Skip to main content
Log in

Toward the relationship between local quantum Fisher information and local quantum uncertainty in the presence of intrinsic decoherence

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The delicate relationship between the concepts of local quantum uncertainty, local quantum Fisher information and concurrence is investigated. This is analyzed by quantifying the non-classical correlations inherent in a two-qubit XXZ open system interacting with its surrounding environment in the presence of an external magnetic field. The second part of this work investigates different kinds of states, namely pure, Werner, mixed, and maximally entangled states via solving the time-dependent Milburn equation. Indeed, by controlling various interaction parameters, it is shown that the non-classical quantifiers and entanglement witness by means of local quantum uncertainty, local quantum Fisher information, and concurrence, respectively, fluctuate approximately similarly between their maximum and minimum bounds, where in general the sudden death, sudden birth, oscillations, and frozen correlations phenomena appear in the case of Werner and maximally entangled states. Finally, a scheme of quantum teleportation protocol is proposed in order to make a comparative study between teleported non-classical correlations and entanglement under the influence of the intrinsic decoherence phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Datta, A.T. Flammia, C.M. Caves, Entanglement and the power of one qubit. Phys. Rev. A 72, 043216 (2005)

    Article  ADS  Google Scholar 

  2. A. Datta, G. Vidal, Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. F. Benabdallah, A. Slaoui, M. Daoud, Quantum discord based on linear entropy and thermal negativity of qutrit-qubit mixed spin chain under the influence of external magnetic field. Quantum Inf. Process. 19, 252 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  5. M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  6. A. Streltsov, H. Kampermann, S. Wölk, M. Gessner, D. Bruß, Efficient quantum state analysis and entanglement detection. New J. Phys. 20, 053058 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Streltsov, G. Adesso, M.B. Plenio, Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. H.L. Huang, Quantum teleportation via a two-qubit Ising Heisenberg chain with an arbitrary magnetic field. Int. J. Theor. Phys. 50, 70–79 (2011)

    Article  MATH  Google Scholar 

  10. G.C. Fouokeng, E. Tedong, A.G. Tene, M. Tchoffo, L.C. Fai, Teleportation of single and bipartite states via a two qubits XXZ Heisenberg spin chain in a non-Markovian environment Phy. Lett. A 384, 126719 (2020)

    Article  MATH  Google Scholar 

  11. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

  12. C.H. Bennett, S.J. Wiesner, Communication via one- and two particle oprators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 20 (1992)

    MATH  Google Scholar 

  13. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum etanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  Google Scholar 

  14. V. Vedral, The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. O. Gūhne, G. Tóth, Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  17. W.K. Wootters, Entanglement of formation for an arbitrary state of two qubits. Phys. Rev. Lett. 80, 10 (1998)

    Article  MATH  Google Scholar 

  18. D. Girolami, T. Tufarelli, G. Adesso, Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  19. M. Ali, Local quantum uncertainty for multipartite quantum systems. Eur. Phys. J. D 74, 186 (2020)

    Article  ADS  Google Scholar 

  20. E.P. Wigner, M.M. Yanasse, Informations contents of distributions. Proc. Nat. Acad. Sci. USA 19, 910 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Luo, Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  22. S. Luo, Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  23. S. Luo, Wigner–Yanase skew information vs. quantum fisher information. Proc. Am. Math. Soc. 132, 885 (2003)

  24. D. Petz, C. Ghinea, Introduction to quantum fisher information. Quantum Probab. Relat. Top. 1, 261–281 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Y. Akbari-Kourbolagh, M. Azhdargalam, Entanglement criterion for multipartite systems based on quantum Fisher information. Phys. Rev. A 99, 012304 (2019)

    Article  ADS  Google Scholar 

  26. S. Haseli, Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions. Laser Phys. 30, 105203 (2020)

    Article  ADS  Google Scholar 

  27. A.B.A. Mohamed, E. Khalil, M.M. Selim, H. Eleuch, Quantum Fisher information and bures distance correlations of coupled two charge-qubits inside a coherent cavity with the intrinsic decoherence. Symmetry 13, 2 (2021)

    Google Scholar 

  28. X. Hu, H. Fan, D.L. Zhou, W.-M. Liu, Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A. 85, 032102 (2012)

    Article  ADS  Google Scholar 

  29. F. Benabdallah, M. Daoud, Dynamics of quantum discord based on linear entropy and negativity of qutrit–qubit system under classical dephasing environments. Eur. Phys. J. D 75, 3 (2021)

  30. F. Benabdallah, H. Arian Zad, M. Daoud and N. Ananikian, Dynamics of quantum correlations in a qubit-qutrit spin system under random telegraph noise, Phys. Scr. 96 125116 (2021)

  31. K. El Anouz, A. El Allati, N. Metwally, Different indicators for Markovian and non-Markovian dynamics. Phy. Lett. A. 384, 5 (2019)

    MathSciNet  MATH  Google Scholar 

  32. A.-B.A. Mohamed, N. Metwally, Non-classical correlations based on skew information of entangled two qubit-system with non-mutual interaction under a intrinsic decoherenc. Ann. Phys. 381, 137–150 (2017)

