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Abstract Moments are expectation values over wave functions (or averages over a set of classical particles) of products of powers of
position and momentum. For the harmonic oscillator, the evolution in the quantum case is very closely related to that of the classical
case. Here we consider the non-relativistic evolution of moments of all orders for the oscillator in one dimension and investigate
invariant combinations of the moments. In particular, we find an infinite set of invariants that enable us to express the evolution of
any moment in terms of sinusoids. We also find explicit expressions for the inverse of these relations, thus enabling the expression
of the evolution of any moment in terms of the initial set of moments. More detailed attention is given to moments of the third and
fourth order in terms of the invariant combinations.

1 Introduction

Moments of wave functions or of classical ensembles of particles are used to give a simple measure of average quantities (expectation
values). Moments of order n are averages of products of integer powers of position x and momentum p such that the sum of all the
powers is n, for example 〈xn−k pk〉 with 0 ≤ k ≤ n. The first-order moments (n = 1) are 〈x〉 and 〈p〉, which define the centroid of
the particle (or ensemble), and the centroid of an oscillator follows a classical evolution. The higher-order moments will always be
taken to be relative to the centroid.

The second-order moments (n = 2) give a measure of the spread in position and momentum; for the oscillator, they can
be combined to give the energy. The third-order moments give a measure of the skewness of the distribution (in position or in
momentum). Fourth-order moments give a measure of the spread that gives more emphasis to the outer parts of the distribution.
Higher-order moments have been used to investigate features of the evolution of small systems [1–3] and in cosmology [4]. Invariant
combinations of moments in systems with quadratic Hamiltonians have been studied and applied to various physical systems, such
as particle beams and paraxial analysis of optical systems (using geometrical, physical or quantum optics). This work has made
use of ‘universal invariants’ [5] that are combinations of moments that remain unchanged even if the Hamiltonian has explicit
time dependence (and this translates to dependence on the distance along the axis in the paraxial context). For example, a simple
application is a paraxial bundle of rays passing through a system of lenses; the universal invariants remain constant as the rays
traverse each refracting element of the system. An extensive list of references to this work in a wide range of physical systems can
be found in ref. [6].

Here we consider the case of a one-dimensional system (a single quantum particle or an ensemble of classical particles) with a
harmonic potential that does not vary with time. This system has time-independent invariants that are not universal invariants. In
appendix F we give expressions for the universal invariants in terms of our invariants for n = 2, 3 and 4. Sections 8 and 9 consider
how our invariants can be applied to examine in more detail the evolution of the moments for n = 3 and 4, with particular attention
to the times and values of the extrema and inflections.

The work here is closely related to our study of similar systems free of forces [7]. Some of the development here overlaps that
of Brizuela [3].

1.1 Classical and quantum oscillators

Although quantum mechanics deals with wavefunctions and operators acting on wavefunctions while classical mechanics deals with
the position of particles and the effect of forces, it has long been observed that there are close connections between the two theories,
particularly for quadratic Hamiltonians. In fact, the Wigner function [8] provides a mapping of wavefunctions into a distribution of
particles in classical phase space, although this classical distribution is usually unphysical in that the density of particles is negative
in some regions. Nevertheless, there is an exact correspondence between the evolution equations of the moments for a wavefunction
and those for a classical ensemble with the corresponding quadratic Hamiltonian. This correspondence will be employed to find the
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evolution and invariants of the symmetrized quantum moments while allowing us to ignore the complications arising because the
operators for position and momentum do not commute.

For the oscillator, the Hamiltonian is

H = p2/2m + ω2x2/2. (1)

In the quantum case, the momentum can be represented by the operator p̂ = −ı h̄∂x and there is a natural length scale of α =
(h̄/mω)1/2. Many of the general results in this work apply to both the classical and the quantum cases, the main difference being
that some extra terms (involving h̄) may appear in inequalities. Thus, the range of possible evolutions of the quantum moments may
differ from the classical because of these constraints (that restrict the evolution through the initial values of the moments).

2 Moments over a set of classical particles

Consider a set of N identical non-interacting particles, each subject to the same harmonic force, as in Eq. (1). If the μth particle has
position xμ and momentum pμ, then the equations of motion are

dt xμ = pμ/m dt pμ = −mω2xμ. (2)

[This analysis could easily be extended to cover an ensemble of particles with unequal masses.] The centroid has position x̄ =
N−1 ∑

μ xμ and momentum p̄ = N−1 ∑
μ pμ, and x̄, p̄ satisfy the same equations of motion, Eq. (2). Then the deviations from the

centroid Xμ = xμ − x̄ , and Pμ = pμ − p̄ also satisfy the same equations of motion: dt Xμ = Pμ/m and dt Pμ = −mω2Xμ.
Moments of order n about the centroid then have the form Yk = N−1 ∑

μ Pk
μX

n−k
μ and it simply follows that

dt Yk = ω[(n − k)Yk+1/mω − kYk−1mω]. (3)

This is the evolution equation for classical moments. This analysis can be extended to a continuous distribution ρ(x, p) in phase
space. Then the same equations will apply to the evolution of the moments Yk = ∫∫

ρ(x, p)Xn−k Pk dx dp.
To avoid the frequent occurrences of the factor mω, we also use the notation Yk = Yk/(mω)k . Then

dtYk = ω[(n − k)Yk+1 − kYk−1], (4)

and all Yk of the same order n have the same dimension of [length]n .
To further align the classical and quantum cases, we use angled brackets to denote either an average over all the particles in the

ensemble or an expectation value over the wavefunction: For an ensemble, Yk = N−1 ∑
μ Pk

μX
n−k
μ = 〈Pk Xn−k〉. Note that the

moments Yk differ for different values of the order n; the index n will often be suppressed.

2.1 Invariant combinations of the classical moments

For each particle of the ensemble, define aμ := Xμ + ıPμ, with P := P/mω. Then dt aμ = −ı ω aμ, and therefore, eıωt aμ is
constant. Also a∗

μaμ = X2
μ + P2

μ is constant. All the invariants we use will be built from products of powers of aμ and a∗
μaμ. For

each n, we define

Wj := 〈a(n+ j)/2(a∗)(n− j)/2〉 = 〈a j (a∗a)(n− j)/2〉 = 〈(X + ıP) j (X2 + P2)(n− j)/2〉, (5)

where j = 1, 3, 5, .., n if n is odd, and j = 0, 2, 4, .., n if n is even. Then Wj is a sum of moments of order n and dtW j = −ı jωWj .
Its evolution is therefore sinusoidal with angular frequency jω. For each Wj , it follows that eı jωtW j is constant. Here we use
the term invariants to refer to combinations of moments that remain constant due to the equations of motion. Thus, eı jωtW j is a
time-dependent invariant (unless j = 0) because the time appears explicitly through eı jωt . Later we will consider time-independent
invariants that can be built from the Wj .

The combination of moments Wj will be used to examine in detail the evolution of the moments, but before that we consider the
quantum equivalent.

3 Symmetrized quantum moments

For any order n, the symmetrized quantum moment Yk is the expectation value averaged over all products that contain X̂ exactly
n − k times and P̂ exactly k times. The index k ranges from 0 to n. For example, with n = 3,

Y0 = 〈X̂3〉, Y1 = 1

3
〈X̂2 P̂ + X̂ P̂ X̂ + P̂ X̂2〉, (6)

Y3 = 〈P̂3〉, Y2 = 1

3
〈P̂2 X̂ + P̂ X̂ P̂ + X̂ P̂2〉. (7)
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We use the notation { f (x̂, p̂)} to denote the symmetrized form of the operator f (x̂, p̂), and then, Yk = 〈{X̂n−k P̂k}〉. Any moment
of order n can be expressed, using [X̂ , P̂] = ı h̄, in terms of the set of symmetrized moments of order n or less then n. [9]

Similarly to the classical case in Eq. (5), for the quantum case we define

Wj := 〈{(X̂ + ı P̂/mω) j (X̂2 + P̂2/(mω)2)(n− j)/2}〉. (8)

Fortunately, the symmetrized moments have the same evolution equations as the moments of a set of classical particles, and a
corresponding set of invariants.

3.1 The Wigner correspondence

The Wigner function W (x, p) [8] is a function in classical phase space that can be generated from the wavefunction. It has the
property that the quantum expectation value of a symmetrized operator is equal to the phase-space average using W (x, p) as the
density: 〈{ f (x̂, p̂)}〉 = ∫

W (x, p) f (x, p) dx dp. Furthermore, the phase-space distribution W (x, p) follows the classical evolution
for any quadratic Hamiltonian. More detail on this correspondence is given in [7].

