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Abstract Noise can have severe impacts on particle beams in high-energy synchrotrons. In particular, it has recently been discovered
that noise combined with wakefields can cause a diffusion that leads to a loss of Landau damping after a latency. Such instabilities have
been observed in the Large Hadron Collider. This paper, therefore, studies the beam response to noise in the presence of wakefields,
within the framework of the Vlasov equation. First, a wakefield beam eigenmode transfer function (MTF) is derived, quantifying
the amplitude of a wakefield eigenmode when excited by noise. Then, the MTFs of all the wakefield eigenmodes are combined
to derive the beam transfer function (BTF) including the impact of wakefields. It is found to agree excellently with multi-particle
tracking simulations. Finally, the MTFs are also used to derive the single-particle diffusion driven by the wakefield eigenmodes.
This new Vlasov-based theory for the diffusion driven by noise-excited wakefields is found to be superior to an existing theory
by comparing to multi-particle tracking simulations. Through sophisticated simulations that self-consistently model the evolution
of the distribution and the stability diagram, the diffusion is found to lead to a loss of Landau damping after a latency. The most
important technique to extend the latency and thereby mitigate these instabilities is to operate the synchrotron with a stability margin
in detuning strength relative to the amount of detuning required to barely stabilize the beam with its initial distribution.

1 Introduction

The impact of various noise sources on the beams in high-energy synchrotrons has been studied extensively in the past. Typically, the
focus is on the consequent emittance growth and reduction of luminosity in colliders, or alternatively on how this emittance growth
can be suppressed with feedback systems. Recently, it has also been found that the interplay between noise and wakefields can cause
instabilities that occur after a latency. Such instabilities have been observed in the Large Hadron Collider (LHC), both in operation
and in dedicated experiments [1,2], and the mechanism behind has been explained semi-analytically [3,4]. This mechanism is a
major concern for the high-luminosity LHC (HL-LHC), which will have beams of higher brightness and also new components such
as crab cavities that will introduce a new type of noise. Therefore, we need a better understanding of how the noise excites the beam,
including the interplay with other mechanisms. Here, the focus is on the interplay with wakefields.

In this paper, we study the evolution of beam distribution perturbations within the framework of the linear Vlasov equation, as in
Ref. [5]. In the absence of wakefields, we use this framework to re-derive the beam transfer function (BTF) [6,7] including linear
chromaticity [8]. The BTF is the amplitude of the transverse betatron oscillation of the beam at a certain frequency, relative to the
excitation amplitude at that frequency. When we include the wakefields, the distribution perturbations become wakefield-driven
beam eigenmodes. We derive what we call the wakefield beam eigenmode transfer function (MTF), which is the BTF equivalent for
each eigenmode separately, also taking into consideration the dependence of the modes on the longitudinal coordinates. Based on
the MTFs of all the eigenmodes, we arrive at an expression for the BTF including wakefields. This new theory explains observations
made in experiments in the past, highlighting the impact of the wakefields on the BTF. With this understanding of the impact of
wakefields, the multi-purpose diagnostic tool that is the BTF can be applied more precisely.

By extending the Vlasov equation to second order, we effectively arrive at a Fokker–Planck equation modeling a diffusion driven
by noise and wakefields. It was found in Ref. [3] that the diffusion coefficient related to an almost unstable mode is peaked and
narrow in tune space. When there is e.g. a vertical detuning proportional to the vertical action, this diffusion causes a local flattening
of the distribution as the particles are evenly distributed over the vertical actions corresponding to the tunes of largest diffusion
coefficient. The distribution modification corresponds to a modification of the stability diagram [6], eventually leading to a loss of
Landau damping. The MTFs based on the linear Vlasov equation is in this paper used to derive a new expression for this diffusion,
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requiring less restrictive assumptions than the derivation in Ref. [3]. Furthermore, the Vlasov-based MTFs allow for modeling of
the full diffusion driven by noise and wakefields, not only the almost unstable modes.

2 Vlasov equation

This section introduces the Vlasov formalism and notation used throughout this paper. It follows closely the instructive explanation
of direct Vlasov solvers in Ref. [5], which itself is based on Ref. [9].

The beam will in general be described by a distribution function Ψ (x, x ′, y, y′, z, δ; t), and the single-particle dynamics are
governed by an effective Hamiltonian H(x, x ′, y, y′, z, δ; t), both dependent on the phase space coordinates (x, x ′) in the horizontal
plane, (y, y′) in the vertical plane, and (z, δ) in the longitudinal plane. The vertical and longitudinal phase space coordinates can be
expressed in terms of the corresponding action angle coordinates as

y = √
2Jyβy cos(θy), y′ =

√
2Jy
βy

sin(θy), (1)

z = √
2Jzβz cos(φ), δ ≡ Δpz

p0
=

√
2Jz
βz

sin(φ), (2)

where βy is an effective vertical beta function, corresponding to R/Qy0 in Ref. [5], βz is an effective longitudinal beta function,
corresponding to ηs R/Qs = ηsv/ωs in Ref. [5], p0 = γm0v is the longitudinal momentum of the synchronous particle, R is the
average radius of the circular machine, Qy0 is the unperturbed vertical tune, Qs is the synchrotron tune, ωs = ω0Qs is the synchrotron
frequency, ω0 is the (angular) rotation frequency of the beam around the machine, ηs is the slippage factor, v is the speed of the
synchronous particle, γ is the relativistic factor, and m0 is the mass of the synchronous particle. By convention, the transverse angles
are written as θx and θy , while the longitudinal angle is written φ. The horizontal phase space coordinates (x, x ′) can be expressed
as in Eq. (1) with all instances of y changed to x .

The evolution of the distribution Ψ due to the dynamics described by H is governed by the Vlasov equation

dΨ

dt
=

(
∂

∂t
+ θ̇x

∂

∂θx
+ J̇x

∂

∂ Jx
+ θ̇y

∂

∂θy
+ J̇y

∂

∂ Jy
+ φ̇

∂

∂φ
+ J̇z

∂

∂ Jz

)
Ψ = 0, (3)

where the time evolution for this Hamiltonian system is governed by Hamilton’s equations

J̇y ≡ dJy
dt

= ∂H
∂θy

, θ̇y ≡ dθy

dt
= − ∂H

∂ Jy
, (4)

J̇z ≡ dJz
dt

= ∂H
∂φ

, φ̇ ≡ dφ

dt
= − ∂H

∂ Jz
. (5)

The Vlasov equation is typically solved using perturbation theory, assuming that the Hamiltonian H = H0 + ΔH can be written
as the sum of an unperturbed part H0, which here will express the focusing of the particles around the design orbit, and a first-order
perturbation ΔH, which expresses the weak forces due to, e.g., wakefields or noise

H0 = ω0(Qx0 + Q′
xδ)Jx + ω0(Qy0 + Q′

yδ)Jy − ωs Jz (6)

= ω0Qx Jx + ω0Qy Jy − ωs Jz,

ΔH = −y
Fcoh
y (z; t)
p0

= −√
2Jyβy cos(θy)

Fcoh
y (z; t)
p0

, (7)

where Qy0 and Q′
y are the unperturbed betatron tune and linear chromaticity, respectively, in the vertical plane, and Qx0 and Q′

x are
the equivalents in the horizontal plane. Here, it has been expressly stated that the vertical coherent force Fcoh

y only depends on the
longitudinal position and time. Hence, this formalism cannot study effects due to, e.g., beam–beam interactions, but it is sufficient
for our study of dipolar wakefields and noise. Note that our derivation considers a vertical coherent force, while all results will focus
on noise and wakefields in the horizontal plane.

