spread is random due to the different infectious periods. It has equally been shown that stochastic models
can provide additional degree of realism as compared with their deterministic study. Furthermore, several writers have extensively
examined certain stochastic epidemics models, including [36–40]. An epidemic model with a twofold hypothesis that combines two
transmission mechanisms, SIS and SIR, with two distinct saturation incidence rates is addressed in [36] Boukanjime et al. Although
there might be two epidemic illnesses in the current world, one brought on by virus A and the other by virus B, the authors of [37]
explored an SIS model with the twin epidemic theory. With two distinct saturation incidence rates, Chang et al. [38] constructed
a stochastic SIRS model and determined the thresholds that determine whether the disease will remain or go away. The existence
of an ergodic stationary distribution of the nonnegative solutions to a stochastic SIS epidemic model with double illnesses and the
Beddington-DeAngelis incidence was demonstrated by Liu and Jiang, who used [39] as their source. In [40], it was looked at how
two different infectious diseases might spread vertically under a stochastic epidemic model.

In our case we will study two strains of an influenza epidemic model, after analyze the situation in which the two strains can coexist
and the difference in their mode of transmission, we employ the use of mathematical modeling. Principal element in mathematical
modeling is the incidence rate. Its significance in epidemiology can’t be over emphasized.

Recently, Baba et al. [41] constructed and studied a resistance and non-resistance strains of influenza.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
� � − αS(t)IN (t) − βS(t)IR(t)

1 + κ IR(t)
− dS(t),

dIN (t)

dt
� αS(t)IN (t) − (d + μ)IN (t),

dIR(t)

dt
� βS(t)IR(t)

1 + κ IR(t)
− (d + γ )IR(t),

dR(t)

dt
� μIN (t) + γ IR(t) − dR(t).

(1.1)

Here S(t) is the susceptibles, IR(t) is the infective resistant individuals, IN (t) is the infective non-resistant individuals and R(t)

is the removed ones. The parameters in the model (1.1) are positive constants where : � is a recruitment into susceptible.
1

d
is

natural mortality rate, The rate of infection by resistant strain is represented by α, the rate of infection by non-resistant strain is
denoted by β, removal of individuals carrying the resistant strain from the population is 1

γ
, removal of individuals carrying the

non-resistant strain is 1
μ

, and the mutation effect on the resistant strain is κ . Both illnesses are spread by interaction between people
in the susceptible compartment and those in the IN and IR compartments, which have, respectively, bilinear and saturation incidence
rates. We anticipate that the populations that reside in environments where random accidents are prevalent are mostly impacted by
the contact rate, which will primarily present itself as changes in the saturated response rate, so that α turn into α + σN Ḃ(t) and
β turn into β + σR Ḃ(t) where BN (t) and BR(t)) are standard Brownian motion with intensities σN > 0 and σR > 0. Now, the
corresponding stochastic model of the system (1.1) is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) �
(

� − αS(t)IN (t) − βS(t)IR(t)

1 + κ IR(t)
− dS(t)

)

dt − σN S(t)IN (t)dBN (t) − σRS(t)IR(t)

1 + κ IR(t)
dBR(t),

dIN (t) �
(

αS(t)IN (t) − (d + μ)IN (t)

)

dt + σN S(t)IN (t)dBN (t),

dIR(t) �
(

βS(t)IR(t)

1 + κ IR(t)
− (d + γ )IR(t)

)

dt +
σRS(t)IR(t)

1 + κ IR(t)
dBR(t),

dR(t) �
(

μIN (t) + γ IR(t) − dR(t)

)

dt.

(1.2)

The remaining of this paper is arranged as: In the Sect. 2, we show the positivity and the boundedness of solutions of the stochastic
system (1.2). The extinction of the non-resistance and resistance infectious diseases will be discussed in Sect. 3. In Sect. 4 we study
the persistence in mean of the epidemic. In Sect. 5, the numerical simulations are carried out to confirm our theoretical results.
Lastly, a brief discussion is given in the end to conclude this paper.

2 Existence and uniqueness of the global nonnegative solution

The notations, definitions, and lemmas we utilised to examine our primary outcomes are provided in this part.
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Fig. 1 The detailed flowchart of
system (1.2)

Consider a filtration {Ft }t≥0 with a complete probability space
(
�,F , {Ft }t≥0,P

)
that fulfills the usual conditions with increasing

and right continuous while F0 is the set of P-null sets. The function B(t) denotes a scalar Brownian motion which is defined on �.
We introduce the following notations:

R
d
+ �

{
x � (x1, . . . , xd) ∈ R

d : xi > 0, 1 ≤ i ≤ d
}

and R
d
+ �

{
x � (x1, . . . , xd) ∈ R

d : xi ≥ 0, 1 ≤ i ≤ d
}
.

