Skip to main content
Log in

Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Calcium ([Ca2+]), IP3, and nitric oxide (NO) play a significant role in cell signaling to maintain various physiological functions. Calcium and IP3 regulation has been investigated independently in a variety of cells like myocyte, hepatocyte, and neuron cells. However, very little attention has been paid to the study of interdependent calcium and IP3 dynamics regulating nitric oxide production in neurons and other cells. Nitric oxide and its derivatives are reported to be involved in the pathogenic process leading to neurogenerative disorders like Parkinson’s disease. The production of nitric oxide depends on the calcium dynamics in a neuron cell. Therefore a model is proposed to study the regulatory and dysregulatory effects of interdependent calcium and IP3 dynamics in a neuron cell. The system of reaction–diffusion equations for calcium and IP3 is coupled with the production of nitric oxide in a neuron cell to formulate an initial boundary value problem. The finite element simulation is performed to obtain results for regulatory and dysregulatory conditions of interdependent calcium and IP3 dynamics along with nitric oxide production in the cell. It is observed that disorders in mechanisms of calcium dynamics are balanced to some extent by IP3 dynamics. The dysregulation of calcium or IP3 dynamics causes an increase or decrease in nitric oxide production in the cell, which can lead to various neurodegenerative disorders. The information obtained from the present study can be used in the development of diagnostic and therapeutic measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

source influx (σ) at t = 1.0 s and x = 0 μm for [B] = 5 μM

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. J. Crank, The mathematics of diffusion (Oxford University Press, 1979)

    MATH  Google Scholar 

  2. R. Llinas, The role of calcium in neuronal function. Neurosci. Fourth Study Progr. 65, 555–571 (1979)

    Google Scholar 

  3. A.L. Fogelson, R.S. Zucker, Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985). https://doi.org/10.1016/S0006-3495(85)83863-7

    Article  Google Scholar 

  4. Z. Ahmed, J.A. Connor, Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium 9, 57–69 (1988). https://doi.org/10.1016/0143-4160(88)90025-5

    Article  Google Scholar 

  5. M.D. Bootman, M.J. Berridge, The elemental principles of calcium signaling. Cell 83, 675–678 (1995). https://doi.org/10.1016/0092-8674(95)90179-5

    Article  Google Scholar 

  6. J. Wagner, J. Keizer, Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456 (1994). https://doi.org/10.1016/S0006-3495(94)80500-4

    Article  ADS  Google Scholar 

  7. G.D. Smith, Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072 (1996). https://doi.org/10.1016/S0006-3495(96)79500-0

    Article  ADS  Google Scholar 

  8. G.D. Smith, J. Wagner, J. Keizer, Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J. 70, 2527–2539 (1996). https://doi.org/10.1016/S0006-3495(96)79824-7

    Article  ADS  Google Scholar 

  9. D.M. Egelman, P.R. Montague, Calcium dynamics in the extracellular space of mammalian neural tissue. Biophys. J. 76, 1856–1867 (1999). https://doi.org/10.1016/S0006-3495(99)77345-5

    Article  Google Scholar 

  10. A. Verkhratsky, The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32, 393–404 (2002). https://doi.org/10.1016/S0143416002001896

    Article  Google Scholar 

  11. M. Falcke, Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J. 84, 28–41 (2003). https://doi.org/10.1016/S0006-3495(03)74830-9

    Article  ADS  Google Scholar 

  12. D.D. Dave, B.K. Jha, Mathematical modeling of calcium oscillatory patterns in a neuron,. Interdiscip. Sci. Comput Life Sci. 13, 12–24 (2021). https://doi.org/10.1007/s12539-020-00401-8

    Article  Google Scholar 

  13. J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–1405 (2003). https://doi.org/10.1016/S0006-3495(03)74572-X

    Article  Google Scholar 

  14. M. Brini, T. Calì, D. Ottolini, E. Carafoli, Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814 (2014). https://doi.org/10.1007/s00018-013-1550-7