Within such a perturbation formalism, also the distribution Ψ = Ψ0 + ΔΨ can be treated as the sum of an initial equilibrium
part Ψ0 and a first-order perturbation ΔΨ . The constant equilibrium distribution can be given as

Ψ0 = f0(Jx , Jy)g0(Jz), (8)

dependent only on the invariants of the unperturbed motion, being the actions. The dependence of H0 on φ through Q′δ is negligible
[5]. Due to negligible coupling between the transverse planes and the longitudinal plane, the equilibrium distribution is separated in
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the transverse and longitudinal distribution functions f0 and g0, respectively. The equilibrium distribution is here normalized such
that

∫ 2π

0
dθx

∫ ∞

0
dJx

∫ 2π

0
dθy

∫ ∞

0
dJy f0(Jx , Jy) = 1, (9)

∫ 2π

0
dφ

∫ ∞

0
dJzg0(Jz) = 1. (10)

The goal of this derivation is to arrive at an expression for the distribution perturbation ΔΨ . Since ΔH depends on y and z, ΔΨ

depends on θy and φ, as well as all the actions, but not θx . The linearized Vlasov equation can now be found by only keeping the
terms in Eq. (3) that are linear in the perturbations of the distribution and Hamiltonian as

∂ΔΨ

∂t
− ω0Qy

∂ΔΨ

∂θy
+ ωs

∂ΔΨ

∂φ
= − ∂ f0

∂ Jy
g0

√
2Jyβy sin(θy)

Fcoh
y

p0
, (11)

where it has been assumed that the derivatives of ΔH with respect to the longitudinal action and angle are negligible. Because
the coherent force is only in the vertical plane, the horizontal coordinates do not enter at this point. To solve for the distribution
perturbation, we first assume that it consists of a single oscillation mode with a complex angular frequency Ω close to ω0Qy0. By
making a Fourier expansion in φ, it can be shown that the distribution perturbation is given by (Eq. (68) in Ref. [5])

ΔΨ = eiΩt ∂ f0
∂ Jy

√
2Jyβyeiθy e− i Q′

y z
Qsβz

∞∑

l=−∞
Rl(Jz)e

−ilφ, (12)

where Q′
y z/Qsβz is the headtail phase factor due to chromaticity. The transverse part of the distribution perturbation is fully

specified. The longitudinal distribution perturbation consist of the Fourier sum over the so far unspecified functions Rl(Jz), which
can be found by solving the linearized Vlasov equation that now takes form (Eq. (69) in Ref. [5])

∞∑

l=−∞
Rl(Jz)e

−ilφ(Ω − ω0Qy0 − lωs) = e−iΩte
i Q′

y z
Qsβz g0(Jz)

Fcoh
y

2p0
. (13)

In the following, we will interchangeably use the radial coordinate rz = √
2Jzβz to simplify the notation and analytical calcu-

lations. This change of coordinate is not used when expressing Hamilton’s equations; hence, it does not need to be a canonical
transformation [10].

3 Beam transfer function

A transfer function of a system represents the relationship between the output signal and the input signal. The transverse beam
transfer function (BTF) typically represents the relationship between the transverse oscillation amplitude of the center of mass of
the beam (output) and the excitation signal provided by magnets (input) [6–8]. The excitation signal can either be broadband or
consists of a single frequency.

3.1 Beam transfer function with chromaticity

First, we want to derive an expression for the BTF including chromaticity. We consider the coherent force Fcoh
y to be an external

harmonic driving force of amplitude Ay and frequency Ω

Fcoh
y (z, t) = AyeiΩt . (14)

Putting it in Eq. (13) and using the Jacobi–Anger expansion (Eq. (8.511.4) in Ref. [11]) give

∞∑

l=−∞
Rl(rz)e

−ilφ(Ω − ω0Qy 0 − lωs) = Ay

2p0
g0(rz)

∞∑

l=−∞
i leilφ Jl

(
Q′

yrz

Qsβz

)

, (15)

where Jl(·) are the Bessel functions of order l. By equating terms with e−ilφ , one gets an expression for the longitudinal modes

Rl(rz)e
−ilφ = Ay

2p0

g0(rz)

Ω − ω0Qy 0 − lωs
i−le−ilφ J−l

(
Q′

yrz

Qsβz

)

. (16)

123



  506 Page 4 of 18 Eur. Phys. J. Plus         (2022) 137:506 

Inserting this into the expression for the distribution perturbation in Eq. (12) gives

ΔΨ = Ay

2p0
eiΩteiθy

∂ f0
∂ Jy

g0(rz)
√

2Jyβy

∑

k,l

i l−kei(k−l)φ

Ω − ω0Qy(Jx , Jy) − lωs
Jk

(
Q′

yrz

Qsβz

)

Jl

(
Q′

yrz

Qsβz

)

, (17)

where we have introduced a weak transverse detuning that is a function of the transverse actions as in Ref. [6], such as the detuning
driven by octupole magnets [12]

Qy(Jx , Jy) = Q0y + ay Jy + by Jx . (18)

We are now in a position to calculate the BTF, defined as the beam response to the driving force. By realizing that only terms
with k = l do not vanish when integrating ΔΨ over φ and that the equilibrium distribution is normalized as in Eqs. (9) and (10),
one finds

BTF ≡ ydip

Fcoh
y

p0

βy
≡ p0

Fcoh
y βy

∫ 2π

0 dθx
∫ ∞

0 dJx
∫ 2π

0 dθy
∫ ∞

0 dJy
∫ 2π

0 dφ
∫ ∞

0 dJz(Ψ0 + ΔΨ )
√

2Jyβy cos(θy)
∫ 2π

0 dθx
∫ ∞

0 dJx
∫ 2π

0 dθy
∫ ∞

0 dJy
∫ 2π

0 dφ
∫ ∞

0 dJz(Ψ0 + ΔΨ )

= 4π3
∞∑

l=−∞

∫ ∞

0

∫ ∞

0

Jy
∂ f0
∂ Jy

Ω − ω0Qy(Jx , Jy) − lωs
dJxdJy

∫ ∞

0
Jl

(
Q′

yrz

Qsβz

)2

g0(rz)
rzdrz
βz

,

(19)

where ydip is the dipolar moment of the bunch. The dipolar moment is scaled by the beta function βy so that it is given in terms of
y′, as seen in Eq. (1). The force is scaled by the momentum p0, as in Eq. (34) in Ref. [5], to be the change of y′. The BTF can be
put in the form

BTF =
∑

l

Tl(Ω)w0l(Q
′
y), (20)

with the familiar dispersion integral [6] and a weight that depends on chromaticity

Tl(Ω) ≡ 2π2
∫ ∞

0

∫ ∞

0

Jy
∂ f0
∂ Jy

Ω − ω0Qy(Jx , Jy) − lωs
dJxdJy, (21)

w0l(Q
′
y) ≡ 2π

∫ ∞

0
Jl

(
Q′

yrz

Qsβz

)2

g0(rz)
rzdrz
βz

. (22)

In the absence of chromaticity, w0l is 1 for l = 0 and 0 otherwise, returning T0 as the BTF. For a Gaussian distribution with variation
σ 2
z = 〈Jzβz〉 and use of Eq. (6.633) in Ref. [11], we recover the result in Ref. [8]

g0(rz) = βz

2πσ 2
z

e
− r2

z
2σ2

z , wG
0l (Q

′
y) = e

−
(

Q′
yσz

Qsβz

)2

Il

⎛

⎝
(
Q′

yσz

Qsβz

)2
⎞

⎠ , (23)

where Il(·) are the modified Bessel functions of the first kind.