In general, consider the d-dimensional stochastic differential equation

dX (t) � f (X (t))dt + g(X (t))dB(t) for t ≥ t0,

with initial value X (0) � X0 ∈ R
d . B(t) denotes a d-dimensional standard Brownian motion defined on the complete probability

space
(
�,F , {Ft }t≥0,P

)
. Denote by C2

(
R
d ;R+

)
the family of all nonnegative functions V (X) defined on R

d such that they are

continuously twice differentiable in X . The differential operator L of Eq. (1.5) is defined by [42]

L �
d∑

i�1

fi (X )
∂

∂Xi
+

1

2

d∑

i, j�1

[
gT (X )g(X )

]

i j

∂2

∂Xi∂X j
.

If L acts on a function V ∈ C2
(
R
d ;R+

)
, then

LV (X ) � VX (X ) f (X ) +
1

2
trace

[
gT (X )VXX (X )g(X )

]
,

where VX �
(

∂V
∂X1

, . . . , ∂V
∂Xd

)
, VXX �

(
∂2V

∂Xi ∂X j

)

d×d
.

In view of Itô’s formula [42], if X (t) ∈ R
d , then

dV (X (t)) � LV (X (t))dt + VX (X (t))g(X (t))dB(t).

For arbitrary integrable function h on [0, +∞), define 〈h(t)〉 �
∫ t

0 h(θ ) dθ

t
.

Let S(t) � (S(t), IN (t), IR(t), R(t)) and S0 � (S(0), IN (0), IR(0), R(0)).

Definition 1 1. The diseases IN (t) and IR(t) are said to go extinction if limt→+∞ IN (t) � 0 and limt→+∞ IR(t) � 0.
2. The diseases IN (t) and IR(t) will be persist in mean if ∃ a1 > 0 and a2 > 0 such that lim inf t→+∞〈IN (t)〉 � a1 and

lim inf t→+∞〈IR(t)〉 � a2.

Remark 2 Let the set

� �
{

(S(t), IN (t), IR(t), R(t)) ∈ R
4
+ : S(t) + IN (t) + IR(t) + R(t) ≤ �

d

}

.

The total population N (t) � S(t) + IN (t) + IR(t) + R(t) in systems (1.1) and (1.2) verifies, the equation
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dN (t)

dt
≤ � − dN (t),

which gives by integration

N (t) ≤ e−dt
(

N (0) − �

d

)

+
�

d
≤ max

(

N (0),
�

d

)

.

If S0 ∈ �, then N (t) ≤ �

d
almost surely. Thus, the set � is almost surely positively invariant by the systems (1.1) and (1.2)

respectively, throughout the rest, we assume that S0 ∈ �.

Lemma 3 For the initial condition S0 ∈ �, the model (1.2) has at most one solution and will belong to R
4
+ with probability one ∀

t � 0 almost surely.

Proof As all the coefficients of the proposed stochastic model (1.2) are locally Lipschitz continuous, then for each initial condition
S0 ∈ R

4
+, ∃ exclusive local solution S(t) on t ∈ [0, τe), where τe denotes the explosion time.

It is obligatory to verify that the solution is global, one need only to prove that τe � ∞ almost surely.

For this, let us take m0 ≥ 1 sufficiently large to get that S0 ∈ [
1

m0
,m0], ∀ integer m0 ≤ m. Next, we express the stopping time

by:

τm � inf

{

t ∈ [0, τe) : S(t) /∈
(

1

m
,m

)

, or IN (t) /∈
(

1

m
,m

)

, or IR(t) /∈
(

1

m
,m

)

, or R(t) /∈
(

1

m
,m

)}

, (2.1)

where one can set inf ∅ � ∞. Thus, τm increases as m tends to ∞.
Let τ∞ � limm→+∞ τm , and τ∞ � τe almost surely. When τ∞ � ∞ almost surely is true, then τe � ∞ almost surely and

S(t) ∈ R
4
+ almost surely ∀ t � 0. To put it another way, we just need to demonstrate that τ∞ � ∞ almost surely. Otherwise, there

will be constants T > 0 and 0 < ε < 1 with

ε < P{τ∞ � T }. (2.2)

So, ∃ m0 � m1 with

ε ≤ P{T ≥ τm}, ∀ m1 � m. (2.3)

Let us take a C2-function as

V(S, IN , IR, R) � χ(S) + χ(IN ) + χ(IR) + χ(R), (2.4)

where χ(x) � −1 + x − log x , ∀x ∈]0, +∞[
Applying the Itô’s method on V , one get

dV(S, IN , IR, R) � LV(S, IN , IR, R)dt + σN (IN − S)dBN (t) +
σR(IR − S)