    Article  Google Scholar 

  15. A. Jha, N. Adlakha, Analytical solution of two dimensional unsteady state problem of calcium diffusion in a neuron cell. J. Med. Imaging Heal. Informatics. 4, 547–553 (2014). https://doi.org/10.1166/jmihi.2014.1282

    Article  Google Scholar 

  16. B.K. Jha, N. Adlakha, M.N. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simulation. Sci. Comput. 4, 681 (2013). https://doi.org/10.1142/S1793962312500304

    Article  Google Scholar 

  17. A. Tripathi, N. Adlakha, Closed form solution to problem of calcium diffusion in cylindrical shaped neuron cell. World Acad. Sci Eng. Technol. 80, 739–742 (2011)

    Google Scholar 

  18. A. Tripathi, N. Adlakha, Two dimensional coaxial circular elements in FEM to study calcium diffusion in neuron cells. Appl. Math. Sci. 6, 455–466 (2012)

    MATH  Google Scholar 

  19. V. Tewari, S. Tewari, K.R. Pardasani, A model to study the effect of excess buffers and Na + ions on Ca 2+ diffusion in neuron cell,. World Acad. Sci Eng. Technol. 76, 41–46 (2011). https://doi.org/10.5281/zenodo.1054988

    Article  Google Scholar 

  20. A. Jha, N. Adlakha, Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. Int. J. Biomath. 8, 80 (2015). https://doi.org/10.1142/S1793524515500023

    Article  MATH  Google Scholar 

  21. S.G. Tewari, K.R. Pardasani, Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG Int. J. Appl. Math. 40, 1–5 (2010)

    MathSciNet  MATH  Google Scholar 

  22. S. Tewari, K.R. Pardasani, Finite difference model to study the effects of Na + influx on cytosolic Ca 2 + diffusion. World Acad. Sci. Eng. Technol. 63, 670–675 (2008)

    Google Scholar 

  23. N. Manhas, J. Sneyd, K.R. Pardasani, Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells. J. Biosci. 39, 463–484 (2014). https://doi.org/10.1007/s12038-014-9430-3

    Article  Google Scholar 

  24. N. Manhas, K.R. Pardasani, Mathematical model to study IP3 Dynamics dependent calcium oscillations in pancreatic acinar cells. J. Med. Imag. Heal. Informatics. 4, 874–880 (2014). https://doi.org/10.1166/jmihi.2014.1333

    Article  Google Scholar 

  25. K.B. Pathak, N. Adlakha, Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer. J. Med. Imag. Heal. Informatics. 5, 683–688 (2015). https://doi.org/10.1166/jmihi.2015.1443

    Article  Google Scholar 

  26. K. Pathak, N. Adlakha, Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes, Alexandria. J. Med. 52, 261–268 (2016). https://doi.org/10.1016/j.ajme.2015.09.007

    Article  Google Scholar 

  27. P.A. Naik, K.R. Pardasani, One dimensional finite element model to study calcium distribution in oocytes in presence of VGCC, RyR and buffers. J. Med. Imag. Heal. Informatics. 5, 471–476 (2015). https://doi.org/10.1166/jmihi.2015.1431

    Article  Google Scholar 

  28. P.A. Naik, K.R. Pardasani, Three-dimensional finite element model to study effect of RyR calcium channel, ER leak and SERCA pump on calcium distribution in oocyte cell. Int. J. Comput. Methods. 16, 1–19 (2019). https://doi.org/10.1142/S0219876218500913

    Article  MathSciNet  MATH  Google Scholar 

  29. P.A. Naik, K.R. Pardasani, Finite element model to study calcium distribution in oocytes involving voltage gated Ca 2+ channel, ryanodine receptor and buffers,. Alexandria J. Med. 52, 43–49 (2016). https://doi.org/10.1016/j.ajme.2015.02.002

