Skip to main content
Log in

Nuclear configurational entropy and high-energy hadron-hadron scattering reactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, the high-energy hadron-hadron scattering is studied in the framework of holographic AdS/QCD models, using the Brower–Polchinski–Strassler–Tan Pomeron exchange kernel and gravitational form factors. We apply the configurational entropy techniques to estimate the slope of the total cross section for the total hadron-hadron cross sections at high-energies. A good agreement is derived between our approach and the total cross section for combinations that include the pion-nucleon, nucleon-nucleon, and pion-pion, as well as for any high-energy data with inclusion of data from the TOTEM collaboration at the LHC and approximated by the Pomeron exchange. In the case of pion-nucleon and pion-pion scattering, the agreement for the critical points to the differential configurational entropy can be reached within 1.1% even without the involvement of any extra parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233 (1994)

    Article  ADS  Google Scholar 

  2. D. Kharzeev, Y.V. Kovchegov, K. Tuchin, Phys. Lett. B 599, 23 (2004)

    Article  ADS  Google Scholar 

  3. F. Carvalho, F.O. Durães, V.P. Gonçalves, F.S. Navarra, Mod. Phys. Lett. A 23, 2847 (2008)

    Article  ADS  Google Scholar 

  4. F. Carvalho, F.O. Durães, F.S. Navarra, V.P. Gonçalves, Acta Phys. Polon. B 39, 2511 (2008)

    ADS  Google Scholar 

  5. R. da Rocha, Phys. Rev. D 103, 106027 (2021). [arXiv:2103.03924 [hep-ph]]

    Article  ADS  Google Scholar 

  6. G. Karapetyan, Phys. Lett. B 786, 418 (2018). [arXiv:1807.04540 [nucl-th]]

    Article  ADS  Google Scholar 

  7. R. da Rocha, Phys. Lett. B 814, 136112 (2021). [arXiv:2101.03602 [hep-th]]

    Article  Google Scholar 

  8. A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Eur. Phys. J. C 78, 631 (2018). [arXiv:1803.03336 [hep-th]]

    Article  ADS  Google Scholar 

  9. L.F. Ferreira, R. da Rocha, Phys. Rev. D 101, 106002 (2020). [arXiv:2004.04551 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  10. A.E. Bernardini, R. da Rocha, Phys. Lett. B 796, 107 (2019). [arXiv:1908.04095 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Bazeia, E.I.B. Rodrigues, Phys. Lett. A 392, 127170 (2021)

    Article  Google Scholar 

  12. D. Bazeia, D.A. Ferreira and M.A. Marques, [arXiv:2102.06932 [hep-th]]

  13. A.A. Silva, F.M. Andrade and D. Bazeia, [arXiv:2101.05250 [quant-ph]]

  14. D. Bazeia, M.A. Liao and M.A. Marques, [arXiv:2101.01691 [hep-th]]

  15. D. Bazeia, D.A. Ferreira, F.S.N. Lobo, J. Luís, Eur. Phys. J. Plus 136, 321 (2021). [arXiv:2011.06240 [gr-qc]]

    Article  Google Scholar 

  16. N.R.F. Braga, Y.F. Ferreira and L.F. Ferreira, [arXiv:2110.04560 [hep-th]]

  17. N.R.F. Braga, O.C. Junqueira, Phys. Lett. B 820, 136485 (2021). [arXiv:2105.12347 [hep-th]]

    Article  Google Scholar 

  18. N.R.F. Braga, R. da Mata, Phys. Lett. B 811, 135918 (2020). [arXiv:2008.10457 [hep-th]]

    Article  MathSciNet  Google Scholar 

  19. N.R.F. Braga, R. da Rocha, Phys. Lett. B 767, 386 (2017). [arXiv:1612.03289 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  20. R. da Rocha, Phys. Rev. D 105, 026014 (2022). [arXiv:2111.01244 [hep-th]]

