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Abstract This paper aims to investigate the application of cathodoluminescence (CL) imagery (with optical microscopy) and
CL spectroscopy (with Scanning Electron Microscope) in ancient ceramics studies, for a proper classification of petro-fabrics and
mineral inclusions based on their CL response. Digital image analysis (DIA) routines are proposed for both qualitative and quantitative
analysis, and outcomes are reviewed in the light of classical optical microscopy (OM) and scanning electron microscopy (SEM–EDS)
approaches. Obtained results demonstrated the suitability of CL in discriminating ceramic groups, offering also complementary
information connected with aspects as provenance or manufacturing processes. CL imagery and spectroscopy data are also used to
discuss perspectives of the method, debating bias, limits, or suspicious inconsistencies, exploring how compositional features or
sample’s nature imprint CL response, and finally providing the basis for future developments. Addendum at the back of the paper
includes and extensively discusses some technical aspects regarding the applied DIA routines, developed in open-sources software
environments and available as supplementary materials.

1 Introduction

The archaeological research on material objects is nowadays more and more supported by digital image analysis (DIA) and this
trend is always growing with the new possibilities offered also by open-source software [37]. Different routines and methods—from
2 to 3D digital imaging techniques—are applied on a variety of records, from small objects to whole excavated areas to keep track
of their characteristics and extract qualitative and quantitative data [15, 7, 10, 14, 22, 20, 23, 2, 32].

In ancient ceramics’ studies, DIA is often used to process images obtained by classical approaches like optical microscopy (OM)
and scanning electron microscopy (SEM–EDS). Literature offers several examples of successful applications of DIA on polarized
images [25, 3, 27] and on backscattering images and elemental maps [3, 4, 27] to implement petrographic description and grain size
distribution analysis. The coupling of well-established methods based on images acquisition and DIA brought obvious advantages,
especially in quantitative analysis, together with some limitations, due to the technique itself or to the difficulties in automatizing
non-trivial analysis procedures [25, 27].

In the panorama of methods giving back images that can be treated with DIA, cathodoluminescence (CL) represents a promising
technique for the analysis of archaeological samples [1, 13]. The method is based on the interaction between an electron beam
and the sample. The electron beam interacts with objects either crystalline or non-crystalline (specifically with point defects at the
atomic level in the structure) giving back a response mainly in the visible wavelength range [13, 35]. The colours of the grains
can be associated with the minero-petrographic characteristics of the objects; therefore, some conclusions can be drawn on aspect
as provenance or technology when applied on archaeological and geological materials [13]. Overall, among the advantages of this
technique, it doesn’t require complex preparation (a polished surface of a thick section is enough for the analysis, of course, thin
sections can also be used), provided that the sample is small enough to fit in a void chamber, which is linked to a power supplier
alimenting the electron gun. The equipment presents the advantage of being very simple and easy to run (Fig. 1). Moreover, the
analysis is not time-consuming for small samples, as it is only influenced by the time required by the void chamber to obtain vacuum.
Once a void is made, the electron beam is produced and strikes the sample. The CL response is collected by a camera mounted on
a microscope. Once measurement parameters have been set, the image acquisition is quite fast; in the case of ceramics, to have a
good quality image, the exposition time would range between 15 and 30 s, depending on the sample.

a emails: eleonora.odelli@phd.unipi.it; eleonoraodelli91@gmail.com (corresponding author)

Published online: 21 May 2022 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-02774-9&domain=pdf
http://orcid.org/0000-0001-6440-4133
https://orcid.org/0000-0002-3135-7083
https://orcid.org/0000-0002-6377-7656
https://orcid.org/0000-0001-9959-7940
mailto:eleonora.odelli@phd.unipi.it
mailto:eleonoraodelli91@gmail.com


611 Page 2 of 13 Eur. Phys. J. Plus (2022) 137:611

Fig. 1 a Scheme and b pictures of
the experimental set-up. In b:
general view of the all system
(top) and details of the chamber
receiving a thin slide sample
(down)