    Article  Google Scholar 

  30. S. Panday, K.R. Pardasani, Finite element model to study effect of advection diffusion and Na +/Ca2+ exchanger on Ca2+ distribution in oocytes. J. Med. Imag. Heal. Informatics. 3, 374–379 (2013). https://doi.org/10.1166/jmihi.2013.1184

    Article  Google Scholar 

  31. M. Kotwani, N. Adlakha, M.N. Mehta, Numerical model to study calcium diffusion in fibroblasts cell for one dimensional unsteady state case. Appl. Math. Sci. 6, 5063–5072 (2012)

    MATH  Google Scholar 

  32. M. Kotwani, N. Adlakha, M.N. Mehta, Finite element model to study the effect of buffers, source amplitude and source geometry on spatiooral calcium distribution in fibroblast cell. J. Med. Imag. Heal. Informatics. 4, 840–847 (2014). https://doi.org/10.1166/jmihi.2014.1328

    Article  Google Scholar 

  33. Y.D. Jagtap, N. Adlakha, Simulation of buffered advection diffusion of calcium in a hepatocyte cell. Math. Biol. Bioinforma. 13, 609–619 (2018). https://doi.org/10.17537/2018.13.609

    Article  Google Scholar 

  34. S.G. Tewari, K.R. Pardasani, Modeling effect of sodium pump on calcium oscillations in neuron cells. J. Multiscale Model. 04, 1250010 (2012). https://doi.org/10.1142/s1756973712500102

    Article  MathSciNet  Google Scholar 

  35. B.K. Jha, N. Adlakha, M.N. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7, 1–11 (2014). https://doi.org/10.1142/S1793524514500314

    Article  MathSciNet  MATH  Google Scholar 

  36. D.D. Dave, B.K. Jha, 3D mathematical modeling of calcium signaling in Alzheimer’s disease. Netw. Model. Anal. Heal. Informatics Bioinforma. 9, 1–10 (2020). https://doi.org/10.1007/s13721-019-0207-3

    Article  Google Scholar 

  37. D.D. Dave, B.K. Jha, 2D finite element estimation of calcium diffusion in Alzheimer’s affected neuron. Netw. Model. Anal. Heal. Informatics Bioinforma. 10, 1–11 (2021). https://doi.org/10.1007/s13721-021-00322-6

    Article  Google Scholar 

  38. H. Joshi, B.K. Jha, On a reaction–diffusion model for calcium dynamics in neurons with Mittag-Leffler memory. Eur. Phys. J. Plus. 136, 12 (2021). https://doi.org/10.1140/epjp/s13360-021-01610-w

    Article  Google Scholar 

  39. B.K. Jha, H. Joshi, Chaos of calcium diffusion in Parkinson s infectious disease model and treatment mechanism via Hilfer fractional derivative. Math. Model. Numer. Simul. with Appl. 1, 84–94 (2021). https://doi.org/10.53391/mmnsa.2021.01.008

    Article  Google Scholar 

  40. M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000(11), 11–21 (2000). https://doi.org/10.1038/35036035

    Article  Google Scholar 

  41. R.H. Michell, Inositol phospholipids and cell surface receptor function. BBA - Rev. Biomembr. 415, 81–147 (1975). https://doi.org/10.1016/0304-4157(75)90017-9

    Article  Google Scholar 

  42. M.J. Berridge, R.F. Irvine, Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984). https://doi.org/10.1038/312315a0

    Article  ADS  Google Scholar 

  43. I. Bezprozvanny, J. Watras, B.E. Ehrlich, Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991). https://doi.org/10.1038/351751a0

    Article  ADS  Google Scholar 

  44. C.E. Sims, N.L. Allbrittont, Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5- tetrakisphosphate by the oocytes of Xenopus laevis. J. Biol. Chem. 273, 4052–4058 (1998). https://doi.org/10.1074/jbc.273.7.4052

    Article  Google Scholar 

  45. J. Keizer, G. De Young, Effect of voltage-gated plasma membrane Ca2+ fluxes on IP3-linked Ca2+ oscillations. Cell Calcium 14, 397–410 (1993). https://doi.org/10.1016/0143-4160(93)90044-7

