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Abstract The purpose of this paper is to investigate the transmission dynamics of a fractional-order mathematical model of COVID-
19 including susceptible (S), exposed (E), asymptomatic infected (I1), symptomatic infected (I2), and recovered (R) classes named
SEI1I2R model, using the Caputo fractional derivative. Here, SEI1I2R model describes the effect of asymptomatic and symptomatic
transmissions on coronavirus disease outbreak. The existence and uniqueness of the solution are studied with the help of Schaefer-
and Banach-type fixed point theorems. Sensitivity analysis of the model in terms of the variance of each parameter is examined, and
the basic reproduction number (R0) to discuss the local stability at two equilibrium points is proposed. Using the Routh–Hurwitz
criterion of stability, it is found that the disease-free equilibrium will be stable for R0 < 1 whereas the endemic equilibrium becomes
stable for R0 > 1 and unstable otherwise. Moreover, the numerical simulations for various values of fractional-order are carried out
with the help of the fractional Euler method. The numerical results show that asymptomatic transmission has a lower impact on the
disease outbreak rather than symptomatic transmission. Finally, the simulated graph of total infected population by proposed model
here is compared with the real data of second-wave infected population of COVID-19 outbreak in India.

1 Introduction

Mathematical models are powerful tools for understanding and preventing the infectious disease transmission. The researchers gain
valuable information for several contagious diseases by studying stochastic and deterministic models. Kermack and McKendrick
(1927) created a helpful model for executing and growing complex epidemic models, now regarded as a fundamental model in an
epidemiology study [1]. Many infectious diseases can transmit in both vertical and horizontal paths. HIV/AIDS, Herpes Simplex,
Hepatitis B, and Rubella are a few examples of such infections. These diseases are horizontally transmitted in people and animals
by host-to-host interaction or disease carriers such as flies, mosquitoes, and others. The reader can find several good papers on the
infectious disease modeling in the literature, for example, HIV/AIDS [2], Zika [3], Ebola [4], West Nile [5], Influenza [6], Dengue
[7], Oncolytic [8], Cancer [9].

The first epidemic of severe acute respiratory syndrome (SARS) occurred in mainland China in 2003, while another outbreak
is known as Middle East respiratory syndrome (MERS) occurred in South Korea in 2015. The new virus (2019-nCoV), which
is highly transmissible and virulent, was identified in a single individual in the Chinese city of Wuhan [10]. This new disease,
which produces a severe acute respiratory syndrome, has spread throughout the world. There have been over 253 million confirmed
COVID-19 registered cases, and over 5.1 million fatalities globally since November 10, 2021 [11]. America, Europe, Africa,
Southeast Asia, the Western Pacific, the Eastern Pacific, and the Mediterranean are the most effected by the coronavirus. The first
signs of a COVID-19 infection include a dry cough, fever, exhaustion, and shortness of breath, which develop in 2–10 days and
can lead to pneumonia, SARS, kidney failure, and even death [12]. The pandemic continued to expand, but vaccinations have now
halted the transmission. Many researchers have been developed mathematical models for the transmission of the aforesaid disease
involves various compartments, for example Susceptible-Infected (SI) [13], SI-Removed (SIR) [14], S-Exposed-IR (SEIR) [15],
SEI-Quarantined-R (SEIQR) [16], and SIQ-Home Quarantined-R-Diseased (SIQHRD) [17].

For a year, there were no particular treatment approaches such as antibiotics or other treatments against the coronavirus because it
is a single RNA virus. As a result, non-pharmaceutical measures such as isolation, social distance, quarantine, awareness programs,
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and personal hygiene, such as wearing a mask and washing hands regularly, become more helpful in reducing COVID-19 disease
transmission. Interestingly, it has been observed that individuals who take all precautionary measures are occasionally infected,
making it necessary to investigate the facts in human-to-human transmission processes. Even though nothing is known clinically
about the COVID-19 transmission pathway, numerous compartmental models offer simulation graphs that are quite similar to
statistical data. In most situations, asymptomatic people are excluded from the COVID-19 diagnostic test and play a substantial role
in the disease’s transmission. There have also been several reports of other diseases’ deaths yet later tested positive with COVID-19.
Because COVID-19 is a lot more infectious disease than being deadly, a massive proportion of the population eventually becomes a
carrier. To address all of these factors, no mathematical model for parallel disease transmission has been developed on COVID-19,
and hence a mathematical model for symptomatic and asymptomatic disease transmission at the same time is required. Consequently,
the goal of this research is to provide a mathematical model for controlling the COVID-19 epidemic. The new mathematical model,
known as SEI1I2R model, considers two parallel paths for symptomatic and asymptomatic transmission throughout the exposed
compartment. The model examines the COVID-19 outbreak’s asymptomatic transmission impact as well as the sensitivity of the
parameters affecting the pandemic.