    Article  ADS  Google Scholar 

  21. R. da Rocha, Phys. Lett. B 823, 136729 (2021). [arXiv:2108.13484 [gr-qc]]

    Article  Google Scholar 

  22. G. Karapetyan, Eur. Phys. J. Plus 136, 1012 (2021). [arXiv:2105.07546 [hep-ph]]

    Article  Google Scholar 

  23. G. Karapetyan, Phys. Lett. B 781, 201 (2018). [arXiv:1802.09105 [hep-ph]]

    Article  ADS  Google Scholar 

  24. G. Karapetyan, EPL 129, 18002 (2020). [arXiv:1912.10071 [hep-ph]]

    Article  ADS  Google Scholar 

  25. G. Karapetyan, Eur. Phys. J. Plus 136, 122 (2021). [arXiv:2003.08994 [hep-ph]]

    Article  Google Scholar 

  26. L.F. Ferreira, R. da Rocha, Phys. Rev. D 99, 086001 (2019). [arXiv:1902.04534 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Karapetyan, R. da Rocha, Eur. Phys. J. Plus 136, 993 (2021). [arXiv:2103.10863 [hep-ph]]

    Article  Google Scholar 

  28. L.F. Ferreira, R. da Rocha, Eur. Phys. J. C 80, 375 (2020). [arXiv:1907.11809 [hep-th]]

    Article  ADS  Google Scholar 

  29. A.E. Bernardini, R. da Rocha, Phys. Rev. D 98, 126011 (2018). [arXiv:1809.10055 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  30. N.R.F. Braga, L.F. Ferreira, R. da Rocha, Phys. Lett. B 787, 16 (2018). [arXiv:1808.10499 [hep-ph]]

    Article  ADS  Google Scholar 

  31. A.E. Bernardini, R. da Rocha, Phys. Lett. B 762, 107 (2016). [arXiv:1605.00294 [hep-th]]

    Article  ADS  Google Scholar 

  32. N. Barbosa-Cendejas, R. Cartas-Fuentevilla, A. Herrera-Aguilar, R.R. Mora-Luna, R. da Rocha, Phys. Lett. B 782, 607 (2018). [arXiv:1805.04485 [hep-th]]

    Article  ADS  Google Scholar 

  33. A.J. Ferreira-Martins, R. da Rocha, Nucl. Phys. B 973, 115603 (2021). [arXiv:2104.02833 [hep-th]]

    Article  Google Scholar 

  34. A.E. Bernardini, N.R.F. Braga, R. da Rocha, Phys. Lett. B 765, 81 (2017). [arXiv:1609.01258 [hep-th]]

    Article  ADS  Google Scholar 

  35. N.R.F. Braga, R. da Rocha, Phys. Lett. B 776, 78 (2018). [arXiv:1710.07383 [hep-th]]

    Article  ADS  Google Scholar 

  36. A. Goncalves da Silva, R. da Rocha, Phys. Lett. B 774, 98 (2017). [arXiv:1706.01482 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Colangelo, F. Loparco, Phys. Lett. B 788, 500 (2019). [arXiv:1811.05272 [hep-ph]]

    Article  ADS  Google Scholar 

  38. C.W. Ma, Y.G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018). [arXiv:1801.02192 [nucl-th]]

    Article  ADS  Google Scholar 

  39. M. Gleiser, N. Stamatopoulos, Phys. Rev. D 86, 045004 (2012). [arXiv:1205.3061 [hep-th]]

    Article  ADS  Google Scholar 

  40. M. Gleiser, N. Stamatopoulos, Phys. Lett. B 713, 304 (2012)

    Article  ADS  Google Scholar 

  41. M. Gleiser, D. Sowinski, Phys. Lett. B 727, 272 (2013). [arXiv:1307.0530 [hep-th]]

    Article  ADS  Google Scholar 

  42. M. Gleiser, M. Stephens, D. Sowinski, Phys. Rev. D 97, 096007 (2018). [arXiv:1803.08550 [hep-th]]

    Article  ADS  Google Scholar 

  43. M. Gleiser, D. Sowinski, Phys. Lett. B 747, 125 (2015). [arXiv:1501.06800 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  44. M. Gleiser, N. Graham, Phys. Rev. D 89, 083502 (2014). [arXiv:1401.6225 [hep-th]]

    Article  ADS  Google Scholar 

  45. M. Gleiser, N. Jiang, Phys. Rev. D 92, 044046 (2015). [arXiv:1506.05722 hep-th]]

    Article  ADS  Google Scholar 

  46. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016). [arXiv:1610.01572 [hep-th]]