    Article  Google Scholar 

  46. Y.X. Li, J. Rinzel, Equations for InsP3 receptor-mediated [Ca2+](i) oscillations derived from a detailed kinetic model: A hodgkin-huxley like formalism. J. Theor. Biol. 166, 461–473 (1994). https://doi.org/10.1006/jtbi.1994.1041

    Article  ADS  Google Scholar 

  47. M. Falcke, R. Huerta, M.I. Rabinovich, H.D.I. Abarbanel, R.C. Elson, A.I. Selverston, Modeling observed chaotic oscillations in bursting neurons: The role of calcium dynamics and IP3. Biol. Cybern. 82, 517–527 (2000). https://doi.org/10.1007/s004220050604

    Article  Google Scholar 

  48. J. Wagner, C.F. Fall, F. Hong, C.E. Sims, N.L. Allbritton, R.A. Fontanilla, I.I. Moraru, L.M. Loew, R. Nuccitelli, A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: Theoretical and experimental support. Cell Calcium 35, 433–447 (2004). https://doi.org/10.1016/j.ceca.2003.10.009

    Article  Google Scholar 

  49. J. Garthwaite, Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14, 60–67 (1991). https://doi.org/10.1016/0166-2236(91)90022-M

    Article  Google Scholar 

  50. M. Salter, G. Knowles, Activity of -Dependent and -Independent Nitric Oxide S. FEBS Lett. 291, 145–149 (1991)

    Article  Google Scholar 

  51. G. Garthwaite, J. Garthwaite, Cyclic GMP and cell death in rat cerebellar slices. Neuroscience 26, 321–326 (1988). https://doi.org/10.1016/0306-4522(88)90148-0

    Article  Google Scholar 

  52. J. Wood, J. Garthwaite, Models of the diffusional spread of nitric oxide: Implications for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 33, 1235–1244 (1994). https://doi.org/10.1016/0028-3908(94)90022-1

    Article  Google Scholar 

  53. H. Van Liew, S. Raychaudhuri, Modeling in physiology. J. Appl. Physiol. 82, 2045–2053 (1997)

    Article  Google Scholar 

  54. N.M. Tsoukias, Nitric oxide bioavailability in the microcirculation: Insights from mathematical models. Microcirculation 15, 813–834 (2008). https://doi.org/10.1080/10739680802010070

    Article  Google Scholar 

  55. S.R. Vincent, Nitric oxide neurons and neurotransmission. Prog. Neurobiol. 90, 246–255 (2010). https://doi.org/10.1016/j.pneurobio.2009.10.007

    Article  Google Scholar 

  56. K.A. Kohlmeier, C.S. Leonard, Transmitter modulation of spike-evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX-482-sensitive calcium influx. Eur. J. Neurosci. 23, 1151–1162 (2006). https://doi.org/10.1111/j.1460-9568.2006.04640.x

    Article  Google Scholar 

  57. V.M. Bolotina, S. Najibi, J.J. Palacino, P.J. Pagano, R.A. Cohen, Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368, 850–853 (1994). https://doi.org/10.1038/368850a0

    Article  ADS  Google Scholar 

  58. M. Kourosh-Arami, N. Hosseini, M. Mohsenzadegan, A. Komaki, M.T. Joghataei, Neurophysiologic implications of neuronal nitric oxide synthase. Rev. Neurosci. 31, 617–636 (2020). https://doi.org/10.1515/revneuro-2019-0111

    Article  Google Scholar 

  59. M. Iino, Ca2+-dependent inositol 1,4,5-trisphosphate and nitric oxide signaling in cerebellar neurons. J. Pharmacol. Sci. 100, 538–544 (2006). https://doi.org/10.1254/jphs.CPJ06006X

    Article  Google Scholar 

  60. W.G.G.Ã.L. Farnell, M.R. Bennett, A computational model relating changes in cerebral blood volume to synaptic activity in neurons. Neurocomputing 70, 1674–1679 (2007). https://doi.org/10.1016/j.neucom.2006.10.071