    Article  ADS  MATH  Google Scholar 

  33. V. Abhignan, R. Muthuganesan, Effects of intrinsic decoherence on discord-like correlation measures of two-qubit spin squeezing model. Phys. Scr. 96, 125114 (2021)

    Article  ADS  Google Scholar 

  34. Y.-N. Guo, H.-P. Peng, Q.-L. Tian, Z.-G. Tan, Y. Chen, Local quantum uncertainty in a two-qubit Heisenberg spin chain with intrinsic decoherence. Phys. Scr. 96, 075101 (2021)

    Article  ADS  Google Scholar 

  35. A.B.A. Mohamed, A.H. Abdel-Aty, E.G. El-Hadidy, H.A.A. El-Saka, Two-qubit Heisenberg XYZ dynamics of local quantum Fisher information, skew information coherence: Dyzaloshinskii–Moriya interaction and decoherence. Results Phys. 30, 104777 (2021)

    Article  Google Scholar 

  36. L-P. Chen, Y-n. Gu, Dynamics of local quantum uncertainty and local quantum fisher information for a two-qubit system driven by classical phase noisy laser, J. Mod. Opt. 68, 4 (2021)

  37. B.-L. Ye, B. Li, X.-B. Liang, S.-M. Fei, Dynamics of local quantum uncertainty and local quantum Fisher information for a two qubit system driven by classical phase noisy laser. Inte J. Quatum Inf. 18, 04 (2020)

    Google Scholar 

  38. G. Najarbashi, Seifi, B, Quantum phase transition in the Dzyaloshinskiiâ€Moriya interaction with inhomogeneous magnetic field: Geometric approach. Quantum Inf. Process. 16, 40 (2017)

  39. A. Karlsson, M. Bourennane, Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  40. J.C. Hao, C.F. Li, G.C. Guo, Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A. 63, 054301 (2001)

    Article  ADS  Google Scholar 

  41. A.-Z. Hamid, M. Hossein, Transferring information through a mixed-five-spin chain channel. Chin. Phys. B. 25, 080307 (2016)

    Article  Google Scholar 

  42. G. Milburn, Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44(9), 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  43. R.F. Werner, Quantum states with Einstein–Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  44. M. Asoudeh, V. Karimipour, Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  45. M. Berman, R. Kosloff, H. Tal-Ezer, Solution of the time-dependent Liouville-von Neumann equation: dissipative evolution. J. Phys. A Math. Gen. 25, 1283 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. M. Ali, A.R.P. Rau, G. Alber, Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  47. C.W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976)

    MATH  Google Scholar 

  48. G.A. Matteo, Paris, “Quantum estimation for quantum technology.” Int. J. Quant. Inf. 7, 125 (2009)

  49. S.L. Braunstein, C.M. Caves, Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. S. Kim, L. Li, A. Kumar, J. Wu, Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A. 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. K. El Anouz, I. El Aouadi, A. El Allati and T. Mourabit, Dynamics of quantum correlations in quantum teleportation, International Journal of Modern Physics B 34, 10 2050093 (2020)

  52. J.L. Guo, H.S. Song, Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scr. 78, 045002 (2008)

    Article  ADS  MATH  Google Scholar 

  53. A. Ferraro, D. Cavalcanti, F.M. Cucchietti, A. Acín, Phys. Rev. A 81, 052318 (2010)

  54. K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  55. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  ADS  Google Scholar 

  56. T. Werlang, G. Rigolin, Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  57. J. Yang, Y. Huang, Tripartite and bipartite quantum correlations in the XXZ spin chain with three-site interaction. Quantum Inf. Process. 16, 281 (2017)

    Article  MATH  Google Scholar 

  58. N, Zidan, Quantum teleportation via two-qubit Heisenberg XYZ chain, Can. J. Phys. 92, 406 (2014)

  59. G. Bowen, S. Bose, Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  60. Y. Yeo, Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain, Phys. Rev. A 66, 062312

  61. Y. Zhou, G.F. Zhang, Quantum teleportation via a two-qubit Heisenberg XXZ chain-effects of anisotropy and magnetic field. Eur. Phys. J. D 47, 227 (2008)

    Article  ADS  Google Scholar 

  62. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. R. Jozsa, Fidelity for mixed quantum states. J. Mod. Opt. 41, 12 (1994)

    MathSciNet  MATH  Google Scholar 

  64. L. Qiu, A.M. Wang, X.Q. Su, Effect of Dzyaloshinskill–Moriya anisotropic antisymmetric interaction and intrinsic decoherence on entanglement teleportation. Physica A 387, 6686 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija El Anouz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabdallah, F., Anouz, K.E. & Daoud, M. Toward the relationship between local quantum Fisher information and local quantum uncertainty in the presence of intrinsic decoherence. Eur. Phys. J. Plus 137, 548 (2022). https://doi.org/10.1140/epjp/s13360-022-02760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02760-1

Navigation