The function representing the disease’s transmission mechanism, known as the force of infection or incidence rate, plays a crucial
role in SIR, SEIR, and similar models. Typically, such a function is dependent on both the susceptible and infective classes, for
example f (S, I). The incidence rate can be expressed in a simple way using the mass action principle: If μ is the per capita contact
rate, then the infection is assumed to spread with the rate f (S, I) = μSI. Capasso and his colleagues [18] have emphasized the need
to consider nonlinear incidence rates for some specific diseases since the 1970s: The studied example was the spread of cholera
epidemic. Many researchers have suggested different nonlinear forms for the incidence rate since then, see [19]. The functional
f (S, I) = μSI(1 + λI) is an excellent example of the nonlinear incidence rate, where the constants μ and λ are both positive. It
refers to a higher infection rate over a short period, which is caused by two exposures. The contact rate μSI is the result of single
contact, while the term μλI2S refers to a new infective that arises as a result of the double exposure [20]. The readers may see more
detail about incident rate in [21]. The reason for choosing the convex incident rate is because this function could model the increase
in infection resulting from the situation of double exposure. This is in line with the unknown disease mechanisms of a COVID-19
pandemic studied in [22].

Over the last three decades, fractional derivatives have fascinated many researchers due to the recognition that, compared
to classical derivatives, fractional derivatives are more efficient tools for modeling real-world phenomena. Fractional calculus
(FC)-based modeling is becoming increasingly popular in dynamic situations. The fractional-order differential operators such as
Riemann–Liouville (R-L) [23], Caputo [24], Erdélyi-Kober [25], Hilfer [26], Hadamard [27], Katugampola [28], Caputo–Fabrizio
[29], and Atangana–Baleanu [30] change the ordinary model into a generalized model. This paper presents new research on a
fractional-order dynamical model that underpins the spread of coronavirus infectious disease and can be used to predict its spread.
So, in this manuscript, we develop a new mathematical model for COVID-19 outbreak and extend it to a fractional-order model by
adding the Caputo sense of fractional derivative. The reason for utilizing the Caputo fractional derivative is that it possesses several
fundamental characteristics of FC.

Furthermore, the Caputo operator may be useful to further specify the transmission behavior given in the model. Several previous
investigations have found the reliability of the Caputo operator and their applicability to diverse the models arising in numerous
areas of engineering and other sciences. A few related studies on Caputo and other fractional-order derivative can be found in
the literature, for example physics and polymer technology [31], electrical circuits [32], electrochemistry [33], electrodynamics of
complex medium [34], fluid mechanics [35], control theory [36], thermodynamics [37], neural network [38], image encryption [39],
chaos [40], viscoelasticity [41], aerodynamics [42], capacitor theory [43], biology [44], blood flow [45], and the references cited
therein. Besides, nowadays the researchers are devoting their research work to the fractional-order COVID-19 mathematical models.
A huge number of good research papers related to fractional-order COVID-19 mathematical models can be found in the literature,
some of them are the following: Caputo fractional-order [46,47], Caputo–Fabrizio fractional-order [48,49], Atangana–Baleanu
fractional-order [50,51], fuzzy fractional-order [52,53], fractal-fractional order [54,55].

The remaining part of the paper is carried out as follows: The COVID-19 model formulation is discussed in Sect. 2. Section 3
is devoted to basic FC tools and fundamental definitions, which will be used to determine theoretical outcomes. In Sect. 4, using
the Schaefer- and Banach-type fixed point theorems, the appropriate conditions for existence and uniqueness are derived. In Sec. 5,
the well-posedness and the biological feasibility of the model are obtained. Section 6 is devoted to the disease-free and endemic
equilibrium point. The basic reproduction number (R0) is obtained in Sect. 7, and the stability of the equilibrium points is proved
in Sect. 8. In Sect. 9, the sensitivity analysis of R0 is discussed. Sections 10, and 11 are devoted to numerical simulation/discussion
and conclusion, respectively.