1 + κ IR
dBR(t), (2.5)

where LV : R4
+ → R

4 is defined by

LV � � + 4d − �

S
− dS + α IN +

β IR
1 + κ IR

+
σ 2
N I

2
N

2
+

σ 2
R I

2
R

2(1 + κ IR)2 (2.6)

− d IN − αS + μ +
σ 2
N S

2

2
− d IR +

σ 2
RS

2

2(1 + κ IR)2

− βS

1 + k IR
+ γ − dR − μIN

R
− γ IR

R

≤ � + 4d + α IN +
β

κ
+ μ + γ +

σ 2
N I

2
N

2
+

σ 2
R

2κ2 +
σ 2
N S

2

2
+

σ 2
RS

2

2(1 + κ IR)2

≤ � + 4d + α
�

d
+

β

κ
+ μ + γ +

σ 2
N�2

2d2 +
σ 2
R

2κ2 +
σ 2
N�2

2d2 +
σ 2
R�2

2κd2 :� M. (2.7)

Thus

dV(S, IN , IR, R) ≤ Mdt + σN (IN − S)dBN (t) +
σR(IR − S)

1 + κ IR
dBR(t). (2.8)
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Integrating (2.8) from 0 to τm ∧ T � min{τm, T } and then using the notion of expectations, we have

EV
(

S(τm ∧ T ), IN (τm ∧ T ), IR(τm ∧ T ), R(τm ∧ T )

)

≤ V
(

S0

)

+ MT . (2.9)

Let �m � {τm ≤ T } for m1 ≤ m. Using (2.3), one can acquire P(�m) ≥ ε. Notice that ∀ � ∈ �m , ∃ S(τm,� ) or IN (τm,� ) or

IR(τm,� ) or R(τm,� ) equals either m or
1

m
.

Therefore,

V
(

S(τm,� ), IN (τm,� ), IR(τm,� ), R(τm,� ))

)

≥
(

m − 1 − logm

)

∧
(

1

m
− 1 + logm

)

.

Then we attain

V
(

S0

)

+ MT ≥ E

(

1�mV
(
S(τm,� ), IN (τm,� ), IR(τm,� ), R(τm,� )

))

≥ ε

(

m − 1 − logm

)

∧
(

1

m
− 1 + logm

)

, (2.10)

where 1�m (� ) is the indicator function of �m . For m → ∞, one reach

∞ > V
(

S0

)

+ MT � ∞, (2.11)

is a contradiction. Hence, τ∞ � ∞. �

Lemma 4 [42] Let S(t) satisfies model (1.2) with S0 ∈ �. Then

lim
t→+∞

1

t

∫ t

0

σRS(ζ )

1 + κ IR(ζ )
dBR(ζ ) � 0, lim

t→+∞
1

t

∫ t

0
σN S(ζ ) dBN (ζ ) � 0, lim

t→+∞
1

t

∫ t

0
σRS(ζ ) dBR(ζ ) � 0. (2.12)

3 Extinction

Here, we create the conditions that result in extinction of the non-resistance and resistance infectious strains motioned in the system
(1.2).

Proposition 5 If

σN >
α√

2(d + μ)
(3.1)

then the non-resistance strain of (1.2) go to the extinction almost surely.

Proof Let S(t) satisfies the model(1.2) with S0 ∈ �. Using the Itô’s method, one get

d log IN (t) �
(
αS(t) − (d + μ) − σ 2

N S
2(t)

2

)
dt + σN S(t)dBN (t)

≤
[

− σ 2
N

2

(
S(t) − α

σ 2
N

)2
+

α2

2σ 2
N

− (d + μ)

]

dt + σN S(t)dBN (t) (3.2)

≤
[

α2

2σ 2
N

− (d + μ)

]

dt + σN S(t)dBN (t). (3.3)

Integrating (3.3) from 0 to t and doing some manipulation, we obtain

log IN (t)

t
≤ −

(
d + μ − α2

2σ 2
N

)
+
MN (t)

t
+

log IN (0)

t
, (3.4)

where MN (t) �
∫ t

0
σN S(ζ ) dBN (ζ ) is the local continuous martingale satisfying MN (0) � 0, and by the Lemma 4, we obtain

lim
t→+∞

MN (t)

t
� 0. (3.5)

Since σN >
α√

2(d + μ)
. Applying superior limit of 3.4, we conclude
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lim sup
t→+∞

log IN (t)

t
≤ −

(
d + μ − α2

2σ 2
N

)
< 0, (3.6)

which means that lim sup
t→+∞

IN (t) � 0 almost surely. Hence the theorem. �

Proposition 6 If

σR >
β√

2(d + γ )
, (3.7)

then the resistance strain of (1.2) go to the extinction almost surely.