3.2 Wakefield beam eigenmode transfer function

In Sect. 3.1, we considered the coherent driving force in Eq. (14) with beam-independent amplitude. Now, we will study the driving
by the coherent wake force Fwake

y , which depends on the transverse beam motion. In the following, we adopt the weak wakefield
approximation, assuming that the beam modes of different azimuthal number l are linearly independent. To distinguish between
different modes, we introduce the subscript m, such that mode m has azimuthal number lm and so forth. Note that different modes
m �= n can have the same azimuthal mode number lm = ln , but a particular mode has only a single lm . For ease of notation, the
longitudinal polar radius rz = √

2Jzβz is used instead of the longitudinal action.
The wake force due to the passings of a beam eigenmode at all turns k can be given as (Eq. (85) in Ref. [5])

Fwake
y m (z; t) = eiΩmt i

1+lm Ne2ω0

2πβz Qy0

∞∑

k=−∞
Zy(Ωm + kω0)e

−i(Ωm+kω0) z
v Ilmk, (24)

Ilmk =
∫ ∞

0
Rlm (r ′

z)Jlm

[(

Ωm + kω0 − Q′
yv

Qsβz

)
r ′
z

v

]

r ′
zdr

′
z, (25)
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where Zy is the impedance function, i.e. the Fourier transform of the wake function, and N is the number of particles in the bunch.
With this expression for the coherent force, Sacherer’s integral equation [13] takes the form (Eq. (88) in Ref. [5])

Rlm (rz)(Ωm − ω0Qy0 − lmωs)

= g0(rz)
i Ne2ω0

4πβz Qy0 p0

∞∑

k=−∞
Zy(Ωm + kω0)Jlm

[(

Ωm + kω0 − Q′
yv

Qsβz

)
rz
v

]

Ilmk, (26)

where it has been used that the modes have a single azimuthal mode number lm . This set of equations can be solved numerically
with direct Vlasov solvers, such as DELPHI [14], to find the transverse eigenmodes ΔΨm and their frequencies Ωm . These mode
details can also be found using codes that implement the circulant matrix model, such as BimBim [15]. Both these codes have been
used in this paper.

The wake force due to a dipolar eigenmode is often expressed as proportional to the dipolar transverse offset,
Fwake
y /p0 = −2ΔΩ〈y〉/βy [6], where ΔΩ is the tune shift driven by the wakefields. The factor βy/p0 occurs here as in Eq. (19) to

properly scale the force to the change of position, as in Ref. [5]. Here, we aim at generalizing this proportionality of the wake force
for an eigenmode with transverse offset dependent on the longitudinal phase space. To that end, we calculate the transverse offset
of the mode as a function of the longitudinal coordinates

〈y(rz, φ; t)〉m =
∫ 2π

0 dθx
∫ ∞

0 dJx
∫ 2π

0 dθy
∫ ∞

0 dJy
√

2Jyβy cos(θy)(Ψ0 + ΔΨm)
∫ 2π

0 dθx
∫ ∞

0 dJx
∫ 2π

0 dθy
∫ ∞

0 dJy(Ψ0 + ΔΨm)

= − βy

g0(rz)
eiΩmte− i Q′

y z
Qsβz Rlm (rz)e

−ilmφ,

(27)

where it has been used that the average offset due to the equilibrium distribution Ψ0 in the numerator is 0 and the integral over the
wakefield eigenmode ΔΨm in the denominator is 0.

In general, there does not exist a scalar proportionality constant between Fwake
y m (z; t) and 〈y(rz, φ; t)〉m at any given instant of

time, since the former depends only on z, while the latter depends on both rz and φ. However, by combining Eqs. (24)–(27), one
can find that

βy

p0

〈
Fwake
y m (z; t)

〈y(rz, φ; t)〉m

〉

t

= −2(Ωm − ω0Qy0 − lmωs) ≡ −2ΔΩm, (28)

where the time average of the ratio is taken over one synchrotron period τs = 1/ωs . This time averaging corresponds to an averaging
over the longitudinal phase φ, which also enters in z as given by Eq. (2). Therefore, we suggest instead an effective force, as in Ref. [3],
that is proportional to the transverse offset, including its dependence on the longitudinal coordinates

Fwake eff
y m (rz, φ; t) = −2p0

βy
ΔΩm〈y(rz, φ; t)〉m . (29)

A noise force acting on the beam is now introduced in addition to the wake force

Fnoise
y = p0

βy
ξ(z; t). (30)

Since the noise does not depend on the beam, it is not expected to change the shape of the wakefield beam eigenmodes ΔΨm .
However, it will excite more than one mode at once. Hence, we can no longer consider a single wakefield beam eigenmode. Instead,
we get

ΔΨ = ΔΨm → ΔΨ =
∑

m

ΔΨm, (31)

〈y(rz, φ; t)〉 = 〈y(rz, φ; t)〉m → 〈y(rz, φ; t)〉 =
∑

m

〈y(rz, φ; t)〉m ≡
∑

m

χm(t)mm(rz, φ), (32)

where we have introduced as in Ref. [3] the time-dependent mode amplitude χm(t) and normalized constant eigenmode shape
functions mm(rz, φ), which by comparison to Eq. (27) can be found to be

mm(rz, φ) = Ame− i Q′
y z

Qsβz
Rlm (rz)

g0(rz)
e−ilmφ, (33)

where Am is a normalization constant such that

〈m∗
mmm〉z ≡

∫ 2π

0
dφ

∫ ∞

0
dJzm

∗
mmmg0 = 1, (34)
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where the superscripted ∗ implies a complex conjugation and it has been used that g0 is normalized, as given by Eq. (10). Note that
the average over the longitudinal coordinates, denoted by 〈·〉z , includes the unperturbed longitudinal distribution g0 in the integrand.
These excited modes are not necessarily orthogonal, but are still assumed to be linearly independent and can therefore be treated
independently.

The noise can be modeled as a single kick per particle per turn. The noise signal ξ(z; t) can be decomposed in orthonormal
noise shape functions Ξi (z), which are polynomials of order i , being Ξ0 = 1, Ξ1 = z/σz , and higher-order polynomials for a
longitudinally Gaussian distribution. These noise shape functions can themselves be decomposed in the eigenmode shape functions
mm

ξ(z; t) =
∑

i

ξi (t)Ξi (z) =
∑

i

ξi (t)
∑

m

ηi mmm(rz, φ), (35)

where the noise signals ξi (t) are assumed to only have power in positive frequencies ω ∈ [0, ω0/2) and the noise-mode moments
ηi m are the projection coefficients of the noise shape function Ξi on the mode shape function mm . The noise shape functions are
normalized over the initial equilibrium distribution function as

〈Ξ∗
i Ξ j 〉z =

∑

m

η∗
i m〈m∗

mΞ j 〉z ≡
∑

m

η∗
i m η̃ j m = δi, j , (36)

where δi, j is the Kronecker delta and η̃ j m ≡ 〈m∗
mΞ j 〉z is equal to η j m if the modes are orthogonal. If not, η j m can be found by

solving a linear system of equations. Most noise sources produce noise that is constant across a bunch, being proportional to the
constant Ξ0(z) = 1. This type of noise will be referred to as rigid or dipolar noise. The shape of crab cavity amplitude noise, on the
other hand, is proportional to the longitudinal position, Ξ1(z) ∝ z. To the authors’ knowledge, there are no significant noise sources
for which higher-order terms in z are necessary.

The full coherent force can now be decomposed as:

Fcoh
y = Fwake eff

y + Fnoise
y

= p0

βy

∑

m

(

−2ΔΩmχm(t) +
∑

i

ξi (t)ηi m

)

mm(rz, φ)

≡
∑

m

Fcoh
y m ,

(37)

where the coherent force Fcoh
y m proportional to mode m has been defined.