It follows that the quantum moments will have the same evolution Eq. (3) as the classical moments. Therefore, in the quantum
context Wj in Eq. (8) also satisfies dtW j = −ı jωWj and eı jωtW j is invariant.

4 Sinusoidal combinations of the moments

To relate these invariants to the moments Yk , we write Wj = Uj + ıVj with Uj and Vj real. Then

dtU j = jωVj , dt V j = − jωUj . (9)

It follows that d2
t U j = −( jω)2Uj and d2

t V j = −( jω)2Vj , so thatUj and Vj oscillate sinusoidally with angular frequency jω. Since
eı jωtW j is constant, it equals u j + ıv j , where u j , v j are the initial values of Uj , Vj , and therefore, Uj + ıVj = e−ı jωt (u j + ıv j ).
Thus,

Uj = u j cos jωt + v j sin jωt, Vj = v j cos jωt − u j sin jωt. (10)

4.1 Expressions for Uj and Vj in terms of the moments

[The analysis here applies equally to the classical context if the hats on X̂ and P̂ , and the symmetrization, are ignored.] For even
order, a simple case is where j = 0:

V0 = 0, U0 = 〈{(P̂2/(mω)2 + X̂2)n/2}〉 =
∑n

k=0,2,..

(n/2
k/2

)Yk, (11)

and U0 is invariant. For low orders, all cases can easily be found. For n = 2:

U0 = Y0 + Y2, W2 = 〈{(X̂ + ı P̂/mω)2}〉, U2 = Y0 − Y2, V2 = 2Y1. (12)

And for n = 3:

W1 = 〈{(X̂ + ı P̂/mω)(X̂2 + (P̂/mω)2)}〉, U1 = Y0 + Y2, V1 = Y1 + Y3, (13)

W3 = 〈{(X̂ + ı P̂/mω)3}〉, U3 = Y0 − 3Y2, V3 = 3Y1 − Y3. (14)

[Although W3 = 〈(X̂ + ı P̂/mω)3〉, W1 �= 〈 (X̂ + ı P̂/mω)(P̂2/(mω)2 + X̂2) 〉. Symmetrization is required for W1.]
These relations can be cast in matrix form:
For n = 3,

[
U1

U3

]

=
[

1 1
1 −3

][Y0

Y2

]

,

[
V1

V3

]

=
[

1 1
3 −1

][Y1

Y3

]

, (15)

while for n = 4
⎡

⎣
U0

U2

U4

⎤

⎦ =
⎡

⎣
1 2 1
1 0 −1
1 −6 1

⎤

⎦

⎡

⎣
Y0

Y2

Y4

⎤

⎦,

[
V2

V4

]

=
[

2 2
4 −4

] [Y1

Y3

]

(16)

An expression that covers every case is given in Appendix A. Alternatively a recurrence relation there gives Uj and Vj in terms
of the moments Yk .
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4.2 The amplitudes of the Fourier components are time-independent invariants

The time-dependent invariants eı jωtW j that were used to determine the time evolution of the moments also yield the sequence of
time-independent invariants

A j := (W ∗
j W j )

1/2 = (U 2
j + V 2

j )
1/2. (17)

Then A j is the magnitude of the complex number Wj . To determine the phase, we define the times t j such that eı jωtW j =
exp(ı jωt j )A j with t j real and 0 ≤ t j < 2π . Then Wj = exp[−ı jω(t − t j )]A j . For t = 0, this gives

A2
j = u2

j + v2
j , cos jωt j = u j/A j , sin jωt j = v j/A j . (18)

These equations enable the calculation of A j from the initial moments. The ambiguities in trying to obtain t j from Eq. (18) are
resolved using other invariants, as discussed later for n = 3 and 4.

The complete evolution can be determined from the A j and t j through

Uj = A j cos jω(t − t j ) Vj = −A j sin jω(t − t j ). (19)

Many quantitative attributes of the evolution do not depend on the initial time and can be expressed in terms of the invariants only.
[The t j are not invariant, but the difference between any two is invariant.] Examples are the magnitudes of extrema of the moments,
or the difference between the times of extrema or zeros. Furthermore, the invariants (or combinations of them) may be subject to
inequalities that distinguish the quantum behaviour from the classical. Other forms for the invariant combinations of moments are
discussed in Appendix D.

4.3 The inverse relations: the moments in terms of U and V

Inverting the previous matrices gives, for n = 3
[Y0

Y2

]

= 1
4

[
3 1
1 −1

][
U1

U3

]

,

[Y1

Y3

]

= 1
4

[
1 1
3 −1

][
V1

V3

]

, (20)

while for n = 4
⎡

⎣
Y0

Y2

Y4

⎤

⎦= 1
8

⎡

⎣
3 4 1
1 0 −1
3 −4 1

⎤

⎦

⎡

⎣
U0

U2

U4

⎤

⎦,

[Y1

Y3

]

= 1
8

[
2 1
2 −1

][
V2

V4

]

(21)

An explicit expression for the inverses for any n is derived in Appendix B.

4.4 The moments in terms of their initial values

The sinusoids U and V can be expressed in terms of their initial values using Eq. (10), and inserting this result into Eqs. (20) and
(21) gives the moments Yk in terms of u j and v j . These initial u j and v j are found from the initial moments yk using Eqs. (15) and
(16). In this way, we can write expressions for the moments in terms of their initial values:

For n = 3, the result is
⎡

⎢
⎢
⎣

Y0

Y2

Y1

Y3

⎤

⎥
⎥
⎦= 1

4

⎡

⎢
⎢
⎣

3c1 + c3 3c1 − 3c3 | 3s1 + 3s3 3s1 − s3

c1 − c3 c1 + 3c3 | s1 − 3s3 s1 + s3

−s1 − s3 −s1 + 3s3 | c1 + 3c3 c1 − c3

−3s1 + s3 −3s1 − 3s3 | 3c1 − 3c3 3c1 + c3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

y0

y2

y1

y3

⎤

⎥
⎥
⎦ (22)

where yk is the initial value of Yk and c j = cos ω j t , s j = sin ω j t . And for n = 4,

⎡

⎢
⎢
⎢
⎢
⎣

Y0

Y2

Y4

Y1

Y3

⎤

⎥
⎥
⎥
⎥
⎦

= 1
8

⎡

⎢
⎢
⎢
⎢
⎢
⎣

3 + 4c2 + c4 6 − 6c4 3 − 4c2 + c4 | 8s2 + 4s4 8s2 − 4s4

1 − c4 2 + 6c4 1 − c4 | −4s4 4s4

3 − 4c2 + c4 6 − 6c4 3 + 4c2 + c4 | −8s2 + 4s4 −8s2 − 4s4

−2s2 − s4 6s4 2s2 − s4 | 4c2 + 4c4 4c2 − 4c4

−2s2 + s4 −6s4 2s2 + s4 | 4c2 − 4c4 4c2 + 4c4

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

y0

y2

y4

y1

y3

⎤

⎥
⎥
⎥
⎥
⎦

. (23)

As t → 0, all the diagonal elements of these matrices approach unity and all off-diagonal elements approach zero, so that Yk → yk ,
as required.
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5 Some features of moments of any order

For classical or quantum systems:
Spatially symmetric (or antisymmetric) distributions or wavefunctions will remain symmetric (or antisymmetric) as they evolve

and all moments of odd order will be zero. For even order, both Y0 and Yn will be positive.
For quantum systems:

All symmetrized moments are real. (They can all be expressed as the expectation value of an Hermitian operator.)
There is a generalization of the usual uncertainty relation for n = 2 that has the form Y0 Yn ≥ αnh̄n , where αn is a positive

constant (Eq. 57 of [2]). In particular, α2 = 1
4 (the Heisenberg uncertainty relation) and α4 ≈ 0.4878 [10]. This and other related

inequalities are discussed in ref. [11].
Initially real wavefunctions are often used in illustrative examples. (We ignore any phase factor that is independent of position—it

would not effect the moments.) Any normalizable eigenfunction of an Hermitian Hamiltonian operator can be taken to be initially
real. If the initial wavefunction is real, all moments Yk with odd k will be initially zero (because there is an odd number of momentum
operators and each has a factor ı , but the moment must be real).

Some of these features apply also to free particles and more detail is given in [7].

5.1 Evolution of initially real wavefunctions

For a wavefunction that is initially real, all initial moments yk with k odd will be zero. (The following remarks also apply to classical
distributions where all odd initial moments are zero.) It follows from Sect. 4.1 that all v j are zero, and Eq. (10) gives

Uj = u j cos jωt, Vj = −u j sin jωt. (24)

Thus, whereas in general A j = (u2
j + v2

j )
1/2, for initially real wavefunctions A j = ±u j . (Both signs can occur.) From Eq. (18),

sin jωt j = 0; so t j = 0 and A j = u j if u j > 0 while t j = π and A j = −u j if u j < 0. For n = 3 and 4, we will show that the
analysis of the evolution for initially real wavefunctions is much simpler than in the general case.