Proof Let S(t) satisfies the model (1.2) with S0 ∈ �. Implementing the Itô’s technique on model (1.2) results in

d log IR(t) �
( βS(t)

1 + κ IR(t)
− (d + γ ) − σ 2

RS
2(t)

2(1 + κ IR(t))2

)
dt +

σRS(t)

1 + κ IR(t)
dBR(t)

≤
[

− σ 2
R

2

( βS(t)

1 + κ IR(t)
− β

σ 2
R

)2
+

β2

2σ 2
R

− (d + γ )

]

dt +
σRS(t)

1 + κ IR(t)
dBR(t) (3.8)

≤
[

β2

2σ 2
R

− (d + γ )

]

dt +
σRS(t)

1 + κ IR(t)
dBR(t). (3.9)

Integrating Eq. (3.9), we reach

log IR(t)

t
≤ −

(
d + γ − β2

2σ 2
R

)
+
MR(t)

t
+

log IR(0)

t
, (3.10)

where MR(t) �
∫ t

0

σRS(ζ )

1 + κ IR(ζ )
dBR(ζ ) is the local continuous martingale satisfying MR(0) � 0, and by the Lemma 4, one may

reach

lim
t→+∞

MR(t)

t
� 0. (3.11)

Since σR >
β√

2(d + γ )
. Applying superior limit to (3.10), we conclude

lim sup
t→+∞

log IR(t)

t
≤ −

(
d + γ − β2

2σ 2
R

)
< 0, (3.12)

which implies that lim sup
t→+∞

IR(t) � 0 almost surely. �

Remark 7 Proposition 5 and Proposition 6 shows that when σN >
α√

2(d + μ)
and σR >

β√
2(d + γ )

the non-resistance strain and

resistance strain of system (1.2) die out almost surely, respectively. In other words, large white noise stochastic disturbance yield
the two strains extinct. Hence, we presume that the white noise disturbance is not large in the rest of this manuscript.

Let

Rs
N � α�

d(d + μ)
− σ 2

N�2

2d2(d + μ)
,

Rs
R � β�

d(d + γ )
− σ 2

R�2

2d2(d + γ )
.

Theorem 8 Let S(t) satisfies the model (1.2) with S0 ∈ �.

1. If Rs
N < 1 and σN �

√
2dα

�
then the non-resistant strain of system (1.2) exhibits extinction almost surely, i.e

lim
t→+∞ IN (t) � 0.

2. If Rs
R < 1 and σR �

√
2dβ

�
then the resistant strain of system (1.2) exhibits extinction almost surely, i.e

lim
t→+∞ IR(t) � 0,

Meanwhile, lim
t→+∞ S(t) � �

d
, and lim

t→+∞ R(t) � 0.
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Proof Firstly, taking integral of both sides of (3.2) and doing some manipulations gives

log IN (t)

t
� 1

t

∫ t

0

(
αS(τ ) − (d + μ) − σ 2

N S
2(τ )

2

)
dτ +

MN (t)

t
+

log IN (0)

t

≤
(α�

d
− (d + μ) − σ 2

N�2

2d2

)
+
MN (t)

t
+

log IN (0)

t

� (d + μ)
( α�

d(d + μ)
− σ 2

N�2

2d2(d + μ)
− 1

)
+
MN (t)

t
+

log IN (0)

t
(3.13)

� (d + μ)
(
Rs

N − 1
)

+
MN (t)

t
+

log IN (0)

t
, (3.14)

where MN (t) �
∫ t

0
σN S(ζ ) dBN (ζ ) is the local continuous martingale satisfying MN (0) � 0, and by the Lemma 4, one have

lim
t→+∞

MN (t)

t
� 0. (3.15)

Using superior limit on Eq. (3.14), one get

lim sup
t→+∞

log IN (t)

t
≤ (d + μ)

(
Rs

N − 1
)

< 0. (3.16)

Consequently, limt→+∞ IN (t) � 0, almost surely.