Various research can be mentioned as first attempts for studying and characterizing mineral grains by using CL, from single crystals
as quartz [9, 18] and minerals which zoning is easily visible with CL imaging [19], to monomineralic materials as marbles [5, 6, 11,
13] to polymineralic systems as rocks [8]. In archaeological ceramics studies, since the first proposals, various promising results have
been achieved. Picouet et al. [30] and later Huntz et al. [21] focussed their research on quartz grains—usually present as inclusions
in archaeological potteries—to trace raw materials provenance. In fact, a difference in CL response can be attributed to different
crystal genesis and geological environment, assuming that the firing process doesn’t affect the defects in quartz crystalline structure.
A more extended view on CL in archaeological potteries’ studies and focussing on different mineral grains is also documented. At a
descriptive level, CL has been applied in support of other techniques to characterize and classify archaeological potteries considering
that similar mineralogical assemblages and chemical composition would give back similar CL signals [39, 13]. CL has been also
coupled with DIA to extract important quantitative and qualitative information [1, 19], as an example, Ammari et al. [1] used CL
as an independent method to check the possibility to sort ceramic samples without any other investigation methods. In respect to
ceramic technology, Chapoulie et al. [12] attempted discriminating between single or double heating processes in glazed potteries
looking at the intensity of the CL at the body-glaze interface. More recently, CL was used, together with optical microscopy and
SEM, to better describe the firing conditions of various pottery sherds, and the thermal behaviour of mineral inclusions [16]. Finally,
pottery glazes were studied by Palmara et al. [29], evidencing how different responses in CL would differentiate Hellenistic black
glazes and authentic replicas.

Following these successful studies, in the present work cathodoluminescence was systematically tested on different ceramic
samples (from fine-grained to coarse-grained, from thin sections to thick sections) to obtain qualitative and quantitative description
of archaeological potteries, both evaluating how compositional features imprint CL response and attempting grain size distribution
analysis of different mineral grains hopefully discriminated by their CL signals. Comparative analysis on polarized images (acquired
by optical microscopy) and geochemical data obtained by SEM–EDS have been used to evaluate if CL can be efficiently used as
independent method in the analysis of ceramic materials. The first qualitative analysis routine enables a qualitative description
of ceramic assemblages, providing a quick and objective grouping of the samples based on RGB channels of CL imagery. The
second quantitative description is meant to be applied on a sample selection and aims to estimate the grain size distribution of the
mineral grains responding with luminescence to the electron beam, also differentiating among different mineral inclusions, exhibiting
different colour. To go further in the materials characterization, CL spectra collected on mineral grains differently responding to CL
are also used to show possible developments in the proposed approach.

2 Materials and methods

Coarse-grained and fine-grained pottery samples sectioned in thin and thick sections have been used to set the image acquisition
routine (see Appendix A-online resource). For the preparation of thin sections, samples have been consolidated with epoxy resin and
englobed in a polyester resin, then mounted on a glass and polished with abrasive papers and alumina powder. The analysed samples
included thick sections of Late Roman amphoras (Odelli et al. 2019) and thin sections of Medieval cooking wares (unpublished);
samples from the two sets of materials are composed of different mineral inclusions and grain size distribution, providing examples
representative of common variability in archaeological ceramics. Preliminary petrographic analysis [33, 40] on thin sections by
optical microscopy enabled classifying samples (namely cooking ware labelled as G*) in the following petro-fabrics: micaceous
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matrix with quartz, feldspars, mica, and lamproites (fabric 1), micaceous matrix and ophiolitic suite fragments with quartz and
feldspars (fabric 2), spathic calcite (sometimes with the adding of organic tempers as evidenced by the elongated voids) (fabric 3)
and metamorphic rock fragments (fabric 4).

Non-destructive p-XRF analysis on thick sections provided a rapid classification of amphoras according to chemical composition
(Odelli et al. 2019).