    Article  ADS  Google Scholar 

  47. A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Phys. Lett. B 791, 323 (2019). [arXiv:1901.07492 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  48. N.R.F. Braga and R. da Mata, arXiv:2002.09413 [hep-th]

  49. A. Alves, A.G. Dias, R. Silva, Braz. J. Phys. 47, 426 (2017). [arXiv:1703.02061 [hep-ph]]

    Article  ADS  Google Scholar 

  50. A. Alves, A.G. Dias, R. da Silva, Physica A 420, 1 (2015). [arXiv:1408.0827 [hep-ph]]

    Article  ADS  Google Scholar 

  51. D. Bazeia, D.C. Moreira, E.I.B. Rodrigues, J. Magn. Magn. Mater. 475, 734 (2019). [arXiv:1812.04950 [cond-mat.mes-hall]]

    Article  ADS  Google Scholar 

  52. G. Karapetyan, EPL 125, 58001 (2019). [arXiv:1901.05349 [hep-ph]]

    Article  ADS  Google Scholar 

  53. G. Karapetyan, EPL 118, 38001 (2017). [arXiv:1705.1061 [hep-ph]]

    Article  ADS  Google Scholar 

  54. G. Karapetyan, EPL 117, 18001 (2017). [arXiv:1612.09564 [hep-ph]]

    Article  ADS  Google Scholar 

  55. R.C. Brower, J. Polchinski, M.J. Strassler, C.I. Tan, JHEP 0712, 005 (2007). arXiv:hep-th/0603115

    Article  ADS  Google Scholar 

  56. R.C.Brower, M.J. Strassler, C. I. Tan, JHEP 03, 050 (2009). https://doi.org/10.1088/1126-6708/2009/03/050. arXiv:0707.2408 [hep-th]

  57. R.C. Brower, M.J. Strassler, C.I. Tan, JHEP 03, 092 (2009). https://doi.org/10.1088/1126-6708/2009/03/092. arXiv:0710.4378 [hep-th]

  58. J. Polchinski, M.J. Strassler, Phys. Rev. Lett. 88, 031601 (2002). [arXiv:hep-th/0109174 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  59. J. Polchinski, M.J. Strassler, JHEP 05, 012 (2003). [arXiv:hep-th/0209211 [hep-th]]

    Article  ADS  Google Scholar 

  60. B. Pire, C. Roiesnel, L. Szymanowski, S. Wallon, Phys. Lett. B 670, 84 (2008). [arXiv:0805.4346 [hep-ph]]

    Article  ADS  Google Scholar 

  61. L. Agozzino, P. Castorina, P. Colangelo, Phys. Rev. Lett. 112, 041601 (2014). [arXiv:1306.5072 [hep-ph]]

    Article  ADS  Google Scholar 

  62. L. Agozzino, P. Castorina, P. Colangelo, Eur. Phys. J. C 74, 2828 (2014). [arXiv:1401.0826 [hep-ph]]

    Article  ADS  Google Scholar 

  63. A. Watanabe, M. Huang, Phys. Lett. B 788, 256 (2019). [arXiv:1809.02515 [hep-ph]]

    Article  ADS  Google Scholar 

  64. G. Antchev et al., [arXiv:1712.06153 [hep-ex]]

  65. G. Antchev et al., EPL 101, 21002 (2013)

    Article  ADS  Google Scholar 

  66. G. Antchev et al., EPL 101, 21004 (2013)

    Article  ADS  Google Scholar 

  67. G. Antchev et al., Phys. Rev. Lett. 111, 012001 (2013)

    Article  ADS  Google Scholar 

  68. G. Antchev et al., Nucl. Phys. B 899, 527 (2015)

    Article  ADS  Google Scholar 

  69. G. Antchev et al., Eur. Phys. J. C 76, 661 (2016)

    Article  ADS  Google Scholar 

  70. F.J. Nemes, PoS DIS 2017, 059 (2018)

    Google Scholar 

  71. R.M. Baltrusaitis, G.L. Cassiday, J.W. Elbert, P.R. Gerhardy, S. Ko, E.C. Loh, Y. Mizumoto, P. Sokolsky, D. Steck, Phys. Rev. Lett. 52, 1380 (1984)