Secondly, for both sides of (3.8), integrating from 0 to t first and doing some manipulations gives

log IR(t)

t
� 1

t

∫ t

0

( βS(τ )

1 + κ IR(τ )
− (d + γ ) − σ 2

RS
2(τ )

2(1 + κ IR(τ ))2

)
dτ +

MR(t)

t
+

log IR(0)

t

≤
(β�

d
− (d + γ ) − σ 2

R�2

2d2

)
+
MR(t)

t
+

log IR(0)

t

� (d + γ )
( β�

d(d + γ )
− σ 2

R�2

2d2(d + γ )
− 1

)
+
MR(t)

t
+

log IR(0)

t
(3.17)

� (d + γ )
(
Rs

R − 1
)

+
MR(t)

t
+

log IR(0)

t
, (3.18)

where MR(t) �
∫ t

0

σRS(ζ )

1 + κ IR(ζ )
dBR(ζ ) is the local continuous martingale satisfying MR(0) � 0, and by the Lemma 4, one have

lim
t→+∞

MR(t)

t
� 0. (3.19)

We achieve the following result by using superior limit

lim sup
t→+∞

log IR(t)

t
≤ (d + γ )

(
Rs

R − 1
)

< 0, (3.20)

Consequently, limt→+∞ IR(t) � 0, almost surely.
Lastly, without loss of generality, one can suppose that 0 < IN (t) < εN and 0 < IR(t) < εR ∀ t ≥ 0, from the first class of the

model (1.2), one obtain

dS(t)

dt
≥ � −

(
d + αεN + βεR + σN εN |ḂN |+σRεR |ḂR |

)
S(t), (3.21)

As εN → 0 and εR → 0, thus

lim inf
t→+∞ S(t) ≥ �

d
. (3.22)

Also,

lim
t→+∞ S(t) ≤ �

d
+ εN + εR . (3.23)

Let εN → 0 and εR → 0, one attain

lim sup
t→+∞

S(t) ≤ �

d
. (3.24)

From (3.24) and (3.22), one get

lim
t→+∞ S(t) � �

d
. (3.25)
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Next, we prove the last conclusion. Using the third equation of (1.2), we obtain

dR(t) ≥ (μεN + γ εR − dR(t))dt. (3.26)

Its clear by comparison theorem we deduce

lim sup
t→+∞

R(t) � μεN + γ εR

d
. (3.27)

Extending εN and εR to 0, we have

lim
t→+∞ R(t) � 0. (3.28)

�

Remark 9 From Theorem 8 we show that the non-resistant and the resistant strains will die out if the white noise disturbances are
large than certain values or Rs

N < 1 and Rs
R < 1, and the white noise disturbances are not so large.

4 Persistence in mean

In this section, our main concern to determine sufficient conditions for the persistence of the infectious disease.

Theorem 10 Let S(t) satisfies the model (1.2) with S0 ∈ �,

1. If Rs
N > 1, Rs

R < 1 and σR ≤
√

2dβ

�
, then the resistance strain will go to extinct and the strain IN will persist, furthermore,

IN satisfies

lim inf
t→+∞ 〈IN (t)〉 ≥ d

α(d + μ)
(Rs

N − 1).

2. If Rs
R > 1, Rs

N < 1 and σN ≤
√

2dα

�
, then the non-resistance strain go to extinct and the strain IR will persist, furthermore,

IR satisfies

lim inf
t→+∞ 〈IR(t)〉 ≥ d

β + d
(Rs

R − 1).

3. If Rs
N > 1, Rs

R > 1, then the two strains IN and IR are persistent in mean, furthermore, IN and IR satisfy

lim inf
t→+∞ 〈IN (t) + IR(t)〉 ≥ 1

�max

[
(d + μ)(Rs

N − 1) + (d + γ )(Rs
R − 1)

]
,

where �max � max{(α + β)
d + μ

d
, (

(α + β)

d
+ 1)(d + γ )}.

Proof 1. Let the function �(t) define by �(t) � S(t) + IN (t) + IR(t). Then the first three equation of model (1.2), implies

�(t) − �(0)

t
� � − d〈S(t)〉 − (d + μ)〈IN (t)〉 − (d + γ )〈IR(t)〉. (4.1)

Since Rs
R < 1, and σR ≤

√
2dβ

�
one can see from Proposition 6 that, lim sup

t→+∞
IR(t) � 0 almost surely. Then we can choose for

all t large enough εR small enough, such that 0 < IR(t) < εR, therefore,

〈S(t)〉 ≥ � − (d + γ )εR
d

− d + μ

d
〈IN (t)〉 − �(t)

d
. (4.2)

Using the Itô’s formula to model (1.2), we obtain

d log IN (t) �
(
αS(t) − (d + μ) − σ 2

N S
2(t)

2

)
dt + σN S(t)dBN (t). (4.3)

Hence,

d log IN (t) �
(
αS(t) − (d + μ) − σ 2

N�2

2d2

)
dt + σN S(t)dBN (t). (4.4)