On both thick sections and thin sections, images have been acquired by a cold cathode cathodoluminescence system (Cathodyne
OPEA equipment updated by Microvision Instruments, Evry, France). The device is paired with a Leica M125 binocular magnifier
and a Leica DFC4500 digital camera (Leica Microsystems, Wetzlar, Germany) to capture images (using LAS software). It consists
of an analysis chamber surmounted by a set of spacers allowing the observation of samples of varying heights. The upper part of the
chamber has a porthole and an electron gun oriented at 40° to the optical axis. This device makes it possible to obtain a homogeneous
elliptical beam with a 13 mm long axis. Image acquisition was set in the following conditions: pressure around 50 millitorr using
a micro-leak, intensity of the beam current between 100 and 200 µA, voltage from 7.5 to 12 kV (AN: if the current is constant,
the voltage undergoes slight fluctuations). Gamma parameters vary from 0.10 to 1 (with an average of 0.60) depending on the
crystallinity of the matrix. Saturation and gain are constant to 1. Current, voltage and exposure time were every time checked and
changed to avoid overexposure and consequently misinterpretation of the acquired images during the further digital image analysis
routines. On thin section, current and voltage were set at 7.5–9 kV and 140–170 µA, with an exposure time per capture between 22
and 31.5 s at 2.5×magnification. On thick sections, images were collected at 7.5–9 kV and 110–170 µA with an exposure time of
19/22 s. For each sample, from 15 to 55 images were acquired and tailed together to obtain the whole section.

On a selection of samples SEM–EDS analysis coupled with single point CL has been also carried out, to correlate coloured
grains with mineral identity of inclusions and go further in analysis of point defects in mineral grains. In fact, scanning electron
microscopes may be equipped with a CL detector, which captures the photons emitted by a sample after bombardment with an
electron beam, using a parabolic mirror that reflects photons to a light guide, and from there to a photomultiplier (PMT) tube
or solid-state diode that measures the intensity of the signal. Compared to cathodoluminescence optical microscopy, SEM-CL
allows much higher magnification using a scanning, focussed beam characterized by a significantly smaller spot size of about few
microns. State of-the-art instrumentation offers the possibility of analysing materials at 2 nm resolution while providing intensity
and wavelength values for each point analysis or map in the 300–900 nm range; therefore, CL spectra include the near UV and near
IR ranges, which may be used in the study of luminescence centres. To collect SEM-CL spectra a Gatan MonoCL3 system equipped
with a retractable mirror has been used for the present investigation. The collected light was directed to the monochromator and then
to a high-sensitivity PMT. The spectral range was set to 350–900 nm with acquisition time of 2 nm/sec. The grating used was a 150
lines/nm centred at 550 nm. The CL system was installed on a JEOL JSM-6460 LV. CL measurements were performed at 20 kV-
20 nA; experimental conditions were set after numerous trials, as the best conditions turning in high-quality spectra. The beam at
the samples is few nanometres in dimension.

Digital image analysis routines have been assessed by using ImageJ software package [34] to obtain qualitative classification of
ceramics according to the dominant CL response and to describe and characterize grain size distribution.

Before classification, images have been pre-processed and normalized (see Appendix A-online resource); in fact, acquired images
are affected by a non-uniform illumination due to experimental set-up (e.g. geometry of the electron gun, see Fig. 1) and suffer of
variable electron beam power proper of the system. Therefore, some sample areas can respond more to CL than other ones due
to illumination heterogeneity, regardless of sample nature (Fig. 2). This aspect, without the appropriate precautions, could give
wrong results, especially if a threshold is needed during the images analysis. For each image a correction has been thus applied to
make homogeneous illumination conditions (Fig. 3). Each image was normalized by applying a Gaussian Filter on the brightness
level by choosing a Sigma (the standard deviation (σ ) of the Gaussian, i.e. the radius of decay to e-0.5 ≈ 61%) big enough not
to be influenced by the bigger and brighter particles, and small enough not to be affected by the borders contribute, turning in a
good approximation of the illumination surface of the sample. Once obtained, this surface has been used to normalize the image
to have a homogeneous illumination. This correction has been applied on all images acquired and, for each of them, the suitable
illumination surface is automatically calculated and used to normalize the image. Another aspect requiring normalization regards
the presence of small areas expected not to give any CL response. Voids of matter will obviously not produce any luminescence,
likewise rich-Fe mineral phases; in fact, it is known that Fe, over a significant quantity (ca 1%) does not give back any luminescence
emission [13]; however, they tend to return brightness values different from zero, credibly due to instrumental noise. As per noise,
the minimum brightness value for each image has been calculated and subtracted from the whole image. It is noteworthy that this
correction is specially required when comparing results obtained from multiple images, normalizing the lighting condition. As for
the suitable illumination surface calculation, the image analysis calculates automatically for each image the correct value to perform
the correction.