It will be shown in Sects. 8.2.2 and 9.1.1 that this simplification applies more broadly than just to initially real wavefunctions.

6 Evolution, invariants, and inequalities of the second-order moments

The second-order moments relate to the spread in position Δx = Y 1/2
0 and in momentum Δp = Y 1/2

2 . Their evolution (that also
involves the correlation Y1) is discussed in most introductory textbooks on quantum mechanics. In terms of the quantities used
here, U0 = Y0 + Y2, U2 = Y0 − Y2, and V2 = 2Y1. The two amplitude invariants are A0 = U0 (related to the energy) and
A2 = (U 2

2 + V 2
2 )1/2 = [(Y0 − Y2)

2 + 4Y2
1 ]1/2. The inverse relations, giving the moments in terms of Uj , are Y0 = 1

2 (U0 + U2),
Y2 = 1

2 (U0 −U2) and Y1 = 1
2V2. From Eqs. 20 and 19, the evolution of the moments can be expressed as

Y0 = 1

2
[A0 + A2 cos 2ω(t − t2)], Y1 = −1

2
A2 sin 2ω(t − t2), Y2 = 1

2
[A0 − A2 cos 2ω(t − t2)]. (25)

The invariant amplitudes A j (and the constant t2) can be calculated from the initial moments through Eq. (18). In terms of the initial
moments,

⎡

⎣
Y0

Y2

Y1

⎤

⎦= 1
2

⎡

⎣
1 + c2 1 − c2 | 2s2

1 − c2 1 + c2 | 2s2

−s2 s2 | 2c2

⎤

⎦

⎡

⎣
y0

y2

y1

⎤

⎦ , (26)

where c2 = cos 2ωt and s2 = sin 2ωt .
All these equations apply equally to the classical and quantum cases; but there are inequalities that distinguish these cases. The

quantal energy is ε = 1
2 〈P̂2/m + mω2 X̂2〉 = 1

2mω2U0 and, because [P̂, X̂ ] = h̄/ ı , it follows that ε ≥ 1
2 h̄ω and A0 = U0 ≥

h̄/mω = α2. Also, the combination K 2 := Y0Y2 − Y 2
1 is subject to Schrödinger’s inequality K ≥ 1

2 h̄, which is stronger than the
traditional Heisenberg Uncertainty Relation (Y0Y2)

1/2 ≥ 1
2 h̄. [The stronger inequality was originally proved by Schrödinger in

1930. It is easily derived from Schwarz’s inequality 〈P̂2〉〈X̂2〉 ≥ |〈P̂ X̂〉|2 using P̂ X̂ = 1
2 (P̂ X̂ + X̂ P̂ − ı h̄).] Thus, A2

0 − A2
2 =

4(Y0Y2 −Y2
1 ) = 4K 2/(mω)2 ≥ α4, which is stronger than the energy inequality. [For a classical system: Y0 ≥ 0, Y2 ≥ 0, Y0Y2 ≥

Y 2
1 , U0 ≥ U2, A0 ≥ A2].

In general, the evolution of the second-order moments is as follows: Y0 and Y2 oscillate with an angular frequency of 2ω and
amplitude 1

2 A2 about the value 1
2 A0. These oscillations are out-of-phase by π ; they are zero at the same time, but each maximum is

at the other’s minimum. The other moment Y1 oscillates about zero with the same frequency and amplitude, but differing in phase
by π/2. In the quantum case, the centre 1

2 A0 of the oscillations of Y0 and Y2 must be greater than or equal to 1
2α2. These moments
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must be positive, but their minimum can be arbitrarily close to zero. The product of the minimum value 1
2 (A0 − A2) and maximum

value 1
2 (A0 + A2) is (K/mω)2 ≥ 1

4α4

A simple example is the Gaussian wavefunction ψ = exp(− 1
2 x

2/a2). The second-order initial moments are y0 = 1
2a

2, y1 = 0,
and y2 = 1

2a
−2. Then u0 = 1

2 (a2 + a−2) and u2 = 1
2 (a2 − a−2). Therefore, A0 = u0, A2 = u2 if a > 1, and A2 = −u2 if

a < 1. Furthermore, t2 = 0 and initially Y1 is zero; also, if a > 1 then Y0 is at its maximum and Y2 is at its minimum. For the
Gaussian, Schrödinger’s inequality is saturated (K = 1

2 h̄) for any value of a. The maxima of Y0 and Y2 become infinitely large,
and the minima become infinitely small as a → ∞ or a → 0. The case a = 1 is the ground state of the oscillator with A2 = 0 and
no oscillations.

7 Periodicity and symmetry in the time evolution of moments

7.1 For an ensemble of classical particles

The equations of motion for a classical particle can be integrated to give

x(t) = x0 cos ωt + (p0/mω) sin ωt, p(t) = p0 cos ωt − mωx0 sin ωt. (27)

Hence, both x(t) and p(t) have period T = 2π/ω, and after time T/2 both x(t) and p(t) change sign. After time T/4, x(T/4) =
p(0)/mω and p(T/4) = −mωx(0). For the moments Yk = N−1 ∑

μ(xμ − x̄)n−k(pμ − p̄)k/(mω)k where x̄ = N−1 ∑
μ xμ,

p̄ = N−1 ∑
μ pμ, it follows that Yk has period T and after a half-period Yk(T/2) = (−1)nYk(0). After one quarter-period,

Yk(T/4) = (−1)kYn−k(0).

7.2 For a wavefunction

After one period of the oscillator, the wavefunction changes sign: [12] ψ(x, T ) = −ψ(x, 0). Therefore, all moments return to their
original values: Yk(t + T ) = Yk(t); the moments have period T .

After half a period (t = π/ω), then ψ(x, T/2) = −ı ψ(−x, 0) and the effect on the moments becomes apparent by changing
the sign of the integration variable in Yk = ∫

ψ∗(x){xn−k, (−ı h̄∂x )
k}ψ(x) dx . Thus, Yk(t + T/2) = (−1)nYk(t). For even n, the

moments over the second half-period repeat the first half-period; for n odd, the sign over the second half is reversed.
After a quarter-period, the wavefunction evolves essentially into its Fourier transform (and a phase factor), a result that comes

directly from the propagator. [12] At time t = T/4, the propagation equation becomes

ψ(x, T/4) = e−ıπ/4√mω φ(mωx), (28)

where φ(p) = (2π h̄)−1/2
∫ ∞
−∞ exp(−ı p x/h̄) ψ(x, 0) dx , the initial momentum wavefunction. Inserting ψ(x, T/4) into the integral

for Yk and changing the integration variable x to p = mωx give Yk(T/4) = ∫ ∞
−∞ φ∗(p) pn−k(−ı h̄ ∂p)

kφ(p)dp.
The canonical transformation from momentum to position (p → x, x → −p) results in [Eq. (3.31) of [13]]

∫ ∞

−∞
φ∗(p) f (−ı∂p, p)φ(p) dp =

∫ ∞

−∞
ψ∗(x) f (x, ı∂x )ψ(x) dx, (29)

and it follows that Yn−k(t) = (−1)kYk(t + T/4). Thus, the evolution of the moment Yk is exactly copied (apart from a sign) by that
of Yn−k after a time of one quarter of the period T of the oscillator. In Appendix C, an alternative derivation of these periodicities
uses the periodic properties of Uj and Vj .