Integration of (4.4) gives

log IN (t) − log IN (0)

t
≥ α〈S(t)〉 −

[
d + μ +

σ 2
N�2

2d2

]
+
MN (t)

t
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≥ α
[� − (d + γ )εR

d
− d + μ

d
〈IN (t)〉 − �(t)

d

]

−
[
d + μ +

σ 2
N�2

2d2

]
+
MN (t)

t

� (d + μ)
[α[� − (d + γ )εR]

d(d + μ)
− σ 2

N�2

2d2(d + μ)
− 1

]
− α(d + μ)

d
〈IN (t)〉 +

MN (t)

t
− α

�(t)

d
. (4.5)

So, we obtain

log IN (t)

t
≥ (d + μ)

[α[� − (d + γ )εR]

d(d + μ)
− σ 2

N�2

2d2(d + μ)
− 1

]
− α(d + μ)

d
〈IN (t)〉

+
MN (t)

t
− α

�(t)

d
+

log IN (0)

t
, (4.6)

where MN (t) �
∫ t

0
σN S(ζ ) dBN (ζ ) is the local continuous martingale satisfying MN (0) � 0, and using Lemma 4, the result

is:

lim
t→+∞

MN (t)

t
� 0. (4.7)

Since Rs
N > 1, for all t large enough we can choose εR small enough, such that

α[� − (d + γ )εR]

d(d + μ)
− σ 2

N�2

2d2(d + μ)
> 1.

By Lemmas 3 and 4, we get that

lim inf
t→+∞ 〈IN (t)〉 ≥ d

α(d + μ)

(
α[� − (d + γ )εR]

d(d + μ)
− σ 2

N�2

2d2(d + μ)
− 1

)

.

Let εR → 0 yields

lim inf
t→+∞ 〈IN (t)〉 ≥ d

α(d + μ)

(
α�

d(d + μ)
− σ 2

N�2

2d2(d + μ)
− 1

)

.

Therefore,

lim inf
t→+∞ 〈IN (t)〉 ≥ d

α(d + μ)
(Rs

N − 1).

2. Notice that

〈S(t)〉 ≥ �

d
− (d + μ)

d
εN − (d + γ )

d
〈IR(t)〉 − �(t)

d
. (4.8)

Applying the Itô’s formula leads to

d(log IR(t) + IR(t)) �
[

βS(t) − (d + γ ) − (d + γ )IR(t) − σ 2
RS

2(t)

2(1 + κ IR(t))2

]

dt + σRS(t)dBR(t)

≥
[

βS(t) − (d + γ ) − (d + γ )IR(t) − σ 2
R�2

2d2

]

dt + σRS(t)dBR(t). (4.9)

Integration of (4.9) gives

log IR(t) − log IR(0)

t
+
IR(t) − IR(0)

t
≥ β〈S(t)〉 − (d + γ ) − (d + γ )〈IR(t)〉

− σ 2
R�2

2d2 +
MR(t)

t

≥ β

(
� − (d + μ)εN

d

)

− (d + γ ) − (d + γ )〈IR(t)〉

− β
(d + γ )

d
〈IR(t)〉 − β

�(t)

d
+
MR(t)

t

� (d + γ )

[
β(� − (d + μ)εN )

d(d + γ )
− σ 2

R�2

2d2(d + γ )
− 1

]
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−
[

β(d + γ )

d
+ (d + γ )

]

〈IR(t)〉 − β
�(t)

d
+
MR(t)

t
. (4.10)

Hence, we have

log IR(t)

t
≥ (d + γ )

[
β(� − (d + μ)εN )

d(d + γ )
− σ 2

R�2

2d2(d + γ )
− 1

]

−
[

β(d + γ )

d
+ (d + γ )

]

〈IR(t)〉

− β
�(t)

d
+
MR(t)

t
− IR(t) − IR(0)

t
+

log IR(0)

t
, (4.11)

where MR(t) �
∫ t

0

σRS(ζ )

1 + κ IR(ζ )
dBR(ζ ) is the local continuous martingale satisfying MR(0) � 0, and using Lemma 4, one

have

lim
t→+∞

MR(t)

t
� 0. (4.12)

Since Rs
R > 1, for all t large enough we can choose εN small enough, such that

β(� − (d + μ)εN )

d(d + γ )
− σ 2

R�2

2d2(d + γ )
> 1,

By Lemmas 3 and 4, we get that

lim inf
t→+∞ 〈IR(t)〉 ≥ d

β + d

(
β(� − (d + μ)εN )

d(d + γ )
− σ 2

R�2

2d2(d + γ )
− 1

)

,

Let εN → 0 yields

lim inf
t→+∞ 〈IR(t)〉 ≥ d

β + d

(
β�

d(d + γ )
− σ 2

R�2

2d2(d + γ )
− 1

)

.