As a first step, DIA has been used on CL images to enable a fast classification based on a psychophysics approach. The method
aims to reproduce the process of an operator making a colour classification based on own colour’s perception, using the assumption of
the Standard Observer CIE 1931 (CIE 1931; see [36, 28]), which assures a more objective analysis—not influenced by the operator,
repeatability, and reproducibility together with a fast and automatic processing. The routine named CIACC (Cathodoluminescence
Image Analysis Colour Classification; Fig. 4) includes both pre- and post-processing analysis, giving back a classification of images
based on the prevalence of red, green or blue colour perception, which are directly related to the compositional characteristics of the
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Fig. 2 Images collected by optical
microscope (transmission and
reflection modes), on the bottom,
and cathodoluminescence, on the
top. a sample G375, thin section
b sample A326, thick section
c sample A17, thick section. Scale
bar, 1 mm

Fig. 3 CL B/W images before
(a) and after b pre-processing and
normalization

Fig. 4 Sketch of the classification
routine based on CL response and
the prevalence of Red, Green, and
Blue channels

analysed sample. More in detail, for all images the RGB colour components are separated, thus obtaining an image for each channel,
which is multiplied by the component Y of the XYZ colour reference, to finally obtain 32-bit images representing the contribution
of the chosen colour’s perception for the Standard Observer. Component Y was used because it is proportional to the luminance
of the colour stimulation; therefore it is the best parameter to indicate how much the selected components are perceived. Samples
were thus classified basing on the dominant Red, Green or Blue response, also considering the possible prevalence of more than one
channel or no channel prevailing (mix images); images too dark to give an appreciable colouring are classified as outliers.

Once samples are classified based on their CL response, a second step enabled determining quantitative parameters relevant in
ceramic fabric description such as the grain size distribution of single mineralogical species; being CL sensitive to composition,
different mineral phases (which identity has been checked by SEM–EDS analysis and defects inspected by CL spectroscopy) give
back specific colour response in CL images so that a separation can be operated working on different channels and applied tailored
image analysis routines (see Appendix B-online resource).
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Table 1 Description of the
samples and classification based
on CL colour perception obtained
through CIACC routine