To get the transfer function of mode m, one must now calculate the expected excitation due to noise at a given driving frequency
Ω . The mode is then forced to oscillate at the driving frequency, even if it is different from the natural eigenfrequency of a mode
Ωm . In general, the closer the driving frequency is to the eigenfrequency, the larger the amplitude of the modes motion is expected
to be. By combining Eqs. (12) and (13) with the assumption of a single azimuthal mode number lm per linearly independent mode,
meaning that the sums over l are exchanged for a single term, one gets the expression

ΔΨm =
√

2Jyβyeiθy
∂Ψ0

∂ Jy
Ω − ω0Qy(Jx , Jy) − lmωs

Fcoh
y m

2p0
, (38)

where we have again introduced a weak transverse detuning. The average offset of mode m at frequency Ω can be calculated with
the first line of Eqs. (27) and (38)

〈y(rz, φ; t)〉m = χm(t)mm(rz, φ)

= Tlm (Ω)

(

−2ΔΩmχm(t) +
∑

i

ξi (t)ηi m

)

mm(rz, φ),
(39)

where the dispersion integral Tlm (Ω) in Eq. (21) has reappeared. By rearranging the terms, we get an expression for the wakefield
beam eigenmode transfer function (MTF) due to the excitation by noise at frequency Ω

χ̂m(Ω)
∑

i ξ̂i (Ω)ηi m
= Tlm (Ω)

1 + 2ΔΩmTlm (Ω)
= 1/2

ΔΩm − ΔΩSD
lm

(Ω)
≡ T wake

lm (Ω), (40)

where the notation f̂ (Ω) ≡ ∫ ∞
−∞ f (t) exp(−iΩt)dt indicates the Fourier transform of f (t). The amplitude of mode m diverges

when ΔΩm → −1/[2Tlm (Ω)] = ΔΩSD
lm

(Ω). ΔΩSD
lm

(Ω) is an important quantity in beam stability, often referred to as the stability
diagram. Examples of the stability diagram are illustrated in Fig. 6. A mode is considered to be stabilized by Landau damping when
its complex tune is inside (below) the stability diagram [6]. Note also the appearance of ηi m in the summand in the denominator on
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(a) (b)

Fig. 1 Weights of low-order sidebands of the BTF. In (a) rigid motion due to rigid noise ∝ Ξ0. In (b) headtail motion due to headtail noise ∝ Ξ1. The
fully analytical theories (lines) in Eqs. (22) and (B.7) are compared to the MTF theory (points) in Eqs. (44) and (B.10), based on DELPHI calculations and
assuming orthonormal modes

the left-hand side. A smaller value of ηi m means that the noise ξi is less effective at exciting mode m. The combined coherent force
from the noise and wakefields related to mode m in Eq. (37) can with this MTF be expressed as:

F̂coh
y m = p0

βy

∑
i ξ̂i (Ω)ηi m

1 + 2ΔΩmTlm (Ω)
mm(rz, φ). (41)

3.3 Beam transfer function including wakefields

The MTF for a single linearly independent beam mode with a single azimuthal mode number lm is given in Eq. (40). To express the
measurable dipolar BTF, the MTF of all modes must be combined. Since the BTF typically is measured by controlled excitation by
a dipolar noise source, which excites all particles in the bunch equally, we will in this section assume that ξ0(t) is the only noise
signal of nonzero amplitude.

The dipolar mode moment can be calculated as

ydip
m (t) = χm〈mm〉z = χm〈Ξ∗

0 mm〉z = χm η̃∗
0m, (42)

where it was used that Ξ0(z) = 1. By combining with Eq. (40), and assuming only dipolar noise, we get the desired expression for
the BTF including wakefields

BTF = ŷdip

F̂noise
y

p0

βy
= ŷdip(Ω)

ξ̂0(Ω)
=

∑
m ŷdip

m (Ω)

ξ̂0(Ω)
=

∑

m

T wake
lm (Ω)η̃∗

0mη0m, (43)

where Fnoise
y is defined in Eq. (30) and T wake

lm
(Ω) is defined in Eq. (40). In the absence of chromaticity and wakefields, Eq. (43)

returns the standard BTF, T0(Ω). In the limit of negligible wakefields, but still including chromaticity, such that T wake
lm

= Tlm , we
can by comparison to Eq. (20) calculate the weight of sideband l as

wMTF
0l =

∑

m

η̃∗
0mη0mδl,lm . (44)

The weight wMTF
0l is, in the limit of negligible wakefields, equivalent to the weight w0l in Eq. (22), which was derived in the presence

of chromaticity but completely without wakefields.
So far, the derivation has not made any assumptions as to the orthogonality of the modes, leading to the distinction between η̃ and

η in Eq. (44). If the modes are orthogonal, one has η̃∗
0mη0m = |η0m |2. This has been found to be true within the numerical accuracy

of BimBim for the LHC.
The weights w0l in Eq. (22) and the weights wMTF

0l in Eq. (44), assuming orthogonal modes and using negligible wakefields
in DELPHI, are compared in Fig. 1a. This figure shows how the dipolar moment of modes with nonzero azimuthal mode number
lm �= 0 increases with the chromaticity, a behavior that is important for the mechanisms in this paper. How the weights are calculated
in DELPHI is explained in Appendix A.

One can alternatively imagine a headtail BTF (BTFht), excited by headtail noise ∝ Ξ1 whereupon the headtail motion is measured.
This is further explained and derived in Appendix B. The theoretical weights w1l in Eq. (B.7) are in Fig. 1b compared to the weights
wMTF

1l in Eq. (B.10), assuming orthogonal modes. This figure shows how crab cavity amplitude noise can efficiently excite modes
of azimuthal mode number lm = ±1 at small chromaticities.
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(a) (b)

Fig. 2 BTF in the horizontal plane without chromaticity in (a) and with a linear chromaticity of Q′
x = 15 in (b). In both cases, multi-particle simulations

run with COMBI are compared to the BTF excluding wakefields in Eq. (20) and the BTF including wakefields in Eq. (43). The BTFs including wakefields
were calculated based on BimBim calculations

3.4 Comparison to multi-particle tracking simulations

The expressions derived for the BTF in Eqs. (20) and (43) will here be benchmarked against multi-particle tracking simulations run
with COMBI [16,17]. Calculations made with BimBim, using the impedance model for the LHC at top energy in 2018, have been
used to get the mode details required by Eq. (43), i.e. the noise-mode-moments η0m and tune shifts ΔQcoh

m . The bunch intensity,
synchrotron tune, and root-mean-squared (rms) particle momentum spread were the same as given by Table 1, see below. The
tracking simulations were run with 107 macro-particles for 105 turns, from which the BTF was found by calculating the power
spectral density of the beam signal and noise using the Welch algorithm. The horizontal noise used was approximately white with
an rms kick per turn of 5 × 10−4σx , in units of the beam size.

The new theories and the tracking simulations, both with and without wakefields, show excellent agreement in Fig. 2. It is clearly
shown that it is the wakefields in the LHC that cause the shift of the main peak (and side peaks as well) of the BTF, as has been
hypothesized based on measurements in the LHC (Fig. 7 in Ref. [7]). Although it is not shown here visually, the theory in Eq. (20)
is also able to explain the appearance of loops at the sidebands in the stability diagram reconstructed based on the BTF [18].

4 Loss of Landau damping driven by diffusion

Instabilities have been observed in the LHC that occur after a long latency, in the order of tens of minutes, after reaching top energy.
The mechanism behind these instabilities has just recently been understood [3]: the interplay between noise and wakefields drives a
diffusion that eventually renders the beam unstable. In Ref. [3], the expression for the diffusion was based on the MTF for a mode
modeled as a single underdamped stochastic harmonic oscillator (USHO). In this section, we will derive the diffusion by use of
the MTF in Eq. (40), which is based on the linear Vlasov theory. The new derivation was inspired by the second part of Ref. [19],
yet relaxing strong assumptions that prevented quantitative estimates for realistic machines. Most important was to relax the rigid
bunch assumption and the simplified wakefield model, which corresponded to only considering mode shape functions mm that were
independent of the longitudinal coordinates rz and φ. In addition, we have extended from using a one-dimensional tune spread,
setting by in Eq. (18) to 0, to using a two-dimensional tune-spread. The new Vlasov theory will be compared to the existing USHO
theory.