Therefore

lim inf
t→+∞ 〈IR(t)〉 ≥ d

β + d

(

Rs
R − 1

)

.

3. Notice that

〈S(t)〉 � �

d
− (d + μ)

d
〈IN (t)〉 − (d + γ )

d
〈IR(t)〉 − �(t)

d
. (4.13)

Define

ϑ(t) � log(IN (t)) + log(IR(t)) + IR(t). (4.14)

With the help of Itô’s formula, we reach:

dϑ(t) �
(
αS(t) + βS(t) − (d + μ) − (d + γ )(1 + IR(t)) − σ 2

N

2
S2(t) − σ 2

RS
2(t)

2(1 + κ IR(t))2

)
dt

+ σN S(t)dBN (t) + σRS(t)dBR(t). (4.15)

Therefore
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dϑ(t) ≥ (α + β)S(t) − (d + μ) − σ 2
N�2

2d2 + σN S(t)dBN (t)

− (d + γ )(1 + IR(t)) − σ 2
R�2

2d2 + σRS(t)dBR(t). (4.16)

Integration of (4.16) gives

ϑ(t)

t
− ϑ(0)

t
≥ (α + β)〈S(t)〉 − (d + μ) − (d + γ ) − σ 2

N�2

2d2 +
MN (t)

t

− (d + γ )〈IR(t)〉 − σ 2
R�2

2d2 +
MR(t)

t

� (α + β)
�

d
− (d + μ) − (d + γ ) − σ 2

N�2

2d2 +
MN (t)

t
− (α + β)

d + μ

d
〈IN (t)〉

−
(

(α + β)

d
+ 1

)

(d + γ )〈IR(t)〉 − σ 2
R�2

2d2 +
MR(t)

t
− (α + β)

�(t)

d

≥ (α + β)
�

d
− (d + μ) − (d + γ ) − σ 2

N�2

2d2 − σ 2
R�2

2d2

− �max

[

〈IN (t)〉 + 〈IR(t)〉
]

− (α + β)
�(t)

d
+
MN (t)

t
+
MR(t)

t
. (4.17)

Hence, the result becomes

〈IN (t)〉 + 〈IR(t)〉 ≥ 1

�max

[

(α + β)
�

d
− (d + μ) − (d + γ ) − σ 2

N�2

2d2 − σ 2
R�2

2d2

− (α + β)
�(t)

d
+
MN (t)

t
+
MR(t)

t
− ϑ(t)

t
+

ϑ(0)

t

]

, (4.18)

where MN (t) �
∫ t

0
σN S(ζ ) dBN (ζ ) and MR(t) �

∫ t

0

σRS(ζ )

1 + κ IR(ζ )
dBR(ζ ) which are local continuous martingales satisfying

MN (0) � 0 and MR(0) � 0, and by lemma 4, we have

lim
t→+∞

MN (t)

t
� lim

t→+∞
MR(t)

t
� 0. (4.19)

From Lemmas 3 and 4, we get that

lim inf
t→+∞ 〈IN (t) + IR(t)〉 ≥ 1

�max

[

(α + β)
�

d
− (d + μ) − (d + γ ) − σ 2

N�2

2d2 − σ 2
R�2

2d2

]

.

Hence

lim inf
t→+∞ 〈IN (t) + IR(t)〉 ≥ 1

�max

[

(d + μ)(Rs
N − 1) + (d + γ )(Rs

R − 1)

]

> 0.

This is completes the proofs.
�

Remark 11 Proposition 5 and Proposition 6 shows that the non-resistance and the resistance infections diseases can be extinct
if the white noise disturbances are larger than certain values. Theorem 8 and 10 show that the non-resistant (resistant) infection
diseases can prevail if the white noise disturbances are small enough such that Rs

N > 1 ( Rs
R > 1 ) respectively. This implies that

the stochastic disturbance may cause epidemic diseases to die out.
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Fig. 2 Dynamic describing the
persistence of the non-resistance
and resistance diseases
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5 Graphical analysis

In this section, we implement the Milstein procedure which is given in [43] to test numerically the persistence and the extinction of
the disease. The discretization of system 1.2 is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S j+1 � S j +

[

� − αS j IN j − βS j IR j
1 + κ IR j

− dS j

]

�t − σN S j IN j
√

�tξ j − σRS j IR j
1 + κ IR j

√
�tξ j

+
σ 2
N

2
S2
j I

2
N j (ξ

2
j − 1)�t +

σ 2
R

2

(
βS j IR j
1 + κ IR j

)2

(ξ2
j − 1)�t,

IN j+1 � IN j +

(

αS j IN j − (d + μ)IN j

)