2 Model formulation

A mathematical model is an abstract model that uses mathematical objects to explain the behavior of a real-life situation. Mathematical
models may help in making better decisions about a particular process and studying functional relationships. Moreover, they may also
be used to predict the quantitative behavior of a system. Due to the above importance of mathematical modeling, in this section, we
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developed an SEI1I2R model for COVID-19 disease transmission, in which the population is divided into five classes: susceptible S,
exposed E, asymptomatic infected I1, symptomatic infected I2, and recovered or removed R. The model assumes the total population
N is not constant throughout the time and equal to the sum of all compartment sizes at any time t, i.e., N = S + E + I1 + I2 + R.

We made the following assumptions to formulate the model: Asymptomatic transmission is represented by the primary pathway
SEI1R, in which asymptomatic infected individuals spread the disease at a rate of μ1. The SEI2R is the second pathway that denotes
indicative transmission, in which symptomatic individuals transmit the infection at a rate of μ2. The symptomatic case’s transmission
rate μ2 and infection rates ρ2 are considered to be higher than the asymptomatic case’s, i.e., μ2 > μ1 and ρ2 > ρ1. Asymptomatic
patients have a higher recovery rate than symptomatic patients (β1 > β2), and asymptomatic patients have a lower mortality rate
(α2 > α1) than symptomatic patients. � is the recruitment rate, representing the increment of compartment S in the form of birth
or migration or recovered individuals. The natural death rate α is equal to the recruiting rate � into compartment S. In this study
death population due to the COVID-19 infection is only counted.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= �

N
− μ1S

I1
N

(1 + λ1
I1
N

) − μ2S
I2
N

(1 + λ2
I2
N

) − αS,

dE

dt
= μ1S

I1
N

(1 + λ1
I1
N

) + μ2S
I2
N

(1 + λ2
I2
N

) − (ρ1 + ρ2)E,

dI1
dt

= ρ1E − (α1 + β1)I1,

dI2
dt

= ρ2E − (α2 + β2)I2,

dR

dt
= β1I1 + β2I2 − αR,

(1)

where μi, ρi, βi, and αi(i = 1, 2) denotes the transmission rate, infection rate, recovery rate, and death rate in the mentioned
above pathways, respectively. λ1 and λ2 are the positive constants. The quantities μ1S

I1
N and μ2S

I2
N in the first equation represent the

interaction of susceptible individuals with asymptomatic and symptomatic infectious peoples with μ1 and μ2 rates, respectively. As
can be seen in the second equation, these interactions increase the number of people who are exposed. The terms ρ1E and ρ2E denote
the number of people becoming infected via the exposure of susceptible people. In the third equation, α1I1 and β1I1 show the number
of death and recovered population in the asymptomatic class. The terms α2I2 and β2I2 in the fourth equation specify the number of
death and recovered individuals in symptomatic class. The term αS represents the natural death of susceptible people and αR shows

the death of recovered people. Dividing all the equations of the model (1) by (N) and setting S = S
N ,E = E

N , I1 = I1
N , I2 = I2

N ,R = R
N

and � = �
N (recruitment rate), as a result, model (1) may be expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − μ1SI1(1 + λ1I1) − μ2SI2(1 + λ2I2) − αS,

dE

dt
= μ1SI1(1 + λ1I1) + μ2SI2(1 + λ2I2) − (ρ1 + ρ2)E,

dI1
dt

= ρ1E − (α1 + β1)I1,

dI2
dt

= ρ2E − (α2 + β2)I2,

dR

dt
= β1I1 + β2I2 − αR,

(2)

where S + E + I1 + I2 + R = 1. The proposed mathematical model for COVID-19 outbreak is considered under the initial
conditions: S(0),E(0), I1(0), I2(0),R(0) ≥ 0. All of the involved parameters (μi, λi, ρi, βi, αi), (i = 1, 2) are considered to be
nonnegative. The model is designed to look at the role of asymptomatic transmission rates in the COVID-19 epidemic in comparison
to symptomatic transmission rates.

Using the above assumptions, we propose the following SEIR compartmental model of order 0 < θ ≤ 1 at time t ∈ [0, T], T < ∞
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

CDθS = � − μ1SI1(1 + λ1I1) − μ2SI2(1 + λ2I2) − αS,

CDθE = μ1SI1(1 + λ1I1) + μ2SI2(1 + λ2I2) − (ρ1 + ρ2)E,

CDθ I1 = ρ1E − (α1 + β1)I1,
CDθ I2 = ρ2E − (α2 + β2)I2,
CDθR = β1I1 + β2I2 − αR,

(3)

subject to the following initial conditions

S(0), E(0), I1(0), I2(0), R(0) ≥ 0.
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Fig. 1 Flowchart of the proposed
model (3)

The flowchart for the proposed model (3) can be seen in Fig. 1.