8 Particulars of third moments

The four symmetrized third moments are displayed in Eq. (6). The momentY0 = 〈X̂3〉 is a measure of the skewness of the distribution.
All third moments can be positive or negative. As shown in Eq. (15), Wj = Uj + ıVj with

U1 = Y0 + Y2, V1 = Y1 + Y3, U3 = Y0 − 3Y2, V3 = 3Y1 − Y3, (30)

Y0 = 1

4
(3U1 +U3), Y2 = 1

4
(U1 −U3), Y1 = 1

4
(V1 + V3), Y3 = 1

4
(3V1 − V3). (31)

As in Eq. (19), we set eıωtW1 = eıωt1 A1 and eı3ωtW3 = eı3ωt3 A3 leading to

U1 = A1 cos ω(t − t1), V1 = −A1 sin ω(t − t1), with U 2
1 + V 2

1 = A2
1, (32)

U3 = A3 cos 3ω(t − t3), V3 = −A3 sin 3ω(t − t3), with U 2
3 + V 2

3 = A2
3. (33)

123



Eur. Phys. J. Plus         (2022) 137:485 Page 7 of 16   485 

From W1 = eıωt1 A1 = u1 + ıv1, it follows that cos ωt1 = (y0 + y2)/A1, and sin ωt1 = (y1 + y3)/A1. In a similar way, cos 3ωt3 =
(y0 − 3y2)/A3, sin 3ωt3 = (3y1 − y3)/A3. The difference t3 − t1 can be found from the invariant W ∗3

1 W3 = eı3ω(t3−t1)A3
1A3. This

shows that R3 + ı I3 := (U1 − ıV1)
3(U3 + ıV3) must be invariant. That is,

R3 = U3 U1(U 2
1 − 3V 2

1 ) + V3 V1(3U 2
1 − V 2

1 ), (34)

I3 = V3 U1(U 2
1 − 3V 2

1 ) −U3 V1(3U 2
1 − V 2

1 ) (35)

are invariant, and

C3 := cos 3ω(t3 − t1) = R3/A
3
1A3, S3 := sin 3ω(t3 − t1) = I3/A

3
1A3. (36)

The invariants S3 and C3 are not independent since S2
3 + C2

3 = 1. Given either one, however, the sign of the other remains
undetermined.

8.1 Evolution in terms of the invariants and t1

To refer the time to t1 only, we use (t − t3) = (t − t1) − (t3 − t1), and t3 − t1 can be expressed in terms of the invariants C3, S3 in
Eq. (36). With s := sin ω(t − t1) and c := cos ω(t − t1),

sin 3ω(t − t3) = s(3 − 4s2)C3 − c(1 − 4s2)S3, (37)

cos 3ω(t − t3) = c(1 − 4s2)C3 + s(3 − 4s2)S3, (38)

where we have used sin 3θ = 3 sin θ − 4 sin3 θ and cos 3θ = −3 cos θ + 4 cos3 θ .
From Eq. (31) and inserting r := A1/A3,

Y0 = 1

4
A3[3rc + c(1 − 4s2)C3 + s(3 − 4s2)S3], (39)

Y3 = 1

4
A3[−3rs + s(3 − 4s2)C3 − c(1 − 4s2)S3], (40)

Y1 = 1

4
A3[−rs − s(3 − 4s2)C3 + c(1 − 4s2)S3], (41)

Y2 = 1

4
A3[rc − c(1 − 4s2)C3 − s(3 − 4s2)S3]. (42)

Then the scale of the evolution is determined by A3 and the shape depends on r, S3,C3 only. The timing is set by t1.

8.2 Extrema and inflections with n = 3

The general features of the shape of the evolution follow from the times and values of the moments at their extrema and inflections.
As discussed in 6, Y0(t+π/2) = Y3(t) and Y2(t+π/2) = Y1(t); so there are only two independent shapes involved. The conditions
required for extrema are easily found:

dtY0 = 0 ⇒ Y1 = 0 ⇒ V1 + V3 = 0 ⇒ A1 sin ω(t − t1) + A3 sin 3ω(t − t3) = 0 (43)

dtY1 = 0 ⇒ 2Y2 = Y0 ⇒ U1 + 3U3 = 0 ⇒ A1 cos ω(t − t1) + 3A3 cos 3ω(t − t3) = 0. (44)

It follows that the times of the inflections of Y0 are the same as the times of the extrema of Y1, because both require dtY1 = 0.
Similarly, the inflections of Y3 are simultaneous with the extrema of Y2. (But the times of the inflections of Y1 and Y2 are not
generally the same as the times of any extrema.)

For the extrema of Y0, Eqs. (43) and (37) lead to the equation

s r + s(3 − 4s2)C3 − c(1 − 4s2)S3 = 0. (45)

Similarly, the extrema of Y1 are subject to the equation

c r/3 − c(3 − 4c2)C3 − s(1 − 4c2)S3 = 0. (46)

We have not found useful exact solutions of these equations, but in Sect. 8.2.4 we will convert them into cubic polynomial equations
that can be efficiently solved numerically. These equations can, however, be exactly solved for the special class of wavefunctions (or
classical distributions) that have S3 = 0. In the quantum case, this includes the class of initially real wavefunctions or any complex
linear combination of any two energy eigenstates of the oscillator. An example is discussed in Sect. 8.2.3. In the case with S3 = 0,
the extreme values of the moments will be expressed in terms of the invariants (independent of t1); this has not been achieved in the
general case.
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Fig. 1 Evolution of the third moments in a case with S3 = 0. The wavefunction is a complex superposition of two eigenstates of the oscillator, as in Eq. (49),
with b = 2 exp(−2ı/3). Over the second quarter-period, Y2 is a copy of Y1 in the first quarter-period, and Y3 is the negative of Y0. Over the second
half-period, all moments are the negative of the first half-period. The vertical dotted lines join each extremum with either zero or a point of inflection. Where
they intersect another curve (without a gap) there is either an inflection or an extremum in the curve

8.2.1 Special features of initially real wavefunctions

All odd moments are initially zero: so for n = 3, y1 = y3 = 0 and u1 = y0 + y2, u3 = y0 − 3y2, v1 = v3 = 0. Here the invariant
amplitudes are A1 = |u1|, A3 = |u3|, and S3 = 0,C3 = ±1. From Eq. (36), the sign ofC3 is the same as that of u1u3 and the features
of the evolution can be obtained from the results in the next section. The basic sinusoids are U1 = u1 cos ωt, V1 = −u1 sin ωt ,
U3 = u3 cos 3ωt, V3 = −u3 sin 3ωt .

8.2.2 Extrema of third moments of distributions with S3 = 0, which includes any real wavefunctions

Since S3 = 0, it follows that C3 = ±1; the sign can be determined from the initial moments using Eq. (34). The value of t1 is
determined from cos ωt1 = u1/A1 and sin ωt1 = v1/A1 with 0 ≤ t1 < 2π . [In the case of a real wavefunction, v1 = 0 and
A1 = |u1|; hence, t1 = 0 if u1 ≥ 0 and t1 = π if u1 < 0.]

For the extrema of Y0, Eq. (45) leads to

rs + s(3 − 4s2)C3 = 0. (47)

One solution is s = 0 and therefore Y0 will be extreme at t = t1. At this time, from Eq. (33), U1 = A1, U3 = C3A3 and Y0 takes the
extreme value 1

4 A3(3r+C3). To determine whether this is a maximum or a minimum, we need the sign of d2
t Y0 = − 3

4ω2(U1 +3U3).
Hence Y0 will take a maximum value at t = t1 if r + 3C3 > 0.

Another possible pair of solutions has c2 = 1
4 (1−C3r), but 0 ≤ c2 ≤ 1, and therefore, there are two extra extrema if r < 2−C3.

The times of this pair of extrema are t = t1 ± ω−1 arccos 1
2 (1 − C3r)1/2, and each extremum has Y0 = − 1

4C3A3(1 − C3r)3/2.
For the extrema of Y1, we use r1 = r/3. Then Eq. (46) leads to

r1c − c(3 − 4c2)C3 = 0. (48)

One solution is c = 0 and therefore s = ±1 and Y1 will be extreme at t = t1 + sπ/2ω. At this time, from Eq. (33), V1 = −s A1 and
V3 = s C3A3; therefore, Y1 = 1

4 (V1 + V3) takes the extreme value 1
4 s C3A3(1 − C3r).

Another possible pair of solutions has r1 = (4s2 − 1)C3 or s = ± 1
2 (1 + C3r1). But 0 ≤ s2 ≤ 1, and therefore, if (and only if)

r1 < 2 + C3 there will be two extra extrema with t = t1 ± ω−1 arcsin 1
2 (1 + C3r1)

1/2 and Y1 = − 1
4C3A3(1 + C3r1)

3/2.
Thus, if C3 = −1, both Y0 and Y1 have three exrtema in any half-period if r < 3 and only one otherwise. But if C3 = 1, then

Y0 will have three extrema if r < 1 while Y1 will have three extrema if r < 9.
There are some temporal coincidences forced by S3 = 0. From Eqs. (32, 33, 37), when c = 0 then U1 = U3 = 0; hence,

Y0 = Y2 = 0 at these times, and both Y1 and Y3 take extreme values. Also, when s = 0 then V1 = V3 = 0; hence Y1 = Y3 = 0 as
well as Y0 and Y3 taking extreme values. These features are shown in Fig. 1.