�t + σN S j IN j
√

�tξ j +
σ 2
N

2
S2
j I

2
N j (ξ

2
j − 1)�t,

IR j+1 � IR j +

(
βS j IR j
1 + κ IR j

− (d + γ )IR j

)

�t +
σRS j IR j
1 + κ IR j

√
�tξ j +

σ 2
R

2

(
βS j IR j
1 + κ IR j

)2

(ξ2
j − 1)�t,

R j+1 � R j +

(

μIN j + γ IR j − dR j

)

�t,

(5.1)

where ξk, ( j � 1, 2, ..., n) are the Guassian random variables which Obey Gaussian distribution N (0; 1).
Indeed, Fig. 2 shows the dynamics of the non-resistance and resistance strains of influenza for the chosen values of the parameters

� � 10, α � 0.08, β � 0.09, d � 0.5, μ � 0.5, κ � 0.04, γ � 0.5, σN � 0.01 and σR � 0.01. We clearly see that the all the
model variables stay at a strictly positive level. Within this parameters, we have Rs

N � 1.58 > 1 and Rs
R � 1.78 > 1, then the two

infectious diseases IN and IR will persist. This result is consistent with the theoretical result given in Theorem 10.
Next, we take the parameters values for the stochastic model 1.2 as: � � 10, α � 0.03, β � 0.09, d � 0.3, μ � 0.7, κ � 0.4,

σN � 0.01 and σR � 0.01. Within this parameters we get Rs
N � 0.9444 < 1 and Rs

R � 2.9306 > 1, σN � 10−4 ≤
√

2dα

�
�

0.0018. Thus, non-resistance strain IN goes to the extinction, and resistance strain IR will persist (see Fig. 3). This result is consistent
with the theoretical result given in Theorem 10.

In Fig. 4, we take the parameters values for the model 1.2 as: � � 10, α � 0.09, β � 0.03, d � 0.3, μ � 0.7,γ � 0.9, κ � 0.4,

σN � 0.01 and σR � 0.01. Within this parameters we get Rs
N � 2.9444 > 1, Rs

R � 0.9537 < 1 and σR � 10−4 ≤
√

2dβ

�
�

0.0018. Thus, non-resistance strain IN is persistent, and resistance strain IR go to extinction.
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Fig. 3 Dynamic describing the
persistence of the non-resistance
strain and the extinction of
resistance strain
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Fig. 4 Dynamics of the infection
describing the persistence of the
non-resistance strain and the
extinction of resistance strain
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Fig. 5 Dynamics of the infection
describing the persistence of the
non-resistance strain and the
extinction of resistance strain
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In Fig. 5, we take the parameters values for the model 1.2 as: � � 10, α � 0.03, β � 0.03, d � 0.3, μ � 0.7, γ � 0.9,
κ � 0.4, σN � 0.01 and σR � 0.01. Within this parameters we get Rs

N � 0.9444 < 1, Rs
R � 0.9537 < 1 and both conditions

σN � 0.01 ≤
√

2dα

�
� 0.1341 and σR � 0.01 ≤

√
2dβ

�
� 0.1341. Thus, both of them go to the extinction which is consistent

with the theoretical result given in Sect. 3.

6 Conclusion and discussion

The novelty of this study is that we analyzed the dynamics of two-strain SIR epidemic model including non-resistance and resistance
sub-strain of influenza, by considering different incidence rates for these strains. This is due to the fact that the mutated strain will
have a minimal effect. We have assumed saturated and bilinear incidence rates for the resistant and non-resistant strains respectively.
Saturated incidence rate grasps the negotiating alteration and swarming impact of the infected people and hinders the unboundedness
of the interconnection rate by fitting parameters, which was reused in several epidemic issue . Indeed, a stochastic two-strain epidemic
model describing resistance and non-resistance strains of influenza was suggested and studied. The existence and uniqueness of
the positive solution to the stochastic model (1.2) are proved. The extinction of our studied disease was derived with sufficient
conditions. The persistence in the mean of the infection was also established. Different numerical simulations for different noises
disturbance were performed to illustrate the efficiency of our theoretical study.

Some interesting topics deserve further investigation. On the one hand, one may propose some more realistic models, such as
considering the effects of impulsive perturbations on system (1.2). On the other hand, it is interesting to introduce the telegraph
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noise, such as continuous-time Markov chain, into system (1.2). Also it is interesting to consider more complex influenza virus
models, for example, multi-group model. These problems will be the subject of future work.

Data Availability No data associated in the manuscript.
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