    Article  Google Scholar 

  61. K. Dormanns, R.G. Brown, T. David, The role of nitric oxide in neurovascular coupling. J. Theor. Biol. 394, 1–17 (2016). https://doi.org/10.1016/j.jtbi.2016.01.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. N. Singh, N. Adlakha, Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Math. Biol. Bioinforma. 14, 290–305 (2019). https://doi.org/10.17537/2019.14.290

    Article  Google Scholar 

  63. N. Singh, N. Adlakha, Effect of source geometry on interdependent calcium and inositol 1; 4; 5-trisphosphate dynamics in a cardiac myocyte cell, Springer Proc. Math. Stat. 308, 75–83 (2020). https://doi.org/10.1007/978-981-15-1338-1_6

    Article  MATH  Google Scholar 

  64. N. Singh, N. Adlakha, A mathematical model for interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Netw. Model. Anal. Heal. Informatics Bioinforma. 8, 253 (2019). https://doi.org/10.1007/s13721-019-0198-0

    Article  Google Scholar 

  65. Y. Jagtap, N. Adlakha, Numerical study of one-dimensional buffered advection–diffusion of calcium and IP 3 in a hepatocyte cell. Netw. Model. Anal. Heal. Informatics Bioinforma. 8, 1–9 (2019). https://doi.org/10.1007/s13721-019-0205-5

    Article  Google Scholar 

  66. A. Bugrim, R. Fontanilla, B.B. Eutenier, J. Keizer, R. Nuccitelli, Sperm initiate a Ca2+ wave in frog eggs that is more similar to Ca2+ waves initiated by IP3 than by Ca2+. Biophys. J. 84, 1580–1590 (2003). https://doi.org/10.1016/S0006-3495(03)74968-6

    Article  ADS  Google Scholar 

  67. G. Dupont, S. Swillens, C. Clair, T. Tordjmann, L. Combettes, Hierarchical organization of calcium signals in hepatocytes: From experiments to models. Biochim. Biophys. Acta - Mol. Cell Res. 1498, 134–152 (2000). https://doi.org/10.1016/S0167-4889(00)00090-2

    Article  Google Scholar 

  68. S.A. Brown, F. Morgan, J. Watras, L.M. Loew, Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys. J. 95, 1795–1812 (2008). https://doi.org/10.1529/biophysj.108.130195

    Article  ADS  Google Scholar 

  69. T. Öziş, E.N. Aksan, A. Özdeş, A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 139, 417–428 (2003). https://doi.org/10.1016/S0096-3003(02)00204-7

    Article  MathSciNet  MATH  Google Scholar 

  70. L. Zhang, V.L. Dawson, T.M. Dawson, Role of nitric oxide in Parkinson’s disease. Pharmacol. Ther. 109, 33–41 (2006). https://doi.org/10.1016/j.pharmthera.2005.05.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Pawar.

Appendix: summary of the model equations

Appendix: summary of the model equations

The shape function of calcium and IP3 concentration for each element is taken as,

$$ {\text{u}}^{{\text{(e)}}} {\text{ = q}}_{{1}}^{{\text{(e)}}} {\text{ + q}}_{{2}}^{{\text{(e)}}} {\text{ x}} $$
(19)
$$ {\text{v}}^{{\text{(e)}}} {\text{ = r}}_{{1}}^{{\text{(e)}}} {\text{ + r}}_{{2}}^{{\text{(e)}}} {\text{ x}} $$
(20)
$$ {\text{u}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{q}}^{{\text{(e)}}} {\text{, v}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{r}}^{{\text{(e)}}} $$
(21)
$$ S^{{\text{T}}} { = [}\begin{array}{*{20}c} {1} & {\text{x}} \\ \end{array} {\text{], q}}^{{{\text{(e)}}^{{\text{T}}} }} { = [}\begin{array}{*{20}c} {{\text{q}}_{{1}}^{{\text{(e)}}} } & {{\text{q}}_{{2}}^{{\text{(e)}}} } \\ \end{array} {\text{], r}}^{{{\text{(e)}}^{{\text{T}}} }} { = [}\begin{array}{*{20}c} {{\text{r}}_{{1}}^{{\text{(e)}}} } & {{\text{r}}_{{2}}^{{\text{(e)}}} } \\ \end{array} {]} $$
(22)