Sample ID and
ceramic typology

Petro-fabric Inclusions CL dominant
channel

Secondary CL
dominant channel

G375, basin/lid Fabric 1 Quartz, feldspars,
mica, and lamproites

Blue Green

G461-A, testo Fabric 1 Quartz, feldspars,
mica, and lamproites

Blue None

G461-B, testo Fabric 1 Quartz, feldspars,
mica, and lamproites

Blue None

G710-A, testo Fabric 1 Quartz, feldspars,
mica, and lamproites

Blue None

G710-B, testo Fabric 1 Quartz, feldspars,
mica, and lamproites

Blue None

G8, olla Fabric 2 Ophiolite fragments,
white mica

Green None

G698-A, olla Fabric 2 Ophiolite fragments,
white mica

Green None

G698-B, olla Fabric 2 Ophiolite fragments,
white mica

Green None

G706-A, testo Fabric 2 Ophiolite fragments,
white mica

Green None

G706-B, testo Fabric 2 Ophiolite fragments,
white mica

Green None

G358, olla Fabric 3 (a) Sparry calcite, quartz,
feldspars

Mix None

G406, olla Fabric 3 (a) Sparry calcite, quartz,
feldspars

Red None

G412, olla Fabric 3 (a) Sparry calcite, quartz,
feldspars

Mix None

688, olla Fabric 3 (a) Sparry calcite, quartz,
feldspars

Red None

G576, olla Fabric 3 (b) Sparry calcite Green None

618, olla Fabric 3 (b) Sparry calcite Red None

G697-A, olla Fabric 3 (b) Sparry calcite Red None

G697-B, olla Fabric 3 (b) Sparry calcite Red None

G402-A, olla Fabric 4 Metamorphic rock
fragments

Red Green

G402-B, olla Fabric 4 Metamorphic rock
fragments

Green Red

G662, olla Fabric 4 Metamorphic rock
fragments

Green None

3 Results and discussion

3.1 CL classification and petro-fabrics

A first check of CIACC’s reliability was made with a simple internal check. For some of the selected samples, two frames taken from
the same section were processed and classified according to the established routine; in case of homogeneous samples (in texture and
structure), frames are correctly classified within the same colour-dominant group, proving the affordability of the routine. However,
it is always recommended to collect and process images describing the entire sample section and representativeness of the possible
variability of the ceramic fabric to avoid misinterpretation. The CIACC routine was thus applied on the overall CL images acquired
on the ceramic samples, and it took some seconds for the automatic processing of each image. The normalized images were then
automatically classified based on the prevalence of RBG channels, namely red, blue or green, even considering possible outliers (i.e.
when the image is too dark to offer a clear outcome) or mixed outcomes (none of the chromatic components prevailing). Further
sub-division identifies a possible second dominant colour perception, evidencing variability within the same group.

The routine was applied on images acquired on both thin sections and thick sections enabling to classify studied objects and get
some consideration regarding CIACC routine outcomes on different sample typologies. DIA and data extracted from images (see
Appendix A) would suggest that working on a thin section better enhances the contribution of mineral grains, while working on thick
sections more information on the matrix can be obtained. In both cases, low voltage and high exposure time (avoiding saturation
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Fig. 5 Examples of CL images
collected on thin sections and
coarse-grained potteries revealing
a dominant RGB channel
imprinted by compositional
features. a G406, fabric 3-a;
b 710-A, fabric 1; c G8-A, fabric
2; d G412, fabric 3-a; e G402-B,
fabric 4; f G375 fabric 1. Scale
bar � 1 mm

Fig. 6 Comparison between
cathodoluminescence (top) and
crossed-polars images (down).
a Fabric 3, calcite inclusions;
b Fabric 1, feldspars, mica, and
quartz inclusions; c Fabric 4,
metamorphic rock fragments
inclusions

effects) are recommended to obtain images efficiently revealing the different components of the ceramics paste (i.e. matrix, mineral
grains).

For further considerations, we henceforward consider the case of image acquisition on thin sections with the aim of comparing
outcomes CL and petrography. Overall, the results show good agreement between CL and minero-petrographic classification (Table
1, Fig. 5).

Samples belonging to Fabric 1, containing quartz, feldspars, mica and lamproite fragments exhibit a blue colour prevalence in
CL images, except for the only “lid/basin” in the group (sample G375), which is classified as blue-green; in fact, as evidenced
by optical microscopy, mineral components exhibiting a green CL signal are frequent, credibly related to secondary phases. This
component does not influence the general fabric classification, imprinting the secondary dominant CL channel during the image
analysis. Samples belonging to Fabric 2, characterized by ophiolite fragments, exhibit a dominant CL green colour. Otherwise,
calcite-rich fragments belonging to petrofabric 3 are red/orange dominant due to the intense CL signal from sparry calcite grains
[11] (Fig. 6). Contrary to the expectation, only one sample within the sparry calcite petro-fabric is classified as green-dominant
(sample G576). Minero-petrographic analysis might justify this apparent inconsistence; in fact, petrographic observation reveals
that calcite grains are still recognizable by their morphology, but textural features are clearly obliterated due to firing (Fig. 7). In
calcite, the CL signal is related to Mn luminescent centres; thus, the obtained results would correlate with the different CL emission
in a change of Mn at atomic level. This example is of high relevance for this study, suggesting that beside mineralogical features, also
firing processes could greatly imprint the CL response. Finally, for samples classified in Fabric 4 (metamorphic rock fragments), the
rich variety of mineral grains in rock fragments do not provide any CL dominant colour, beside green and red are the main perceived
channels; as an example, we can consider two frames (A and B) from the same sample belonging to the metamorphic group (sample
G402). Picture A is classified as red–green while picture B is recorded as green–red; even if the two main colours are registered by
our CIACC routine, the textural heterogeneity and the nature of mineral grains prevents a univocal classification (Fig. 8).