4.1 Diffusion driven by wakefield eigenmodes

If the vertical noise and wakefields are sufficiently weak to be modeled as a perturbation, they drive a second-order diffusion of the
equilibrium distribution. This requires a limited change of the distribution over the correlation period of the coherent force. The
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diffusion in the vertical plane can be modeled analytically by [20,21]

∂Ψeq

∂t
= ∂

∂ Jy

[
Jy Dy

∂Ψeq

∂ Jy

]
, (45)

Dy = lim
T→∞

1

T

t0+T∫

t0

dt

t0+T∫

t0

ds

〈
J̇y(t) J̇y(s)

〉
z

2Jy
, (46)

where the equilibrium distribution has been renamed Ψ0 → Ψeq since it will evolve with time. The autocorrelation of the change of
action is averaged over the longitudinal coordinates, as how the transverse diffusion depends on the longitudinal action is irrelevant.
An equivalent horizontal diffusion term can be added to Eq. (45) to model the diffusion driven by horizontal noise and wakefields.
There is assumed no coupling between the two transverse planes in terms of diffusion.

Since the wake force in Eq. (24) is complex, it will give a complex expression for J̇y by use of Eq. (4). Therefore, we calculate a
real expression for the change of action as

J̇y(t) = 2Re

{
∂ΔH
∂θy

}
= −

√
2Jyβy

p0
Re

{

i
(

eiθy(t) − e−iθy(t)
)∑

m

Fcoh
y m (rz, φ + ωs t; t)

}

, (47)

where θy is the angle of the single particle. It can be shown as in Ref. [3] that the vertical single particle angle is

θy = θ0y − ω0Qyt + Q′
y z

Qsβz
. (48)

Since Fwake
y m ∝ exp(iΩt), with Ω ∼ Ωm , and Fnoise is assumed to only have power in positive frequencies, only the close-to-resonant

term exp(iθy) ∝ exp(−iω0Qyt) will give a nonnegligible integrated change of action. The headtail phase factor Q′
y z/Qsβz in the

single particle angle θy in Eq. (47) will then cancel the headtail phase factor of the coherent force in Eq. (37), contained within the
functions mm in (33). Note that as we are no longer focused on the behavior of the modes, but rather on their consequences on the
individual particles, we are now referring toωy ∼ ω0Qy0, the frequencies of the individual particles, instead ofΩm ∼ ω0Qy0 + lmωs ,
the frequency of the mode.

The integrand in Eq. (46), neglecting the averaging over z, becomes

J̇y(t) J̇y(s)

2Jy
= −βy

4p2
0

[

ei(θ0y−ωy t)
∑

m

Fcoh
y m,z=0(φ + ωs t; t) − c.c.

]

×
[

ei(θ0y−ωy s)
∑

n

Fcoh
y n,z=0(φ + ωss; s) − c.c.

]

+ O(0)

= βy

4p2
0

[

e−iωy(t−s)
∑

m

Fcoh
y m,z=0(0; t)e−ilm (φ+ωs t)

∑

n

Fcoh∗
y n,z=0(0; s)eiln(φ+ωs s) + c.c.

]

+ O(0)

= βy

4p2
0

[
∑

m

∑

n

e−i(ωy+lnωs )u Fcoh
y m,z=0(0; t)Fcoh∗

y n,z=0(0; t − u)e−i(lm−ln)(φ+ωs t) + c.c.

]

+ O(0), (49)

where ωy = ωy(Jx , Jy) = ω0Qy(Jx , Jy) is the transverse frequencies of the individual particles, which depends on the transverse
actions of the particles, the subscript z = 0 in Fcoh

y m,z=0 means that the headtail factor is canceled out, both c.c. and the superscripted
∗ imply complex conjugation, O(0) refers to terms that later in the calculation would become 0, and the time parameter s has
been exchanged for u = t − s. In the first line, O(0) refers to terms that later will become 0 due to the lack of noise in negative
frequencies. In the second line, O(0) additionally refers to non-resonant terms proportional to exp[iωy(s + t)] that will average to
zero. For this reason, the factors exp(iθ0 y) cancel. In the second line, the dependence on the particles longitudinal phase φ + ωs t ,
including how it evolves with time, is also taken out of the coherent force.

To calculate the diffusion coefficient driven by noise and noise-excited wakefields, as modeled by the Vlasov theory derived in
this paper, the last line in Eq. (49) must be treated as given by Eq. (46), with s exchanged for u = t − s. Remember from Eq. (34)
that 〈·〉z means an averaging over both φ and Jz . The averaging over φ gives that lm = ln , i.e., that modes close to different sidebands
do not interact to drive a common diffusion since they are orthogonal. The calculation then becomes the double sum of the Fourier
transform of the cross-correlation function of Fcoh

y m and Fcoh
y n , which is the product of their Fourier transforms

DVlasov
y (Jx , Jy) = βy

2p2
0

∑

m

∑

n

〈
F̂coh
y m (ωy + lmωs)F̂

coh∗
y n (ωy + lnωs)

〉

z
, (50)

where a factor 2 has come from the inclusion of the complex conjugate in Eq. (49). Note that this expression is real, as it contains the
sum over pairs of complex conjugated expressions. Looking at the expression for F̂coh

y m in Eq. (41), we find that orthogonal modes

123



  506 Page 10 of 18 Eur. Phys. J. Plus         (2022) 137:506 

with 〈mmm∗
n〉 = 0 will not contribute to the diffusion coefficient. In the unperturbed case, all modes are orthogonal. Since we have

adopted the hypothesis of weak wakefields, we assume that the contribution of the terms with m �= n remains negligible compared
to the diagonal terms. This hypothesis was confirmed numerically in all the cases studied. Therefore, we only keep the dominant
terms with m = n. The diffusion coefficient can finally be expressed as a function of the transverse actions as

DVlasov
y (Jx , Jy) =

∑

m

DVlasov
y m [ωy(Jx , Jy)] = βy

2p2
0

∑

m

〈∣∣∣F̂coh
y m (ωy + lmωs)

∣∣∣
2
〉

z
, (51)

DVlasov
y m (ωy) =

∑
i

∣∣∣ξ̂i (ωy + lmωs)

∣∣∣
2 |ηi m |2

2βy

∣∣∣ΔΩSD
lm

(ωy + lmωs)

∣∣∣
2

∣∣∣ΔΩm − ΔΩSD
lm

(ωy + lmωs)

∣∣∣
2 . (52)

The term lmωs in the argument to ΔΩSD
lm

will cancel the same term in Eq. (21). Hence, a mode with eigenfrequency Ωm close to
a sideband ω0Qy0 + lmωs can still drive diffusion of particles with betatron frequency ωy ∼ ω0Qy0, which is far away from the
sidebands. That is often the case in the LHC. Note that the noise signals ξi are given in units of the beam size, σy = √

2Jyβy , so the
factors βy will cancel.

We will now compare the new Vlasov theory to the USHO theory derived in Ref. [3]. The USHO theory assumes that the motion
of the unstable mode with complex frequency shift ΔΩm (with positive imaginary part) can be modeled as a single underdamped
harmonic oscillator with complex frequency shift changed to ΔΩLD

m (with negative imaginary part) when stabilized by Landau
damping. If Im

{
ΔΩLD

m

}
> 0, the Landau damping is not sufficient to stabilize the mode. The interpretation of ΔΩLD

m is further
explained in Ref. [3]. Assuming small tune shifts, the MTF in the USHO theory is

χ̂m(Ω)
∑

i ξ̂i (Ω)ηi m

∣∣∣∣∣

USHO

= 1/2

ΔΩLD
m − Δωy

, (53)

where Δωy = ωy − ω0Qy0 is the frequency shift of the individual particles. Equation (53) can be compared to Eq. (40). All
consequential differences originate in the different expressions for the MTFs. Assuming orthonormal mode shapes mm , the diffusion
coefficient due to both noise and wakefields according to the USHO theory (only diffusion driven by wakefields was treated in Ref. [3])
can in the notation and framework used in this paper be written as

DUSHO
y m (ωy) =

∑
i

∣∣∣ξ̂i (ωy + lmωs)

∣∣∣
2 |ηi m |2

2βy

∣∣ΔΩLD
m − Δωy − ΔΩm

∣∣2
∣∣ΔΩLD

m − Δωy
∣∣2

. (54)

Note that the noise was assumed dipolar and white in Ref. [3], giving |ξ̂0|2 = σ 2
ξ0 frev for ω ∈ [0, ω0/2) and zero for other frequencies

and noise signals. Here, σξ0 is the rms amplitude of the noise kick per turn in units of the beam size. In addition, normalized units
are used in Ref. [3], corresponding to βy = 1. A factor βy has therefore been added in the denominator of Eq. (54) to cancel that of
the noise signal squared.