Putting nodal conditions in Eq. 21, we obtain

$$ \overline{{\text{u}}} ^{{({\text{e}})}} = S^{{({\text{e}})}} q^{{({\text{e}})}} ,\,\,\,\overline{{\text{v}}} ^{{({\text{e}})}} = S^{{({\text{e}})}} r^{{({\text{e}})}} , $$
(23)

where

$$ {\overline{\text{u}}}^{{\text{(e)}}} { = }\left[ {\begin{array}{*{20}c} {{\text{u}}_{{\text{i}}} } \\ {{\text{u}}_{{\text{j}}} } \\ \end{array} } \right]\,\,\,\,{\overline{\text{v}}}^{{\text{(e)}}} { = }\left[ {\begin{array}{*{20}c} {{\text{v}}_{{\text{i}}} } \\ {{\text{v}}_{{\text{j}}} } \\ \end{array} } \right]\,\,\,{\text{and}}\,\,\,\,S^{{\text{(e)}}} { = }\left[ {\begin{array}{*{20}c} {1} & {{\text{x}}_{{\text{i}}} } \\ {1} & {{\text{x}}_{{\text{j}}} } \\ \end{array} } \right], $$
(24)

By the Eq. 23, we have

$$ {\text{q}}^{{\text{(e)}}} {\text{ = R}}^{{\text{(e)}}} {\overline{\text{u}}}^{{\text{(e)}}} {\text{, r}}^{{\text{(e)}}} {\text{ = R}}^{{\text{(e)}}} {\overline{\text{v}}}^{{\text{(e)}}} $$
(25)

And

$$ {\text{R}}^{{\text{(e)}}} {\text{ = S}}^{{{\text{(e)}}^{{ - 1}} }} $$
(26)

Putting \({\text{q}}^{{\text{(e)}}}\) and \({\text{r}}^{{\text{(e)}}}\) from Eq. 25 in  21, we obtain

$$ {\text{u}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{ R}}^{{\text{(e)}}} {\overline{\text{u}}}^{{\text{(e)}}} {\text{, v}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{ R}}^{{\text{(e)}}} {\overline{\text{v}}}^{{\text{(e)}}} $$
(27)

Discretized form of Eq. 1 and 7 is given by,

The integral \({\text{I}}_{{1}}^{{\text{(e)}}}\) and \({\text{I}}_{{2}}^{{\text{(e)}}}\) can be expressed in this formation

$$ {\text{I}}_{{1}}^{{\text{(e)}}} {\text{ = I}}_{{{\text{a1}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{b1}}}}^{{\text{(e)}}} {\text{ + I}}_{{{\text{c1}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{d1}}}}^{{\text{(e)}}} {\text{ + I}}_{{{\text{e1}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{f1}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{g1}}}}^{{\text{(e)}}} $$
(28)