It is noteworthy that, contrary to minero-petrographic classification, which considers microstructure among descriptive parameters
defying petro-fabrics, CL methods and CIACC classification exclude the non-luminescent part of the image (e.g. voids or Fe-rich
phases); therefore, nothing about the microstructure can be said by this technique. As an example, in red-dominant group all
samples bearing sparry calcite are clustered together, regardless of microstructure features; nevertheless, petrographic observation
evidenced—within this group—the occurrence of samples discriminated by the presence of elongated voids due to the addition of
organics (Fig. 9). Similarly, iron-rich fragments are black in CL images and do not contribute to the colour classification (Fig. 10).
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Fig. 7 a CL and b crossed-polar
images for sample G576. In figure
(b) calcite grains optical properties
are visibly altered, turning in
absence of red luminescence in
(a). Scale bar � 1 mm. Circle and
triangles are used to mark crystals
localization in the different
imagery acquisition

Fig. 8 Comparison of the two
images chosen to represent sample
G402, fabric 4 (metamorphic rock
fragments). a G402-A, classified
as Red–green b G402-B, classified
as Green–red. a.1 and b.1 images
taken in cathodoluminescence; a.2
and b.2 images taken in normal
reflected light. Scale bar � 1 mm

3.2 Analysis of mineral inclusions: grain size distribution and crystal defects

DIA applied on CL images (Fig. 11) demonstrated its suitability in quantitatively esteeming the grain size distribution of CL active
mineral grains, differentiating their occurrence and phase abundance (%) based on CL response (Table 2; Fig. 11) (see macro
developed under Image J, Appendix B). Results can provide additional information on ceramic fabric, namely textural features of
specific inclusions, which respond in different way to CL, enabling to implement fabric description and highlight possible variability
in the same fabric and CL group, which can be in turn correlated to different manufacture choices. As already discussed before, one
of the drawbacks of this routine is that it is impossible to quantify inclusions not responding to CL, as we can notice in samples
G461 and G710; the iron-rich inclusions result black in the images, and they are not counted in the area percentage. Therefore, this
technique offers a good esteem for samples with a good response to CL, containing low or no iron-rich aplastic inclusion. Anyway,
when iron-rich inclusions are present, the blindness of the technique must be taken into account.

Therefore, to integrate quantification of grains with compositional issues, cathodoluminescence needs a support technique to
establish the correspondence of colours and mineral phases; once the correspondence is defined—even using a small selection of
samples—objects can be analysed in large amount based on CL signals. In this study, SEM–EDS has been used to analyse CL-
coloured grains and inform us about their mineral identity, thus enabling to provide classification of grains based on mineralogy.
For example, blue grains are rich in silica, alumina and potassium, indicating feldspars; red grains are primarily composed of
calcium confirming their mineral identity as calcite according to the red–orange luminescence; finally, green–yellow grains respond
to plagioclase composition (see Table 3). Thus, based on this correspondence, it is also possible to quantify the distribution of those

123



611 Page 8 of 13 Eur. Phys. J. Plus (2022) 137:611

Fig. 9 CL vs microstructure. The
two samples a G406 and b G618
are characterized by calcite
mineral grains as tempers, marked
by their intense red–orange CL
signal and different
microstructure; sample G406 a2
optical microscope image exhibits
elongated voids (dotted line) not
present in sample G618 b2 optical
microscope image). CIACC
routine based on CL colour
perception cannot recognize
differences in microstructures, as
voids do not respond to CL. Scale
bar � 1 mm. Circle and triangles
are used to mark crystals
localization in the different
imagery acquisition

Fig. 10 Focus on iron-rich mineral
phase, exhibiting no CL, thus
appearing black in the picture.
a CL image; b image taken at the
petrographic microscope, XP.
Scale bar � 1 mm. Circle and
triangles are used to mark crystals
localization in the different
imagery acquisition

mineral grains and compare their abundance among samples belonging to the same compositional groups, which can be relevant in
improving fabric description and, in some case, support precise questions regarding technological issues.

For further developments, CL spectra collected on mineral grains might lead to the identification of luminescent centres which
result from the presence of point defects (either structural defects or chemical impurities) resulting from different events that may
have occurred during the lifetime of the mineral [13, 16, 38]. Here, the blue-appearing CL grains (Fig. 12a) exhibit several bands,
picking at 390, 430, 460, 690, and 740 nm; the more intense bands in the blue range (390, 430 and 460 nm) can be interpreted as due
to internal defects: 390 nm emission band is correlated to SiO4 tetrahedra, when an electron is moved from O to Si; the luminescent
centre is described as SiO4