The derivation modeling the mode as an USHO made stronger assumptions on the dynamics and is therefore assumed to be less
accurate than the new Vlasov-based theory. Even so, the only difference between the expressions is that the MTF in the Vlasov theory
depends on the distance from the stability diagram to the undamped tune shift, ΔΩm − ΔΩSD

lm
, while the MTF in the USHO theory

depends on the distance from the single-particle betatron frequency to the damped mode frequency, ΔΩLD
m − Δωy . Separately, a

great challenge with using the USHO theory, was the need to calculate ΔΩLD
m , which in Ref. [3] introduced additional assumptions

and inaccuracies through the use of a Taylor expansion. Hence, the MTF and diffusion coefficient derived in this paper are both
assumed closer to reality and do not require further assumptions to be calculated.

4.2 Comparison to multi-particle tracking simulations

The expressions derived for the diffusion coefficients will here be benchmarked against multi-particle tracking simulation run with
COMBI. Since diffusion is a second-order effect, more simulations are needed to get an accurate estimate of the diffusion coefficient
that depends on the spread of action 〈ΔJ 2〉. 24 tracking simulations have been run with 107 macro-particles for each configuration.
Only horizontal rigid white noise ∝ Ξ0 is modeled. The diffusion is presented in units of D0 = σ 2

ξ0/2βx , the diffusion expected due
to noise in the absence of wakefields and a feedback system.

First, the diffusion due to a single mode with η0m = 1 is studied. The wakefields are in COMBI modeled by an anti-damper, i.e.,
a kick that is constant over the bunch length and that is proportional to the average position offset. This simplified model allows
for an easy control of the corresponding tune shift in the numerical simulations. The numerical diffusion coefficient is in Fig. 3
compared to the Vlasov theory in Eq. (52) and the USHO theory in Eq. (54). In Fig. 3a, the tested mode has a tune shift qualitatively
similar to that of the most problematic modes in the LHC, with a significant negative real part relative to the imaginary part. The two
theories are close to identical and agree well with the simulations. In Fig. 3b, the tested mode has a tune shift such that the Taylor
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(a) (b)

Fig. 3 Numerical diffusion calculated with COMBI compared to both the Vlasov and the USHO theories. The wakefields are driven by an anti-damper.
In (a), the anti-damper represents a mode with complex tune shift ΔQcoh

x = −1.467 × 10−3 + 1.25 × 10−4i . In (b), the anti-damper drives a mode
with ΔQcoh

x = 3.75 × 10−4 + 5.504 × 10−4i . Both of these modes have a stability threshold, in terms of detuning coefficients, of ax = 5 × 10−4 and
bx/ax = −0.7. Note that what matters is the phase of the complex tune, not the amplitude, together with the relative stability margin in octupole current,
which is 50% in both configurations. The red shaded area corresponds to 1 standard deviation from the solid red line

(a) (b)

Fig. 4 Numerical diffusion calculated with COMBI compared to the Vlasov theory. The wakefields represent those in the LHC at top energy in 2018 with a
linear chromaticity of Q′ = 15. The feedback gain is 0 in (a) and corresponds to a damping time of 100 turns in (b). The stability margin in octupole current
is 25% in both configurations. The red shaded area corresponds to 1 standard deviation from the solid red line

expansion used to get ΔQLD
m in the USHO theory is inaccurate. The Vlasov theory is found to be superior to the USHO theory for

this mode. For this setup with one rigid mode, the Vlasov theory in Eq. (52) is identical to its inspiration in Ref. [19] when using a
two-dimensional tune spread.

Second, the diffusion due to the full LHC wakefields will be studied. Calculations made with BimBim, using the impedance
model for the LHC at top energy in 2018, have again been used to get the mode details. The bunch intensity, synchrotron tune, and
rms particle momentum spread were the same as given in Table 1. The numerical diffusion coefficient is in Fig. 4 compared to the
Vlasov theory in Eq. (51). There is good agreement both with and without a feedback. Note that the diffusion coefficient with a
feedback is the sum of a multitude of DVlasov

m , driven by individual modes, which are shown individually in Fig. 5a. The sums for
various stability margins are shown in Fig. 5b.

4.3 Distribution and stability evolution

The diffusion driven by noise and wakefields causes an evolution of the distribution, which leads to a change of the stability
diagram since the latter is inversely proportional to the dispersion integral in Eq. (21). We consider here an illustrative example for
the horizontal plane in the LHC at top energy in 2018 that is also considered in Ref. [22], with most parameters given in Table 1, a
ratio between the detuning coefficients of bx/ax = −0.7, and a detuning coefficient ax that is 25% larger than the initial stability
threshold for a bunch with a Gaussian transverse distribution. This is the same case as is tested in Fig. 4b. The diffusion coefficient
is a sum of a multitude of DVlasov

m that are shown individually in Fig. 5a. The modes that are inherently stable also without Landau
damping, in part due to the feedback, are bowl-shaped, i.e., zero at a center tune and increasing on both sides. This is qualitatively
the same shape that is found in Ref. [23] for a bunch driven by noise and damped by a feedback system, in the absence of wakefields.
It is found in Ref. [23] that diffusion coefficients of this shape are not critical for the loss of Landau damping that is observed in the
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(a) (b)

Fig. 5 Diffusion coefficient with the LHC wakefields, using the parameters in Table 1, according to the Vlasov theory in Eqs. (51) and (52). (a) displays the
largest diffusion coefficients driven by individual wakefield-driven modes with a stability margin of 25%. The stability margin is a global measure, being the
margin for the least stable mode, which corresponds to the most peaked line in (a). (b) displays the total diffusion coefficient for various stability margins.
The green curve with 25% stability margin is equal to the blue curve in Fig. 4b and the sum of the curves in (a)

Table 1 Parameters for an LHC test case

Parameter Value

Intensity, N 1011 p/b

Momentum spread, σΔp/p = σz/βz 1.017 × 10−4

Synchrotron tune, Qs 0.00191

Linear chromaticity, Q′ 15

Feedback damping time 100 turns

Rigid noise amplitude, σξ0 10−4σx

Table 2 Latencies found with an anlytical equation and with several numerical simulations of different models [22]

Approach Modes Latency

Analytical equationa The least stable one 144 s

USHO, simplifiedb The least stable one 122 s

USHO The least stable one 42 s

Vlasov The least stable one 24 s

Vlasov All 37 s

aEq. (50) in Ref. [3], based on the USHO theory.
bEqual assumptions as when deriving Eq. (50) in Ref. [3]

LHC. On the other hand, the modes that would be unstable if not for Landau damping are peaked and narrow as the ones in Fig. 3. It
is found in Ref. [3] that diffusion coefficients of this shape lead to a local flattening of the distribution in action space and a drilling
of a hole in the stability diagram until the mode is unstable. This is the cause for loss of Landau damping after a latency that has
been observed in the LHC.