3 Preliminary definitions

This section is dedicated to some basic definitions and lemma that are necessary for achieving the existence theory.

Definition 3.1 [27] The integral of order θ > 0 of a function Z ∈ L1([0, T],R+) in the sense of R-L is the following:

IθZ(t) = 1

	(θ)

∫ t

0
(t − s)θ−1Z(s)ds.

Definition 3.2 [27] For derivative of order θ > 0 of a function Z ∈ ACn(0,∞), in the sense of Caputo is the following:

CDθZ(t) = 1

	(n − θ)

∫ t

0
(t − s)n−θ−1Z(n)(s)ds, n = [θ ] + 1.

Lemma 3.1 [27] If θ > 0, then the differential equation CDθZ(t) = G(t) will have the following solution:

Iθ
[
DθZ(t)

] = IθG(t) + B0 + B1t + B2t2 + · · · + Bn−1tn−1,

Bi ∈ R, i = 0, 1, 2, . . . ,n − 1,

where n = [θ ] + 1.

4 Existence theory of model (3)

We construct the existence theory for the considered model (3) in this section.
Let us write model (3) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(t,S,E, I1, I2,R) = � − μ1SI1(1 + λ1I1) − μ2SI2(1 + λ2I2) − αS,

f2(t,S,E, I1, I2,R) = μ1SI1(1 + λ1I1) + μ2SI2(1 + λ2I2) − (ρ1 + ρ2)E,

f3(t,S,E, I1, I2,R) = ρ1E − (α1 + β1)I1,

f4(t,S,E, I1, I2,R) = ρ2E − (α2 + β2)I2,

f5(t,S,E, I1, I2,R) = β1I1 − β2I2 − αR.

(4)

The proposed problem (3) can be reformulated in the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

CDθS = f1(t,S,E, I1, I2,R),

CDθE = f2(t,S,E, I1, I2,R),

CDθ I1 = f3(t,S,E, I1, I2,R),

CDθ I2 = f4(t,S,E, I1, I2,R),

CDθR = f5(t,S,E, I1, I2,R).

(5)
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The considered system (3) can be written in the form presented using Eq. (4):

CDθZ(t) = G(t,Z(t)), 0 < θ ≤ 1, (6)

Z(0) = Z0.

Equation (6) is solved using the R-L type integral as follows:

Z(t) = Z0 + 1

	(θ)

∫ t

0
(t − s)θ−1G(s,Z(s))ds, (7)

where

Z(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(t)

E(t)

I1(t)

I2(t)

R(t)

, Z0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S0

E0

I10

I20

R0

, G(t,Z(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1(t,S,E, I1, I2,R)

f2(t,S,E, I1, I2,R)

f3(t,S,E, I1, I2,R)

f4(t,S,E, I1, I2,R)

f5(t,S,E, I1, I2,R)

. (8)

For the existence theory, we define Banach space J = W1 × W2 × W3 × W4 × W5, where Wi = C([0, T]), (i = 1, 2, . . . , 5)

under the norm ‖Z‖ = ‖(S,E, I1, I2,R)‖ = maxt∈[0,T][|S(t)| + |E(t)| + |I1(t)| + |I2(t)| + |R(t)|].
Let U : J → J be an operator defined as follows:

U(Z)(t) = Z0 + 1

	(θ)

∫ t

0
(t − s)θ−1G(s,Z(s))ds. (9)

The existence of a solution is proved using the following theorem.

Theorem 4.1 [56] Suppose U : J → J is completely continuous and let 
(U) = {
Z ∈ J : Z = �U(Z), � ∈ [0, 1]} be

bounded. ThenU has at least one fixed point in J .

Theorem 4.2 Let G : [0, T] × J → R is continuous and the following hypothesis:

(P) There is constant LG > 0 such that for Z, Z ∈ J , then

|G(t,Z) − G(t,Z)| ≤ LG|Z − Z|.
is hold. There is at least one solution for the considered system (3) .