4− ([24], MC Keever SWS, 1984). For the 430–460 nm emission band, they are possibly due to a hole
centre existing between O- and Al3+; this is the strongest emitting centres in the Na–K feldspars. For the smaller red bands (690 and
740 nm), they are interpreted as due to impurities in very low concentrations like iron [26]. As for the green–yellow grains (Fig. 12b)
and the red grains (Fig. 12c) the dominating emitting bands that confer the perceived colour to the grain in CL imagery, are due to
the manganese impurity. For the green–yellow it is Mn2+ while replacing Ca2+ in a specific atomic environment of a plagioclase
mineral, that is regarded as responsible for the CL emission [17]. While for the red grain, it is again Mn2+ in replacement of Ca2+,
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Fig. 11 Images of the two samples during DIA and grain size distribution in ECD (Equivalent Circle Diameter in µm) for a samples 461 (data treatment,
ICA) and b 697 (data treatment, PCA). Counts, on the Y-axis represent the number of grains counted

but in another type of environment (i.e. a calcite crystal) that is responsible for it. In the case of the green grain (Fig. 12b), it is
noticeable that a near UV band shows up at around 380 nm; it is also attributed to the silicate centre SiO4

4−. The 750 nm band can
be attributed to the presence of very low amounts of Fe3+, but in this case the dominating band is in the green at 550 nm which gives
the global green perception by the eye. For the red grain (Fig. 12c) another small and large band is seen, which maximum is in the
near UV range (380 nm); this might be due to internal defects linked with oxygen vacancies in the carbonate network.
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Table 2 Grain size analysis
results obtained by applying the
developed DIA routine (see
Appendix B-online resource)

Sample/Fabric Method used Grains’ colour Area (%)

461, fabric 1 ICA Red 1.0

Green 0.5

Blue 28.4

710, fabric 1 ICA Red 0.8

Green 0.4

Blue 28.9

698, fabric 2 ICA Red 0.9

Green 6.6

Blue 4.1

706, fabric 2 ICA Red 1.4

Green 10.3

Blue 0.5

406, fabric 3.a PCA Red 23.2

Green 0.5

Blue 0.0

697, fabric 3.b PCA Red 28.2

Green 0.3

Blue 1.1

662, fabric 4 ICA Red 1.6

Green 3.4

Blue 0.1

The routine used is clarified in
bold. The bold italic underlines
the prevailing colour among the
RGB channels

Table 3 Chemical composition of
mineral grains responding blue,
green and red to CL microscopy
obtained by SEM–EDS point
analysis on two samples classified
as red-dominant (G697) and
blue-dominant (G461), as
examples