The distribution and stability evolution according to the Vlasov theory, both driven by the diffusion of only the least stable mode
and by the diffusion of all the modes, are presented in Fig. 6. These evolutions have been calculated using the code PyRADISE [3],
using a 2000 × 2000 grid in transverse action space, equidistant in the transverse amplitudes r ∝ √

J . The latencies found in both
simulations are gathered in Table 2, which also include the latencies found with the USHO theory numerically and analytically. The
relative change of the distribution driven by only the least stable mode in Fig. 6a appears quite different from that driven by all the
modes in Fig. 6c. However, what matters most is the local flattening of the distribution that is visible in both figures as a line across
which particles have moved from the dark blue area on the left to the dark red area on the right. The stability diagram therefore
evolves similarly due to only the least stable mode in Fig. 6b as due to all the modes in Fig. 6d. Since the additional modes drive
a measurable diffusion that in this case partly counteracts the distribution evolution driven by the least stable mode, their inclusion
increases the latency from 24 s to 37 s. This increase by about 50% is considered small on the vast scale of possible latencies [3],
as will be exemplified in Sect. 4.4.
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Fig. 6 PyRADISE simulations with the LHC wakefields, using the parameters in Table 1 and a stability margin of 25%. Relative change of the distribution
on the left (a and c). Evolution of the stability diagram on the right (b and d), with the tune shifts ΔQcoh

m of the modes marked by black crosses. Only the
least stable mode is included on top (a and b), while all the modes are included on the bottom (c and d). The drilling of the hole in the stability diagram is
only visualized until the initial stability margin is reduced by 75%, because of numerical effects discussed in Sect. 4.5

4.4 Dependence of latency on the stability margin

The latency depends on multiple key parameters, such as the noise and the noise-mode moments, but on none as critically as the
stability margin, which is how much more detuning is used than necessary to stabilize a Gaussian beam. Here, this dependence will
be illustrated by calculating the latency for the same test case as in Sect. 4.3, but with different stability margins.

The latencies calculated with the same five approaches as in Table 2 are shown in Fig. 7. There are many key results. First of all,
the latency increases by more than 4 orders of magnitude by increasing the stability margin by 1 order of magnitude. Secondly, the
analytical latency agrees well with the simplified simulation based on the USHO theory for all stability margins. This is expected,
as the two approaches make the same assumptions. In general, the analytical latency gives an acceptable estimate also compared to
the less simplified simulations, but it is slightly longer. The Vlasov and USHO theories with a single mode agree well, especially
at small margins. Note that the Vlasov theory with a single mode has a numerical challenge at large stability margins that will be
discussed in Sect. 4.5.

The model most true to the actual physics are the simulations based on the Vlasov theory including all the modes. This is also
the most complex mechanism. The initial diffusion coefficient for different stability margins is displayed in Fig. 5b. At low margins,
the peak due to the least stable mode is clearly visible, and it is this mode that eventually goes unstable. However, the diffusion
due to the other modes slows down the destabilizing process. The latency with the Vlasov theory with all the modes is longer than
the latency with only the least stable mode, and the difference increases with the stability margin, for small margins. Then, starting
at a margin of 50% the peak due to the least stable mode is no longer visible in Fig. 5b and the total diffusion drills a wider hole.
Eventually, it is actually a different mode that goes unstable, which is centered more in the middle of the peak of the total diffusion
coefficient. This transition can also be seen in Fig. 7.
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Fig. 7 Latency as a function of
the stability margin for the LHC
case otherwise described by the
parameters in Table 1. The
different curves correspond to
different approaches (the same as
in Table 2) to calculate the latency

4.5 Discussion

Several aspects of this mechanism deserve further discussion. Here, we will discuss the physics, the differences between the USHO
and the Vlasov theories, and various numerical challenges with both.

It is only the Vlasov theory that can accurately model the full wake-driven diffusion. The USHO theory can model the impact of
additional almost unstable modes, but not the stable ones that cause the bowl-shaped diffusion coefficients exemplified in Fig. 5a. As
also discussed in Ref. [3], it is challenging to predict the impact of the secondary modes in addition to the least stable one. In some
cases, as the one tested here, they will extend the latency, but they may in principle also shorten it. If this level of understanding is
required, it must be evaluated on a case-by-case basis.

The Vlasov theory for the MTF has been derived in this paper. It is illustrated in Fig. 3 that the Vlasov theory is more accurate
than the more simplified USHO theory derived in Ref. [3]. However, the fact that the USHO theory allows for the derivation of an
analytical equation for the latency (Eq. (50) in Ref. [3]) is quite useful. As shown in Fig. 7, the analytical estimate is in general
within short range of the simulated latencies, in comparison with the many orders of magnitude over which the latency varies with
the stability margin. Therefore, we suggest to use the analytical latency equation to estimate how much stability margin is required
to achieve a desired latency. The required margin depends in particular on the noise and wakefield eigenmodes.

An aspect, which has not been focused on here, is the fact that the diffusion modeled by both theories is the expected motion
as the number of turns goes to infinity. As seen by the variability between the separate simulations in Figs. 3 and 4, the expected
diffusion coefficient is clearly not achieved each turn. This was discussed in more detail in Sect. IV.C in Ref. [3]. In fact, it was
found that the wakefields driven by a mode particularly close to the stability limit drove a single-particle motion more comparable
to resonant motion than diffusion.

A numerical issue has been discovered with the Vlasov theory. Loops start to develop at the edge of the drilled hole in the
stability diagram when there is a large initial stability margin, especially when it models only a single mode. It is visible already
in Fig. 6. These loops continue to grow so much that it interrupts the drilling of the initial hole, in addition to making the physical
interpretation of the stability diagram challenging. We have found that this behavior is caused by initially insignificant details in the
diffusion coefficient, which begin to enhance themselves. Based on the discussion in the previous paragraph, about the diffusion
being the expected distribution evolution and not the actual evolution per turn, we believe this enhancement of minor details to be
a non-physical consequence of the theory. Furthermore, this behavior is not reproduced with the USHO theory. For this reason, the
latency is found by extrapolating the drilling from when the initial stability margin is reduced by 75%.

A final numerical challenge that we would like to point out is the convergence with numerical parameters. By reducing the
discretization step in time and action space, the latency does converge towards a single value, as expected. Similarly, the stability
diagram is calculated as the one-sided limit when the small parameter ε → 0+ [6]. However, for ε → 0− and ε = 0, one gets
different results. In other words, the dispersion integral in Eq. (21) is discontinuous in the imaginary part of Ω , which causes
numerical challenges for small positive values of ε. In the PyRADISE calculations presented here, we have used ε = |ax | /200,
whereax is the in-plane detuning coefficient due to octupole magnets. With this value of ε, the latency and stability diagram calculation
appear to have converged, but it is quite close to a threshold below which the results are inaccurate due to the discontinuity of the
dispersion integral.

5 Conclusion

In this paper, we have studied the excitation of beams in high-energy synchrotrons by noise. Within the framework of the linearized
Vlasov equation, the MTF has been derived, modeling how a wakefield beam eigenmode is excited by noise. The initial excitation
by noise depends on the shape of the eigenmode and the correlation of the noise along the bunch, modeled through the noise-mode
moments ηi m . The future evolution of the mode, after being excited by noise, depends on the strength of the wakefields and the
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details of the detuning. It has here been assumed that the wakefields are weak, so that modes of different azimuthal mode numbers
are linearly independent.

The BTF including chromaticity and wakefields has been derived based on the MTF. By comparing to multi-particle tracking
simulations, it has been found that the new semi-analytical expression accurately models the impact of wakefields on the BTF. In
particular, the shift of the BTF amplitude peaks in tune space has been thoroughly explained. The new theory can, in the limit of
negligible wakefields, also be used to get an expression for the BTF including chromaticity. This expression also agrees excellently
with multi-particle tracking simulations.