where

$$ {\text{I}}_{{{\text{a1}}}}^{{\text{(e)}}} { = }\int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial {\text{u}}^{{\text{(e)}}} }}{{\partial {\text{x}}}}} \right)^{2} } \right\}{\text{dx}}} $$
(29)
$$ {\text{I}}_{{{\text{b1}}}}^{{\text{(e)}}} { = }\frac{{\text{d}}}{{{\text{dt}}}}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {\frac{{{\text{(u}}^{{\text{(e)}}} {)}}}{{{\text{D}}_{{{\text{Ca}}}} }}} \right]{\text{ dx}}} $$
(30)
$$ {\text{I}}_{{{\text{c1}}}}^{{\text{(e)}}} { = }\frac{{{\text{V}}_{{{\text{IPR}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\alpha u}^{{\text{(e)}}} + {\beta v}^{{\text{(e)}}} + {\upgamma }} \right]{\text{ dx}}} $$
(31)
$$ {\text{I}}_{{{\text{d1}}}}^{{{\text{(e)}}}} = \frac{{{\text{V}}_{{{\text{SERCA}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {\kappa u^{{{\text{(e)}}}} {\text{ + }}\eta } \right]{\text{ dx}}} $$
(32)
$$ {\text{I}}_{{{\text{e1}}}}^{{\text{(e)}}} { = }\frac{{{\text{V}}_{{{\text{LEAK}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{[Ca}}^{{2 + }} {]}_{{{\text{ER}}}} {\text{ - u}}^{{\text{(e)}}} } \right]{\text{ dx}}} $$
(33)
$$ {\text{I}}_{{{\text{f1}}}}^{{\text{(e)}}} { = }\frac{{{\text{K}}^{ + } }}{{{\text{D}}_{{{\text{ca}}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{u}}^{{\text{(e)}}} {\text{ - [Ca}}^{{2 + }} ]_{\infty } } \right]{\text{ dx}}} $$
(34)
$$ {\text{I}}_{{{\text{g1}}}}^{{\text{(e)}}} {\text{ = f}}^{{\text{(e)}}} \frac{{\upsigma }}{{{\text{D}}_{{{\text{ca}}}} }}_{{\text{ x = 0}}} $$
(35)
$$ {\text{I}}_{{2}}^{{\text{(e)}}} {\text{ = I}}_{{{\text{a2}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{b2}}}}^{{\text{(e)}}} {\text{ + I}}_{{{\text{c2}}}}^{{\text{(e)}}} {\text{ - I}}_{{{\text{d2}}}}^{{\text{(e)}}} $$
(36)
$$ {\text{I}}_{{{\text{a2}}}}^{{\text{(e)}}} { = }\int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial {\text{v}}^{{\text{(e)}}} }}{{\partial {\text{x}}}}} \right)^{2} } \right\}{\text{ dx}}} $$
(37)
$$ {\text{I}}_{{{\text{b2}}}}^{{\text{(e)}}} { = }\frac{{\text{d}}}{{{\text{dt}}}}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {\frac{{{\text{v}}^{{\text{(e)}}} }}{{{\text{D}}_{{\text{i}}} }}} \right]{\text{ dx}}} $$
(38)
$$ {\text{I}}_{{{\text{c2}}}}^{{\text{(e)}}} { = }\frac{{{\text{V}}_{{{\text{PROD}}}} }}{{{\text{D}}_{{\text{i}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\mu u}^{{\text{(e)}}} + {\uptau }} \right]{\text{ dx}}} $$
(39)
$$ {\text{I}}_{{{\text{d2}}}}^{{{\text{(e)}}}} = \frac{\lambda }{{{\text{F}}_{{\text{c}}} {\text{D}}_{{\text{i}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {\delta u^{{{\text{(e)}}}} {\text{ + }}\xi {\text{v}}^{{{\text{(e)}}}} {\text{ + }}\omega )} \right]{\text{ dx}}} $$
(40)

The various parameters \( \alpha ,\beta _{1} ,\gamma ,\kappa ,\eta ,\mu ,\tau ,\delta ,\xi ,{\text{and}},\omega \) are obtained by the linearization of nonlinear interdependent calcium and IP3 dynamics. The equations are analyzed and boundary conditions are included to give the following system of equations.