8.2.3 Example of third moments of a wavefunction with S3 = 0.

To have nonzero third moments, the wavefunction must be neither even nor odd. A simple example is

ψ(x) = (1 + b x/a) exp

(

−1

2
x2/a2

)

. (49)

If b is real, then ψ(x) is real, so the odd moments will be initially zero and the results in 8.2.1 will apply, including the result that
S3 = 0.
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Fig. 2 Regions of r and C3
where the sign of the discriminant
of the quartic polynomial in
Eq. (66) determines whether there
will be two or four extrema of Y0
in any half-period of the oscillator.
This diagram also applies to the
extrema of Y1 if you replace r
with r1 = r/3 and C3 with −C3

If b is complex, with b = exp(ıθ) |b| and a = α := (h̄/mω)1/2, and then, ψ(x) is a sum of two energy eigenfunctions of the
oscillator and the evolution will be ψ(x, t) = [1 + |b|x exp ı(θ − ωt)] exp(− 1

2 ıωt − 1
2 x

2/a2). At any time t when |ωt − θ | is zero
or any multiple of π , then ψ(x, t) will be real apart from the the phase factor exp(− 1

2 ıωt) which has no effect on the moments, and
S3 must be zero. The time t1 will be one of these times, but one consistent with cos ωt1 = u1/A1 and sin ωt1 = v1/A1.

Calculations from the wavefunction give the initial first-order moments as 〈x̂/a〉 + ı〈a p̂/h̄〉 = b/(1 + b2/2) exp ıθ . Also
C3 = −1, r = |b|2/2, A3 = 2|b|3/(1 + |b|2/2)3 and a suitable t1 is θ + π . From 8.1.2, there is an extremum of Y0 at t = t1,
where Y0 = 1

4 A3(3r − 1). If r > 3 or |b|2 > 6, this is a maximum and the nearest minima are at t1 ± π/ω. Otherwise, if r < 3 the
extremum of Y0 at t = t1 is a minimum and there are two maxima at the times t1 ±ω−1 arccos 1

2 (r +1)1/2, each with the same value
Y0 = 1

4 A3(r + 1)3/2. Thus, the extra extrema are at equal time intervals before and after the single minimum at t1. As r → 0 the
times of the maxima approach t1 ± π/ω, the state approaches the ground state, and the amplitude of the oscillations tends to zero.

There is an extremum of Y1 at t1 ± π/2ω with magnitude Y1 = 1
4 A3(r + 1). If r < 3, there is also a pair of extrema at

t = t1 ± ω−1 arcsin 1
2 (1 − r/3)1/2 with Y1 = 1

4 A3(1 − r/3)3/2. An example where all moments have three extrema in any
half-period is shown in Fig. 1

In the case where a �= (h̄/mω)1/2 and b is complex, it will generally follow that S3 �= 0. Then no useful exact solutions can be
found, but the method in the next section can be applied.

8.2.4 The general third-order case: a cubic polynomial equation for the extrema

For the extrema of Y0, Eq. (45) led to s r + s(3 − 4s2)C3 = c(1 − 4s2)S3. Squaring both sides then gives

16s6 − 8(3 + C3r)s
4 + (r2 + 6C3r + 9)s2 − S2

3 = 0. (50)

The solutions of this cubic equation in s2 yields the times of the extrema of Y0 as t = t1 + arcsin(s)/ω. Although the exact solutions
of this cubic appear to be too complicated to be useful, the cubic provides the most efficient way to find the numerical values of
these times in the general case. The ambiguities due to the arcsin and the sign of the square root of s2 can be resolved by checking
that Y1 = 0. [If not, then t = t1 + (π − arcsin s)/ω will work.]

The cubic may have either one or three real roots, corresponding to one or three extrema in any half-period. This number is
determined by the discriminant of the cubic. Thus, there will be three extrema if 27 − 18r2 − 8C3r3 − r4 > 0 and one extremum
otherwise. This condition is displayed graphically in Fig. 2.

The equations for the extrema of Y1 are easily found because Eq. (45) lead to Eq. (46) by substituting r → r1, s → c, and
C3 → −C3. Thus, the cubic for the extrema of Y1 is

16c6 − 8(3 − C3r1)c
4 + (r2

1 − 6C3r1 + 9)c2 − S2
3 = 0, (51)

and there will be three extrema if 27 − 18r2
1 + 8C3r3

1 − r4
1 > 0 and one extremum otherwise.

As an example of the general case of the evolution of third-order moments we take the same form of wavefunction, ψ(x) =
(1 + b x/a) exp(− 1

2 x
2/a2), as in Eq. (49); but now we take a �= α, so that S3 �= 0. Again we take |b| = 2 and θ = 1 radian, but

now put a = 1.1 α. This leads to r ≈ 1.45,C3 ≈ −0.51 and only one extremum of Y0,Y3 in any half-period, but three extrema of
Y1,Y2. The results are shown in Fig. 3.

9 Particulars of fourth moments

The basic time-independent invariants are A0 = u0, A2 = (u2
2 + v2

2)1/2, A4 = (u2
4 + v2

4)1/2, and invariants related to t4 − t2 that
can be expressed as W4W ∗2

2 = e4ıω(t4−t2)A4A2
2 = (U4 + ıV4)(U2 − ıV2)

2 =: (R4 + ı I4). Then, with C4 :=cos 4ω(t4− t2), S4 :=
sin 4ω(t4− t2),

R4 = U4(U
2
2 − V 2

2 ) + 2V4U2V2 = A2
2A4C4, (52)
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Fig. 3 Evolution of the third moments of the wavefunction in Eq. (49), with a = 1.1, b = 2 exp ıθ and θ = 1. Over the second quarter-period, Y2 is a copy
of Y1 over the first, and Y3 is the negative of Y0. Over the second half-period, all moments are the negative of the first half-period. The vertical dotted lines
join the extrema of Y0,Y3 to the zeros of Y1,Y2, respectively, and the extrema of Y1,Y2 to inflections of Y0,Y3, respectively

I4 = V4(U
2
2 − V 2

2 ) − 2U4U2V2 = A2
2A4S4. (53)

The invariants C4 = R4/A2
2A4, S4 = I4/A2

2A4 are are related by C2
4 + S2

4 = 1, and can be calculated from the initial moments using
R4 and I4. The evolution of the moments can be expressed in terms of the invariants A0, A2, A4,C4, S4 and the reference time t2.

The evolution of Y2 is especially simple: from Eq. (21), Y2 = (U0 − U4)/8 and U0 is constant; so Y2 oscillates with angular
frequency 4ω about A0/8 with amplitude A4/8. Classically, Y2 ≥ 0, which implies A4 ≤ A0; for a quantum particle it is possible
to have Y2 < 0, but this is a rare and ephemeral possibility. [7] From 〈{PX}2〉 = Y2 + 1

4 h̄
2, it follows that Y2 ≥ − 1

4α4 and that
A4 < A0 + 2α4. Both Y0 and Y4 will always be positive. Some other inequalities are discussed in Appendix E.

From the discussion of periodicity in Sect. 7 all the fourth moments repeat over the second half-period. Also, after a quarter-period,
Y0 becomes a copy of Y4 over the first quarter-period, and Y2 is a copy of −Y3. And Y2 repeats each quarter-period.

To refer the time to t2 only, we use (t − t4) = (t − t2) − (t4 − t2). Then

sin 4ω(t − t4) = 2C4sc + S4(2s
2 − 1), cos 4ω(t − t4) = 2S4sc + C4(2c

2 − 1), (54)

where s = sin 2ω(t − t2), c = cos 2ω(t − t2) and t2 is determined by cos 2ωt2 = u2/A2, sin 2ωt2 = v2/A2 with 0 ≤ t2 < π . Using
r := A2/A4, the shape of the evolution can be expressed in terms of r, S4,C4 only, and then the scale of their variation depends on
A4, the timing is set by t2, and A0 merely adds a constant to the even moments.

9.1 Extrema and inflections with n = 4

Similarly to the third-order case, the conditions for extrema are

dtY0 = 0 ⇒ Y1 = 0 ⇒ 2V2 + V4 = 0 ⇒ 2A2 sin 2ω(t − t2) + A4 sin 4ω(t − t4) = 0, (55)

dtY1 = 0 ⇒ 3Y2 = Y0 ⇒ U2 +U4 = 0 ⇒ A2 cos 2ω(t − t2) + A4 cos 4ω(t − t4) = 0, (56)

dtY2 = 0 ⇒ Y3 = Y1 ⇒ V4 = 0 ⇒ A4 sin 4ω(t − t4) = 0. (57)

The times of the inflections of Y0 are the same as the times of the extrema of Y1, because both require dtY1 = 0, and the
inflections of Y4 are simultaneous with the extrema of Y3. The times of the inflections of Y1 and Y3 are not generally the same as
the times of any extrema. Each extremum of each moment Yk is simultaneous with one other event:

k = 0 : Y1 = 0, k = 4 : Y3 = 0, k = 2 : Y1 = Y3, k = 1 : Y0 inflection, k = 3 : Y4 inflection.