The main motivation for this work was to better understand the loss of Landau damping driven by noise and wakefields, which
has been observed in the LHC. The MTF based on the linear Vlasov equation has been used to derive an expression for the diffusion
driven by the interplay between noise and wakefields. The Vlasov-based theory can both model the diffusion driven by almost
unstable modes, for which the diffusion coefficients are peaked in tune space, and the diffusion driven by inherently stable modes,
for which the diffusion coefficients are bowl shaped in tune space. The peaked diffusion coefficients driven by the almost unstable
modes can cause a local flattening of the distribution, leading to the drilling of a hole in the stability diagram. This mechanism can
cause a loss of Landau damping. By comparing to multi-particle tracking simulations, the Vlasov theory is found superior to the
previously derived USHO theory, which modeled the eigenmodes as underdamped stochastic harmonic oscillators. Nevertheless, by
use of the PDE-solver PyRADISE, both theories produce similar latencies within about a factor 2, which is fairly close compared
to the many orders of magnitude that the latency varies over. The main technique suggested to increase the latency and thereby
mitigate the loss of Landau damping is to increase the stability margin, i.e., operating with more detuning than predicted to barely
stabilize a beam with a Gaussian transverse distribution. How much margin that is needed to achieve a certain latency depends in
particular on the noise and wakefield eigenmodes and can be estimated with the analytical latency equation derived in Ref. [3].

Going forward, it will be of particular interest to study operational conditions of real accelerators with the new diffusion theory
for the loss of Landau damping. For instance, the impact of crab cavity amplitude noise must be studied in detail to estimate the
accepted noise levels in the HL-LHC. Such a study may also find alternative operational configurations, by e.g., optimizing the
linear chromaticity and gain of the transverse feedback system so that the latency is maximized.
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Appendix A Calculating noise mode moments in DELPHI

We shall now explicit the expressions of the modes’ sensitivity to different types of noise in the formalism implemented in the code
DELPHI [14]. In the following, we consider only Gaussian longitudinal distributions.

The first noise type corresponds to a change of the transverse momentum of the particles that is independent of the particles’
longitudinal coordinate at every turn, characterized by the function Ξ0 = 1. This noise type is relevant for several applications,
since the expected sources of noise can be current ripples in the power converters feeding the magnets, ground motion, or even
active feedback systems. These phenomena are usually limited in bandwidth, such that the variations over the bunch length may be
neglected. The second noise type corresponds to a change of the transverse momentum of the particles that is proportional to the
particles’ longitudinal coordinate. This noise type is relevant for the HL-LHC and future machines featuring crab cavities, as it is
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expected due to voltage amplitude noise in these RF cavities. We characterize this noise with a function Ξ1 = z/σz , where σz is the
rms bunch length for a Gaussian distribution. These functions follow the normalization given by Eq. (36).

The code DELPHI seeks a distribution solution in the vertical plane of the type

mm(rz, φ) = Ame−i
Q′
yrz cos(φ)

Qsβz

∞∑

l=−∞
Rl(rz)e

−ilφ, (A.1)

with

Rl(rz) =
(

rz
4σz

)|l| ∞∑

n=0

cnl L
|l|
n

(
r2
z

2σ 2
z

)

, (A.2)

where Ln are the generalized Laguerre polynomials of order n [5]. Note that in comparison with Eq. (33), here g0(rz) is absorbed
into Rl , and DELPHI do not need the assumption of weak wakefields, so that a mode here still contains the sum over all l. The factor
Am is determined such as to ensure the normalization given by Eq. (34). With a change of variable, we may identify the integral (4’)
in Ref. [24] and write

〈m∗
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, (A.3)

with Appell’s hyper-geometric function F2(·) [25]. With this normalization, we can now write the sensitivity to dipole noise (Ξ0).
First, we make use of the Jacobi–Anger expansion (Eq. (8.511.4) in Ref. [11]), such that the integration over the angle becomes
trivial. Then, we may identify the integral (23) in Ref. [14] and write

〈m∗
mΞ0〉z = Am

2πσ 2
z
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cnl
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z ei
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s β2
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We note that in the absence of chromaticity, only the mode with n = l = 0 is sensitive to dipole noise.
In order to obtain a closed form for the sensitivity to the second type of noise, we make again use of the Jacobi–Anger expansion

together with Euler’s formula for the cosine, so that we can write
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. (A.5)

In the last step, we introduced the absolute value of l in the index of the Bessel function using the identity (8.404.2) in Ref. [11]. If
the chromaticity is 0, most of the terms in the sum are zero, the remaining ones are obtained using Eq. (7.414.7) in Ref. [11]

〈m∗
mΞ1〉z = Am

4
(c0

1 − c0−1). (A.6)

Similarly to the dipole noise, only a few modes are sensitive to crab cavity amplitude noise in the absence of chromaticity, namely
the ones with n = 0 and l ± 1. In the general case, one may use the functional relations (8.971.4) and (8.971.5) in Ref. [11] to solve
the integral involving the Bessel function with index |l| − 1 and |l| + 1, respectively. In both cases, the integral (23) in Ref. [14] can
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be identified, so that we can write

〈m∗
mΞ1〉z = Am

∑

l,n

cnl
sign(l)l+1i l+1
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We note that the relation (8.971.5) is not valid for n = 0. Nevertheless, it can be shown that the expression obtained remains valid for
n = 0 starting from Eq. (A.5), using the integral (6.631.1) in Ref. [11], identifying the relations with the confluent hyper-geometric
function (9.215.1) and (9.212.1) in Ref. [11], exploiting the link between the confluent hyper-geometric function and Laguerre
polynomials (8.972.1) in Ref. [11], and finally expressing the Laguerre polynomials with Eq. (8.973.2) in Ref. [11].

Appendix B Headtail beam transfer function with chromaticity

In this appendix, we will derive an alternative BTF to the one in Sect. 3.1. Here, both the external driving force and the measured
response will have a linear headtail dependence, i.e., being proportional to z = rz cos(φ). The coherent force Fcoh

y is now

Fcoh
y (z, t) = rz cos(φ)AyeiΩt , (B.1)

which is qualitatively equivalent to crab cavity amplitude noise. The rms kick strength is rms(Fcoh
y ) = σz AyeiΩt , where σz is the

rms longitudinal spread of the particles in the bunch. Putting it in Eq. (13) and using the Jacobi–Anger expansion (Eq. (8.511.4) in
Ref. [11]) give
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where Jl(·) are the Bessel functions of order l. By performing a term-by-term identification of terms with e−ilφ , one gets an expression
for the longitudinal modes
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Inserting this into the expression for the distribution perturbation in Eq. (12) gives
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where we have again introduced the weak transverse detuning.
We are now in a position to calculate the headtail BTF (BTFht), the headtail beam response to a driving force that is proportional

to z. The headtail beam moment is here defined normalized to the bunch length as
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By insertion, one finds

BTFht ≡ yht

rms(Fcoh
y )

p0

βy
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∑
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y), (B.6)

which again depends on the dispersion integral in Eq. (21) and a weight that depends on chromaticity
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In the absence of chromaticity, w1l is 0.5 for l = ±1 and 0 otherwise.
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We can also express the BTFht based on the MTF derived in Sect. 3.2. The headtail mode moment can be found as

yht
m (t) =

〈
yz

σz

〉
= χm〈Ξ∗

1 mm〉z = χm η̃∗
1m, (B.8)

where it was used that Ξ1 = z/σz . By combining this with Eq. (40) and assuming only noise proportional to Ξ1, we get the desired
expression for the headtail BTFht including wakefields

BTFht = ŷht(Ω)
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m (Ω)

ξ̂1(Ω)
=

∑

m

T wake
lm (Ω)η̃∗

1mη1m, (B.9)

where T wake
lm

(Ω) is defined in Eq. (40). In the limit of negligible wakefields but still including chromaticity, such that T wake
lm

→ Tl ,
we can calculate the weight of sideband l as

wMTF
1l =

∑

m

η̃∗
1mη1mδl,lm , (B.10)

which is readily comparable to the weight w1l in Eq. (B.7).
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