Sample ID Grains’ CL
colour

Elements

%Na %Mg %Al %Si %P %K %Ca %Ti %Mn %Fe %Ba

G461 Blue grain 1 2.5 0.3 18.8 64.1 0.2 11.9 0.4 0.3 – 0.6 0.5

Blue grain 2 2.5 0.5 18.8 64 0.2 11.6 0.7 0.3 – 0.7 0.3

Blue grain 3 2.2 0.5 18.8 64.3 0.2 12.2 0.6 0.2 – 0.7 0.1

Green grain 1 0.7 1.7 14.1 42.2 0.9 5.5 1.9 0.8 0.5 31.2 –

Red grain 1 0.4 0.9 2.7 9.3 36.2 1.1 47.8 0.1 – 1.1 –

Red grain 2 0.4 1.2 2.7 6.9 37.5 0.6 48.6 0.2 – 1.2 –

Red–orange
grain 1

0.2 1.2 2.4 7.7 37.3 0.6 48.5 0.2 – 1.5 –

Yellow grain 1 6.4 3.8 18.3 54.1 1.1 0.8 2.4 1.6 2.3 8.7 0.2

G697 Blue grain 1 2.4 0.1 18.8 63.2 0.1 10.8 0.2 0.2 1.8 1.1 0.1

Blue grain 2 1.8 0.1 19.3 63.1 0.1 11.4 1.1 0.2 1.1 1 0.2

Blue grain 3 2.3 0.1 19.3 63.9 – 11.2 2.1 0.2 – 0.7 –

Blue grain 4 1.9 0.1 19.4 64.1 0.1 11.4 1.4 0.2 – 0.7 0.2

Green grain 1 9.2 0.2 19.1 66.1 0.1 0.5 0.9 0.1 1.7 1.8 –

Red–orange
grain 1

0.6 0.5 1.4 7.4 – 0.3 87.1 0.2 – 1.3 –

Red–orange
grain 2

0.3 0.5 3.2 11.3 – 0.3 81.9 0.3 0.2 1.4 –

Red–orange
grain 3

0.6 0.6 1.5 7.4 – 0.2 86.9 0.2 – 1.6 –

The major elemental percentages
are in bold, to better discriminate
the possible diagnostic minerals
present
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Fig. 12 Representative CL spectrum of a blue grains (in CL imagery, feldspars) from sample G461; b green–yellow grains from sample G967 (in CL
imagery, plagioclase), and c red grains (in CL imagery, calcite) from sample G697, as examples

4 Conclusions

Cathodoluminescence coupled with DIA demonstrated to be a useful tool both in qualitative and quantitative approaches in archae-
ological ceramics’ studies. The qualitative classification of ceramic assemblages obtained with CIACC routine and based on colour
perception by CIE standard observer enables discriminating potteries according to petrofabric classification, providing also relevant
information on mineralogical composition based on CL response of mineral grains. In fact, the overall CL signal is consistent with
composition.

The selection of areas of interest on which collect CL images is critical for the correct classification of samples; in fact, it is
advisable to tie different frames covering the entire sample surface avoiding misclassification due to a possible heterogeneity in
sample texture and mineral grains’ thickening and sorting. The method is reliable on thin and thick sections, providing a polished
surface required for the analysis; however, statistical comparison would promote analysing thin sections when quantitative data on
mineral grains have to be extracted.

Another issue is related to firing temperature which might alter the crystal features of mineral grains and thus the CL response;
overfired fragments might be misclassified or poorly studied on their CL images. Moreover, the classical petrographic analysis
greatly considers the contribution of microstructure, imprinted by construction method, moulding and technical issues; otherwise,
voids are not sensitive to CL preventing the analysis of microstructural features on image acquisitions. Similarly, iron-rich phases,
again of great interest in petrographic analysis do not respond to CL excitation, not contributing to the analysis of mineral grains.

Quantitative information on grains has been also extracted by dedicated routine, providing data on textural features of inclu-
sion useful for comparative analysis. Moreover, the support of SEM–EDS analysis on single grains responding differently to CL
demonstrated the suitability of the method in determining grains size distribution, size and shape parameters of coloured grains
discriminating the contribution of different mineral inclusions, when correspondence between CL luminescence—composition of
mineral grains has been addressed by microchemical analysis. This approach cannot be conclusive when looking at the distribution
of the overall mineral phases but can be beneficial in archaeological studies when the presence of specific mineral phase can be
relevant for provenance or technological issue. Similar conclusion could be addressed by processing SEM–EDS maps; however, CL
seems to be faster enabling to focus on larger area and providing data on a lot of grains in few seconds of acquisition, differently
from SEM–EDS for which small areas can be acquired and focussed on a single—usually time-consuming—acquisition. Further
comparative studies would enable to highlight quantitative differences on grain size analysis obtained from images acquired by the
two methods, especially for including in the analysis the whole mineral grains which overall grain-size evaluation is relevant in
fabric description.

Possible further development by analysing CL spectra has been also presented; CL bands could be revealed using dedicated
software for deconvoluting the spectra for a more precise analysis. This aspect is of relevance when provenance studies are part of
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the investigation program, and the identification of all defects in mineral grains is seen as another way of bringing more information
on geological environment of raw materials.

In the present study, CL imaging and spectroscopy were only focussed on objects classification and grain size analysis; however,
this systematic study builds the basis for future developments to enlarge applications. In this perspective, analysis of mock-ups
made by using different clays and fired at different temperature ranges might help in evaluating how firing temperature imprints
CL signal regardless of composition [31]. Studies of defects on minerals grains from bearing ceramics from different geological
environments might reveal easy, fast and reliable method in discriminating provenance. Finally, regarding quantification, systematic
comparative analysis with other acquisition methods (such as petrography and SEM–EDS) is of interest for properly comparing
images acquired by various methods and correctly interpret data also considering limits of the technique itself or difficulties in
automatizing non-trivial analysis procedures. These are relevant issues for future successful research unveiling how CL imagery
with optical microscopy and CL spectroscopy can serve ancient materials studies.
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