These temporal coincidences are shown in Fig. 6.
For the extrema of Y0, Eq. (55) leads to the equation

2rs + S4(2s
2 − 1) + 2C4sc = 0. (58)

Similarly, the extrema of Y1 are subject to the equation

rc + C4(2c
2 − 1) + 2S4sc = 0. (59)

In sect. 9.1.3, we will convert these equations into quartic polynomial equations that can be efficiently solved numerically for the
times of the extrema. For the special class of wavefunctions (or classical distributions) with S4 = 0, simple exact expressions can
be found for these times, and hence for the extreme values in terms of the invariants.

9.1.1 Extrema of fourth moments of distributions with S4 = 0, which includes any real wavefunctions

For any real wavefunction, all odd moments will be initially zero; for n = 4 we have y1 = y3 = 0. From Eq. (16), it follows that
v1 = v3 = 0 and therefore S4 = 0. There are, however, other wavefunctions in this class, for example any linear combination of
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Fig. 4 Evolution of the fourth moments for a sum of the lowest two energy eigenstates of the oscillator, as in Eq. (49) with b = 2 exp ıθ with θ = 1 radian.
The vertical axis is broken into three pieces because the oscillations are small compared to Y0. Over the second quarter-period, Y4 is a copy of Y0 over the
first, and Y3 is the negative of Y1. Over the second half-period, all moments copy the first half-period. The vertical dotted lines join the extrema to inflections,
intersections or to zero. Where a vertical dotted line crosses a curve other than at another extremum, there is no special attribute of the curve at that point

two eigenstates of the oscillator. When S4 = 0, it follows that C4 = ±1. From Eq. (21), (19), and (54), Yk can be expressed in terms
of A0, A2, A4, s, c :

Y0 = 1

8
[3A0 + 4A2c + C4A4(2c

2 − 1)], (60)

Y4 = 1

8
[3A0 − 4A2c + C4A4(2c

2 − 1)], (61)

Y2 = 1

8
[A0 − C4A4(2c

2 − 1)], (62)

Y1 = 1

8
s(A2 + C4A4c), (63)

Y3 = 1

8
s(A2 − C4A4c). (64)

For the extrema of Y0, Eq. (58) gives rs + C4sc = 0 and one solution is s = 0. Therefore, Y0 is extreme at t = t2 and at
t = t2 ± π/2ω. At t = t2, we have c = cos 2ω(t − t2) = +1 and Y0 = 1

8 [3A0 + A4(C4 + 4r)]. At t = t2 ± π/2ω, c = −1 and
Y0 = 1

8 [3A0 + A4(C4 − 4r)], always less than the extremum at t2.
If r < 1 there are two more extrema with c = −C4r and times t = t2 ± 1

2 ω
arccos r , and each has the same magnitude with

Y0 = 1
8 [3A0 − C4A4(2r2 + 1)].

For r > 1, there are only two extrema in any half-period and the one at t2 is a maximum while the one at t2 ± π/2 is a minimum.
For r < 1 and C4 = +1, the extra pair of extrema has magnitudes less than those at t = t2 ± π/2 and is minima equally spaced
about the local maximum at t = t2 ± π/2. For r < 1 and C4 = −1, the extra pair of extrema has magnitudes greater than those at
t = t2 and is maxima equally spaced about the local minimum at t = t2.

For the extrema of Y1, Eq. (59) gives rc + C4(2c2 − 1) = 0 and c = − 1
2C4[r2 ± (r2

2 + 2)1/2], where r2 = r/2. There will be
extrema of Y1 when t = t2 ± 1

2 ω
arccos c, but the lower sign in the expression for c gives |c| ≤ 1 for any r , and there will be just

one pair of extrema; the upper sign gives an extra pair if r < 1. The extreme values of Y1 can be calculated as 1
4 A4s(r +C4c) with

s = (1 − c2)1/2.
The moment Y2 is a simple sinusoid, centred on A0/8, with period T/4. Its extrema require sin 4ω(t − t4) = 0 and therefore

sc = 0. From Eq. (60), s = 0 leads to Y2 = 1
8 [A0 − C4A4]. Also s = 0 at t = t2 and it follows that Y2 will be a minimum at t2 if

C4 = +1 and a maximum there if C4 = −1.
Thus, both Y0 and Y1 have four extrema in any half-period if r < 1 and only two otherwise, while Y2 always has four. There are

some temporal coincidences forced by S4 = 0. At t = t2 or t = t2 ± π/2ω, we have s = 0, and hence, V2 = V4 = 0 which gives
Y1 = Y3 = 0 as well as Y0,Y2,Y4 taking extreme values. Furthermore, at t = t2 ± π/4ω or t = t2 ± 3π/4ω we have c = 0 and
hence U2 = 0; therefore, Y0 = Y4 and Y4 takes an extreme value. Also V4 = 0 which gives Y1 = Y3. These features are shown in
Fig. 4.
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Fig. 5 Regions of r and S4 where
the sign of the discriminant of the
quartic polynomial in Eq. (66)
determines whether there will be
two or four extrema of Y0 in any
half-period of the oscillator. This
diagram also applies to the
extrema of Y1 if you replace r
with r2 and S4 with C4

Fig. 6 Evolution of the fourth
moments for the wavefunction in
Eq. (49) and S4 �= 0. This is the
same wavefunction as used in
Fig. 4, with the same parameters
β = 2 exp ıθ with θ = 1 radian,
except that now we take
a = 1.005. The vertical dotted
lines show the temporal
coincidences in the same way.
There are now no coincidences
between the extrema of Y2 and
those of Y0, but the extrema of Y2
still occur at the intersections of
Y1 and Y3

9.1.2 Example of fourth moments of a complex wavefunction with S4 = 0

We take ψ(x) = (1 + β x/a) exp(− 1
2 x

2/a2) with β = b exp ıθ and a = (h̄/mω)1/2. This is a sum of the lowest two eigenstates of
the oscillator as in Eq. (49). Calculations give the first moments as 〈x̂/a + ı p̂ a/h̄〉 = 2eıθb/(2 + b2)2. Also C4 = −1 and, with
B = 2/(2 + b2)4,

A0 = B(16 + 32b2 + 48b4 + 40b6 + 5b8), A2 = 6Bb2|b4 − 4b2 − 4|, A4 = 24Bb4. (65)
In Fig. 4, b = 2, θ = 1, a case where all moments have four extrema in any half-period.

In the case where a �= (h̄/mω)1/2 and b is complex, it will generally follow that S4 �= 0. Then no useful exact solutions can be
found, but the method in the next section can be applied.

9.1.3 The general fourth-order case: quartic polynomial equations for the extrema

For Y0, Eq. (55) and (54) give 2A2s + A4S4(2s2 − 1) = −2A4C4sc, where s = sin 2ω(t − t2), c = cos 2ω(t − t2). Squaring both
sides of this equation gives, with r = A2/A4,

s4 + 2S4rs
3 + (r2 − 1)s2 − S4rs + 1

4
S2

4 = 0. (66)

Numerical solutions of this quartic equation can be directly obtained by standard packages. The values of S4 are best calculated
from I4 in Eq. (53), because of the ambiguities in calculating t2 and t4 from Eq. (18).

For Y1, U2 +U4 = 0 gives 2r2c + C4(2c2 − 1) = −2S4sc, with r2 = r/2. Squaring both sides then leads to

c4 + 2C4r2c
3 + (r2

2 − 1)c2 − C4r2c + 1

4
C2

4 = 0. (67)

The discriminant D of the quartic polynomials gives the number of extrema: If D > 0, there will be four distinct extrema, while
if D < 0 there will be two. The quartic for Y0 in Eq. (66) has a discriminant with the same sign as 4(1 − r2)3 − 27r2S2

4 . Hence,
there are four extrema in any half-period if r < 1

2 and two if r > 1. For 1
2 < r < 1, the dividing curve is shown in Fig. 5. Similarly,

the discriminant of the quartic for Y1 in Eq. (67) has the same sign as 4(1 − r2
2 )3 − 27r2

2C
2
4 , also displayed in Fig. 5.

9.1.4 Example of the general case

As an example where we use the solutions of the quartic equations (66, 67) to find the times of the extrema, we take the same
wavefunction as used in sect. 9.1.2, except that now we take a �= 1 so that the wavefunction is no longer a sum of energy eigenstates
and S4 is nonzero.
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Figure 6 illustrates the case with β = 2 exp ıθ with θ = 1, as in Sect. 9.1.2, and a = 1.005. This case gives four extrema for both
Y0,Y4 and Y1,Y3, but the oscillations are relatively small. [A0 ≈ 8.41, A2 ≈ 0.163, A4 ≈ 0.405]. Other values of b may give just
two extrema for each pair.