    Article  ADS  Google Scholar 

  72. M. Honda, M. Nagano, S. Tonwar, K. Kasahara, T. Hara, N. Hayashida, Y. Matsubara, M. Teshima, S. Yoshida, Phys. Rev. Lett. 70, 525 (1993)

    Article  ADS  Google Scholar 

  73. P. Abreu et al., Phys. Rev. Lett. 109, 062002 (2012)

    Article  ADS  Google Scholar 

  74. R. Battiston et al., Phys. Lett. B 117, 126 (1982)

    Article  ADS  Google Scholar 

  75. G. Arnison et al., Phys. Lett. B 128, 336 (1983)

    Article  ADS  Google Scholar 

  76. M. Bozzo et al., Phys. Lett. B 147, 392 (1984)

    Article  ADS  Google Scholar 

  77. R.C. Brower, M. Djuric, I. Sarcevic, C.I. Tan, JHEP 11, 051 (2010). [arXiv:1007.2259 [hep-ph]]

    Article  ADS  Google Scholar 

  78. R.C. Brower, S.D. Mathur, C.I. Tan, Nucl. Phys. B 587, 249–276 (2000). https://doi.org/10.1016/S0550-3213(00)00435-1. arXiv:hep-th/0003115 [hep-th]

  79. A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko, V.N. Velizhanin, Phys. Lett. B 632, 754 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  80. A.M. Stasto, Phys. Rev. D 75, 054023 (2007). https://doi.org/10.1103/PhysRevD.75.05, 4023. arXiv:hep-ph/0702195 [hep-ph]

  81. B.Z. Kopeliovich, E. Levin, A.H. Rezaeian, I. Schmidt, Phys. Lett. B 675, 190 (2009). [arXiv:0902.4287 [hep-ph]]

    Article  ADS  Google Scholar 

  82. D. Bazeia, R. Menezes, R. da Rocha, Adv. High Energy Phys. 2014, 276729 (2014). [arXiv:1312.3864 [hep-th]]

    Article  Google Scholar 

  83. R.A.C. Correa, R. da Rocha, Eur. Phys. J. C 75, 522 (2015). [arXiv:1502.02283 [hep-th]]

    Article  ADS  Google Scholar 

  84. R.A.C. Correa, R. da Rocha, A. de Souza Dutra, Annal. Phys 359, 198 (2015). [arXiv:1501.02000 [hep-th]]

  85. D. Marinho Rodrigues, R. da Rocha, Phys. Lett. B 811, 135943 (2020). [arXiv:2009.01890 [hep-th]]

  86. D. Marinho Rodrigues and R. da Rocha, Eur. Phys. J. Plus (2022), to appear [arXiv:2006.00332 [hep-th]]

  87. L.A. Pando Zayas, C.A. Terrero-Escalante, JHEP 09, 094 (2010). [arXiv:1007.0277 [hep-th]]

  88. K. Hashimoto, K. Murata, K. Yoshida, Phys. Rev. Lett. 117, 231602 (2016). [arXiv:1605.08124 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  89. V. Pascalutsa, Eur. Phys. J. A 16, 149 (2003). [arXiv:hep-ph/0201040 [hep-ph]]

    Article  ADS  Google Scholar 

  90. B. Muller, A. Trayanov, Phys. Rev. Lett. 68, 3387 (1992)

    Article  ADS  Google Scholar 

  91. P. Basu, A. Ghosh, Phys. Lett. B 729, 50 (2014). [arXiv:1304.6348 [hep-th]]

    Article  ADS  Google Scholar 

  92. J. Maldacena, S.H. Shenker, D. Stanford, JHEP 08, 106 (2016). [arXiv:1503.01409 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GK thanks to The São Paulo Research Foundation – FAPESP (grant No. 2018/19943-6). GK is grateful to the Federal University of ABC and Perimeter Institute, for the hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Karapetyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karapetyan, G. Nuclear configurational entropy and high-energy hadron-hadron scattering reactions. Eur. Phys. J. Plus 137, 590 (2022). https://doi.org/10.1140/epjp/s13360-022-02736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02736-1

Navigation