$$ \frac{{{\text{dI}}_{1} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} = \sum\limits_{{{\text{e = 1}}}}^{{\text{N}}} {\overline{{\text{Q}}} ^{{{\text{(e)}}}} } \frac{{{\text{dI}}_{1}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }}\overline{{\text{Q}}} ^{{{\text{(e)}}^{{\text{T}}} }} = 0 $$
(41)
$$ \frac{{{\text{dI}}_{2} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} = \sum\limits_{{{\text{e = 1}}}}^{{\text{N}}} {\overline{{\text{Q}}} ^{{{\text{(e)}}}} } \frac{{{\text{dI}}_{2}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }}\overline{{\text{Q}}} ^{{{\text{(e)}}^{{\text{T}}} }} = 0 $$
(42)

where

$$ \overline{{\text{Q}}} ^{{{\text{(e)}}}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} 0 \\ 1 \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} 0 \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} 0 \\ 0 \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ 0 \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\,{\text{and}}\,\overline{{\text{u}}} {\text{ = }}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\text{u}}_{1} } \\ {{\text{u}}_{2} } \\ \end{array} } \\ {{\text{u}}_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {{\text{u}}_{{19}} } \\ \end{array} } \\ {{\text{u}}_{{20}} } \\ \end{array} } \\ {{\text{u}}_{{21}} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right],\;\overline{{\text{v}}} {\text{ = }}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {{\text{v}}_{1} } \\ {{\text{v}}_{2} } \\ \end{array} } \\ {{\text{v}}_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {{\text{v}}_{{19}} } \\ \end{array} } \\ {{\text{v}}_{{20}} } \\ \end{array} } \\ {{\text{v}}_{{21}} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right] $$
(43)
$$ \frac{{{\text{dI}}_{{{\text{1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} = \frac{{{\text{dI}}_{{{\text{a1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} + \frac{{\text{d}}}{{{\text{dt}}}}\frac{{{\text{dI}}_{{{\text{b1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} + \frac{{{\text{dI}}_{{{\text{c1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} + \frac{{{\text{dI}}_{{{\text{d1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} - \frac{{{\text{dI}}_{{{\text{e1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}} ^{{{\text{(e)}}}} }} - \frac{{{\text{dI}}_{{{\text{f1}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{u}}}^{{{\text{(e)}}}} }} $$
(44)
$$ \frac{{{\text{dI}}_{2}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} = \frac{{{\text{dI}}_{{{\text{a2}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} + \frac{{\text{d}}}{{{\text{dt}}}}\frac{{{\text{dI}}_{{{\text{b2}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} + \frac{{{\text{dI}}_{{{\text{c2}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} + \frac{{{\text{dI}}_{{{\text{d2}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} - \frac{{{\text{dI}}_{{{\text{e2}}}}^{{{\text{(e)}}}} }}{{{\text{d}}\overline{{\text{v}}} ^{{{\text{(e)}}}} }} $$
(45)
$$ \left[ {\text{A}} \right]_{{{\text{42}} \times {\text{42}}}} \left[ {\begin{array}{*{20}c} {\left[ {\frac{{\partial \overline{{\text{u}}} }}{{\partial {\text{t}}}}} \right]_{{{\text{21}} \times {\text{1}}}} } \\ {\left[ {\frac{{\partial \overline{{\text{v}}} }}{{\partial {\text{t}}}}} \right]_{{{\text{21}} \times {\text{1}}}} } \\ \end{array} } \right] + \left[ {\text{B}} \right]_{{{\text{42}} \times {\text{42}}}} \left[ {\begin{array}{*{20}c} {\left[ {\overline{{\text{u}}} } \right]_{{{\text{21}} \times {\text{1}}}} } \\ {\left[ {\overline{{\text{v}}} } \right]_{{{\text{21}} \times {\text{1}}}} } \\ \end{array} } \right]{\text{ = }}[{\text{F}}]_{{{\text{42}} \times {\text{1}}}} $$
(46)

Here, the system matrices are A and B with the system vectors F. The Crank–Nicolson method which is numerically stable is applied to solve the time derivate in FEM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Raj Pardasani, K. Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur. Phys. J. Plus 137, 543 (2022). https://doi.org/10.1140/epjp/s13360-022-02743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02743-2

Navigation