10 Conclusion

Similarly to the case of free particles, the analysis of the evolution of moments for the oscillator is enhanced by the use of invariant
combinations of the moments. These lead directly to the Fourier components of the evolution, and the general features of the evolution
are more simply expressed in terms of the invariants. The evolution of the moments for a quantum oscillator closely matches that
of an ensemble of classical particles where each particle is subject only to the same fixed oscillator force. The evolution equations
are the same; but a large number of inequalities constrain the evolution, and in the quantum case these usually have extra terms
involving Planck’s constant that imply a different range of possible initial values of the moments and therefore a different range of
possible evolutions.
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A General expression for U j and Vj in terms of the moments Yk

To express Wj in terms of the Yk we use the expansion of the classical form of Wj = 〈(X + ıP) j (X2 + P2)(n− j)/2〉 in terms of
Pk Xn−k (where P = P/mω). Thus

(X + ıP) j =
∑ j

r=0
(
j
r ) (ıP)r X j−r , (68)

(P2 + X2)(n− j)/2 =
∑(n− j)/2

s=0
(
(n− j)/2

s )P2s Xn− j−2s . (69)

Changing the summation variable r to k = r + 2s in the product leads to

Wj =
∑n

k=0

∑k

r=0
ır (

j
r ) (

(n− j)/2
(k−r)/2 )Yk, (70)

where j is restricted to have n − j even, and r is restricted to have k − r even.
Separating the real and imaginary parts, with Wj = ∑

k(u j,k + ı v j,k)Yk , gives:

u j,k =
∑k

r=0,2...
(−1)r/2 (

j
r ) (

(n− j)/2
(k−r)/2 ), v j,k =

∑k

r=1,3...
(−1)(r−1)/2 (

j
r ) (

(n− j)/2
(k−r)/2 ), (71)

where k and r range over even integers for u j,k and over odd integers for v j,k .
Alternatively u, v can be found from the following recurrence relation.

Recurrence relation for W j in terms of Yk

Applying dtW j = −ı jωWj and dtYk from Eq. (4) to put Wj = ∑
k w j,kYk , and then equating each coefficient of Yk gives

(n − k + 1)w j,k−1 + ı jw j,k − (k + 1)w j,k+1 = 0. (72)

This can be used for each j , starting with w j,0 = 1 and w j,1 = ı j to sequentially calculate all the w j,k (and only integer values
arise). The next few cases are, with wi, j = u j,k + ı v j,k ,

w j,2 = u j,2 = (n − j2)/2, (73)

w j,3 = ı v j,3 = ı j[(3n − 2) − j2)]/6, (74)

w j,4 = u j,3 = [3n(n − 2) − 2 j2(3n − 4) + j4]/24. (75)

Solutions of such three-term recurrence relations are usually difficult to find [14], but Eq. (70) is a solution of Eq. (72).
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B Moments in terms of the sinusoidal combinations U and V

Having found the matrices uwithUj = ∑
k u j,kYk for even k, and vwith Vj = ∑

k v j,kYk for odd k, we need to invert these matrices
to give ũ, ṽ such that Yk = ∑

j ũk jU j for even k and Yk = ∑
j ṽk j Vj for odd k. It suffices to calculate the inverse classically. We

need to express Yk = 〈Pk Xn−k〉 in terms of the Wj = 〈(X + ıP) j (P2 + X2)(n− j)/2〉 = 〈a(n+ j)/2ā(n− j)/2〉, where a = X + ıP ,
ā = X − ıP , X = (a + ā)/2, P = (a − ā)/2ı , and W− j is the complex-conjugate of Wj . Expanding Pk and Xn−k as power series

in a and ā, using Pk = (−ı/2)k
∑k

q=0

(k
q

)
aq(−ā) k−q and Xn−k = 2−(n−k) ∑n−k

s=0

(n−k
s

)
as ā n−k−s , leads to

Yk = (−ı)k2−n
k∑

q=0

n−k∑

s=0

(−1)k−q(k
q

)(n−k
s

)〈aq+s ā n−q−s〉

= (−ı)k2−n
n∑

=0

∑

s=0

(−1)k−+s(k
−s

)(n−k
s

)
W (2 − n), (76)

where q+s has been replaced by . Put j = 2−n, and then j ≥ 0 requires  ≥ n/2. But Wj +W− j = 2Uj and Wj −W− j = 2ıVj ,
so we define Λk, j by

Λk, j = (−1)k−
1
2 (n− j)

(n− j)/2∑

s=0

(−1)s
( k

1
2 (n− j)−s

)(n−k
s

)
. (77)

Then it follows that Yk = ∑
j ũk, jU j for even k and Yk = ∑

j ṽk, j V j for odd k, where the matrices ũk, j , ũk, j are the inverse of

u j,k, v j,k in Eq. ( 71), and with ε j = (1 − 1
2 δ j,0),

for even k : ũk, j = (−1)k/22−(n−1)ε jΛk, j , k = 0, 2, ...n,

for odd k : ṽk, j = (−1)(k+1)/22−(n−1)Λk, j , k = 1, 3, ...n − 1, (78)

where j = 0, 2, ..., n for even n, and j = 1, 3, ..., n − 1 for odd n.

B.1 Recurrence relation for Yk in terms of Wj

Since Wj = 〈a(n+ j)/2ā(n− j)/2〉 has W− j = W ∗
j , we can put Yk = ∑ n

j=−n yk, jW j with j increasing in steps of 2. Then applying
dtYk from Eq. (4) and dtW j = −ı jωWj leads to

(n − k) yk+1, j + ı j yk, j, − k yk−1, j = 0, yk, j = uk, j + ıvk, j . (79)

Also Y0 = 〈Xn〉 = 2−n〈(a+ ā)n〉 = 2−n ∑n
s=0

(n
s

)〈asān−s〉 = 2−n ∑
j

( n
(n+ j)/2

)
Wj . Thus y0, j = 2−n ∑

j

( n
(n+ j)/2

)
and this can be

used to sequentially calculate all yk, j . To obtain a sequence for ũ, ṽ rather than W , use Eq. (79) with y0, j = 2−(n−1)ε j
∑

j

( n
(n+ j)/2

)
.

C Evolution of the moments over any quarter-period

The symmetries of the moments over any quarter-period were described in sect. 7, where they were derived directly for a classical
ensemble, but using the Fourier transform of the initial wavefunction in the quantum case. Here we outline an alternative derivation
(that applies to both the quantum and the classical cases).

Evolution of U and V over half- and quarter-periods

Half period: Wj (t + T/2) = (−1) jW j (t) follows from eı jωtW j (t) = eı j (ωt+π)Wj (t + T/2), and therefore

Uj (t + T/2) = (−1) jU j (t), Vj (t + T/2) = (−1) j V j (t). (80)

Quarter-period: Wj (t + T/4) = ı− jW j (t) follows from eı jωtW j (t) = eı j (ωt+π/2)Wj (t + T/4) and therefore

if j even: Uj (t + T/4) = (−1) j/2Uj (t), Vj (t + T/4) = (−1) j/2Vj (t),

if j odd: Uj (t + T/4) = (−1)( j−1)/2Vj (t), Vj (t + T/4) = −(−1)( j−1)/2Uj (t). (81)

Evolution of the moments over a quarter-period
From Eq. (77), Λk, j = (−1)(n+ j)/2Λn−k, j . Combining this result and Eq. (81) with the expressions for Yk in terms of Uj , Vj in
Eq. (78) leads to the result that, for any n,

Yk(t + T/4) = (−1)kYn−k(t). (82)
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D Other forms for the invariant combinations of moments

There are some simple invariant quadratic combinations of the moments that can be expressed as linear combinations of the invariants
A2
k . Two examples are

σn :=
∑n

k=0
(nk )Y2

k , κn := 1

2

∑n

k=0
(−1)k(nk )YkYn−k, (83)

but κn is zero for odd n (as seen by changing k to n − k). For n = 2, κ2 is subject to Schrödinger’s inequality, κ2 ≥ 1
4α4, as in 6,

and a similar inequality for κ4 is found in Appendix E. Another sequence of invariant combinations of the moments is

ρn :=
∑n−1

k=1
(n−2
k−1)(Yk−1Yk+1 − Y2

k ). (84)

Since ρ2 = κ2, ρn is distinct for n ≥ 3. All these invariants are linear combinations of the A2
k ; with n = 2, 2σ2 = A2

0 + A2
2 and

4κ2 = A2
0 − A2

2.

Proof that σn , κn and ρn are invariant, using dtYk = (n − k)Yk+1 − kYk−1.

For σn : dtσn = 2
∑n

k=0(
n
k )

(
(n − k)YkYk+1 − kYk−1Yk

)
and replacing k with k + 1 in the second term shows that it cancels the first

term because (n − k)(nk ) = (k + 1)( n
k+1).

For κn = 1
2

∑n
k=0(−1)k(nk )YkYn−k : If Zk := k(nk )(YkYn−k+1 − Yk−1Yn−k), then Z0 = Zn+1 =0 and (nk )dt (YkYn−k) = Zk + Zk+1.

Therefore dtκn = 1
2

∑n
k=0(−1)k(Zk + Zk+1) = 0.

For ρn =∑n−1
k=1(n−2

k−1)(Yk−1Yk+1 − Y2
k ): If Rk := (k − 1)(n−2

k−1)(Yk−1Yk − Yk−2Yk+1), then (n−2
k−1)d(Yk−1Yk+1 − Y2

k )= Rk − Rk+1

and R0 = 0. Therefore dtρn = ∑n−1
k=1(Rk − Rk+1) = 0.

There is a family of invariant linear combinations of products of two moments that includes the above σ, ρ and κ and more. For
all integers m with 0 ≤ m ≤ n/2, define

Ωm :=
∑n−m

k=m
(n−2m
k−m )

∑m

=0
(−1)m−ε ( 2m

m−)Yk−Yk+, (85)

where ε = 1
2 if  = 0, and ε = 1 if . �= 0. The simplest cases are: Ω0 = 1

2

∑n
k=0(

n
k )Y2

k = 1
2σn ,

Ω1 = ∑n−1
k=1(

n−2
k−1)(Yk−1Yk+1 − Y2

k ) = ρn, and Ωn/2 = 1
2

∑n
=0(−1)(n )YYn− = κn for even n only. For all m ≤ n/2, Ωm can

be expressed in terms of the invariant amplitudes Ak as follows:

Ωm =
∑

j
ũ2m, j A

2
j , (86)

where j = 0, 2, ..n if n is even, j = 1, 3, ..n if n is odd, and the matrix ũk, j is the inverse of u j,k , with Yk = ∑
j ũk, jU j as in

Eq. (78). This result, as yet unproven for all n, has been tested for all n ≤ 20. (It also implies that the Ωm are invariant.) Examples
are:

for n = 3, 4σ3 = 3A2
1 + A2

3, 8ρ3 = A2
1 − A2

3,

for n = 4, 4σ4 = 3A2
0 + 4A2

2 + A2
4, 16κ4 = 3A2

0 − 4A2
2 + A2

4, 16ρ4 = A2
0 − A2

4..

E Some inequalities for combinations of fourth-order moments

Inequalities for combinations of moments have usually been found using the Schwarz inequality 〈 Â2〉〈B̂2〉 ≥ |〈 Â B̂〉|2. With Â = X̂2

and B̂ = P̂2, this gives (with n = 4)

Y0Y4 − Y 2
2 ≥ 16h̄2〈P̂ X̂ + X̂ P̂〉2 ≥ 0 and Y0Y4 ≥ Y2

2 . (87)

Thus the geometric mean of Y0 and Y4 is not less than |Y2|, in agreement with Fig. 6. With Â = 1
2 (P̂ X̂ + X̂ P̂) and B̂ = P̂2, the

result is [7]

Y2Y4 − Y 2
3 ≥ h̄2

(

〈P̂2〉2 − 1

4
〈P̂4〉

)

and Y2Y4 − Y2
3 ≥ −1

4
α4Y4. (88)

Similarly with Â = 1
2 (P̂ X̂ + X̂ P̂) and B̂ = X̂2,

Y0Y2 − Y 2
1 ≥ h̄2

(

〈X̂2〉2 − 1

4
〈X̂4〉

)

and Y0Y2 − Y2
1 ≥ −1

4
α4Y0. (89)

Also Â = X̂2 − 〈X̂2〉 and B̂ = X̂2 give 〈X̂4〉 ≥ 〈X̂2〉2 and similarly 〈P̂4〉 ≥ 〈P̂2〉2.
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This approach is not applicable to Y1Y3 − Y2
2 , which can be positive or negative; this quantity appears in the invariant κ4 =

(Y0Y4 − Y2
2 ) − 4(Y1Y3 − Y2

2 ) in Eq. (83); but a lower bound on κ4 can be found using a different method.

A bound on κ4. First consider a set of N classical particles with positions xi and momenta pi . Define Xi := xi − x̄ and Pi :=
pi − p̄, where x̄ := N−1 ∑N

i=1 xi and p̄ := N−1 ∑N
i=1 pi . The equations of motion are dt Xi = ωPi and dtPi = −ωXi ,

where Pi := Pi/(ωm). Then 1
2

∑N
i=1

∑N
j=1(XiP j − Pi X j )

4 = Y0Y4 − 4Y1Y3 + 3Y2
2 = κ4 ≥ 0. Also κ4 is invariant because

dt (XiP j − Pi X j ) = 0.
For the quantum case, we take K := 1

2

∫∫
ψ∗(x)ψ∗(x ′)(X̂ P̂ ′ − P̂ X̂ ′)4ψ(x)ψ(x ′) dx dx ′, with [X̂ , P̂ ′] = [P̂, X̂ ′] = [X̂ , X̂ ′] =

[P̂, P̂ ′] = 0. Then K is positive and expands to

K = 〈X̂4〉〈P̂4〉 + 〈X̂2P̂2〉〈P̂2 X̂2〉 + 〈X̂ P̂ X̂ P̂〉〈P̂ X̂ P̂ X̂〉 + 〈X̂ P̂2 X̂〉〈P̂ X̂2P̂〉
−(〈X̂3P̂〉〈P̂3 X̂〉 + 〈X̂ P̂3〉〈P̂ X̂3〉 + 〈X̂2P̂ X̂〉〈P̂2 X̂ P̂〉 + 〈X̂P̂ X̂2〉〈P̂ X̂ P̂2〉). (90)

Each of these 16 expectation values can be expressed in terms of the fourth-order and second-order moments using the commutation
relation X̂ P̂ − P̂ X̂ = ı α2. This leads to K = κ4 − 5α4κ2 + 1

2α8, and κ4 ≥ 5α4κ2 − 1
2α8 ≥ 3

4α8, because κ2 ≥ 1
4α4. The Gaussian

wavefunction exp(− 1
2 x

2/a2) has κ2 = 1
4α4 and κ4 = 3

4α8, saturating both inequalities.

F Some connections with the time-dependent oscillator

The term ‘universal invariants’ [5] was applied to any time-independent invariants of a general quadratic Hamiltonian, and they will
be invariants for the oscillator with time-dependent force as well as to our case of an oscillator where the force is constant in time;
but the latter case has more time-independent invariants. Here we will give expressions for the universal invariants in terms of our
invariants (noting the difference in normalisation between Yk and Yk).

Ref. [15] gives explicit expressions for the universal invariants in one dimension for n = 2, 3, 4.
For n = 2 the only universal invariant is K2 = Y0Y2 − Y 2

1 . This has the same form as our κ2 as defined in Eq. 83, so that
K2/h̄2 = κ2/α

4. It was shown in Sect. 6 that κ2 = 1
4 (A2

0 − A2
2).

For n = 3, Eq. (3.34) of ref. [15] gives the invariant D3 = Y 2
0 Y

2
3 − 3Y 2

1 Y
2
2 + 4Y0Y 3

2 + 4Y 3
1 Y3 − 6Y0Y1Y2Y3 and in terms of our

invariants 64D3/h̄6 = (3A4
1 + 6A2

1A
2
3 − A4

3 − 8R3)/α
12, where R3 was defined in Eq. 34.

For n = 4, two invariants are given. Equation (3.35) of ref. [15] gives K4 = Y0Y4 + 3Y 2
2 − 4Y1Y3, but this has the same

form as our κ4 as in Eq. 83 and it was shown in appendix E that 16κ4 = 3A2
0 − 4A2

2 + A2
4 and that it is subject to the inequality

κ4 ≥ 5α4κ2 − hα8 ≥ 3
4α8. The other invariant is in Eq.(3.36): D4 = Y0Y2Y4 − Y0Y 2

3 − Y 3
2 − Y 2

1 Y4 + 2Y1Y2Y3 and in terms of our
invariants 64D4/h̄6 = [A0(A2

0 − 2A2
2 − A2

4) + 2R4]/α12, where R4 was defined in Eq. 52.
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