Proof We begin by proving that the operator U is completely continuous. Suppose a sequence {Zn} such that Zn → Z in J, then
for t ∈ [0, T], we have

‖U(Zn) − U(Z)‖ ≤ 1

	(θ)
max

t∈[0,T]

∫ t

0
(t − s)θ−1

∣
∣G(s,Zn(s)) − G(s,Z(s))

∣
∣ds,

≤ LG
	(θ)

‖Zn − Z‖ max
t→[0,T]

∫ t

0
(t − s)θ−1ds,

≤ TθLG
	(θ + 1)

‖Zn − Z‖.

Since, Zn → Z, so ‖U(Zn) − U(Z)‖ → 0 as n → 0. Thus U is continues. Let a bounded set S ⊂ J . Then by definition of S,
|G(t,Z(t))| ≤ CG, CG > 0, ∀ Z ∈ S. Then for each Z ∈ S, we can obtain

‖U(Z)‖ ≤ 1

	(θ)
max

t→[0,T]

∫ t

0
(t − s)θ−1|G(s,Z(s))|ds,

≤ CG
	(θ)

max
t→[0,T]

∫ t

0
(t − s)θ−1ds,

≤ TθCG
	(θ + 1)

.

Thus, U is uniformly bounded.
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Further, suppose 0 ≤ t2 ≤ t1 ≤ T. Then

‖U(Z)(t1) − U(Z)(t2)‖ ≤ CG
	(θ)

max
t→[0,T]

∣
∣
∣

∫ t1

0
(t1 − s)θ−1ds −

∫ t2

0
(t2 − s)θ−1ds

∣
∣
∣,

≤ CG
	(θ + 1)

max
t→[0,T]

∣
∣tθ1 − tθ2

∣
∣ → 0 as t1 → t2.

As a result, U is equicontinuous. Since U is both continuous and bounded, it is compact and so completely continuous. Let

 = {

Z ∈ J : Z = �U(Z), � ∈ [0, 1]}, we need to confirm that 
 is bounded. Suppose Z ∈ 
, then for t ∈ [0, T], we have:

‖Z‖ = max
t→[0,T]

{ �

	(θ)

∫ t

0
(t − s)θ−1G(s,Z(s))ds

}
,

≤ CG
	(θ)

max
t→[0,T]

∫ t

0
(t − s)θ−1ds,

≤ TθCG
	(θ + 1)

.

Hence, the operator is completely continuous and the set 
 is bounded. Therefore, according to Theorem 4.1, U has at least one
fixed point. As a consequence, the considered system (3) has the same number of solution. 
�

To prove the uniqueness, we utilize the Banach’s fixed point theorem [56].

Theorem 4.3 If the assumption (P) is hold and TθLG
	(θ+1)

< 1, then the solution of system (3) is unique.

Proof We define maxt∈[0,T] |G(t, 0)| = KG < ∞, such that R0 ≥ KG	(θ+1)

	(θ+1)−TθLG
. We have to show that U(AR0) ⊂ AR0 , where

AR0 = {
Z ∈ J : ‖Z‖ ≤ R0

}
. For Z ∈ AR0 , we have

‖U(Z)‖ ≤ 1

	(θ)
max

t∈[0,T]

∫ t

0
(t − s)θ−1(∣∣G(s,Z(s)) − G(s, 0)

∣
∣ + ∣

∣G(s, 0)
∣
∣
)
ds,

≤ Tθ (LG‖Z‖ + KG)

	(θ + 1)
,

≤ Tθ (LGR0 + KG)

	(θ + 1)
,

≤ R0.

Now, in view of (P), for Z,Z ∈ J, and for each t ∈ [0, T], we have

‖U(Z) − U(Z)‖ ≤ 1

	(θ)
max

t∈[0,T]

∣
∣
∣

∫ t

0
(t − s)θ−1G(s,Z(s))ds −

∫ t

0
(t − s)θ−1G(s,Z(s))ds

∣
∣
∣,≤ TθLG

	(θ + 1)
‖Z − Z‖. (10)

The contraction of U proves that the solution to the problem under consideration is unique. 
�

5 Well-posedness and biological feasibility

This section looks at the interval and region where our system’s solution will make perfect historical sense. Let N be the net
population size, i.e., N(t) = S(t) + E(t) + I1(t) + I2(t) + R(t). Then

N
′
(t) = � − αS − α1I1 − α2I2 − αR,

≤ � − αR.

Since, R ≤ N. So the above inequality becomes:

N
′
(t) ≤ � − αN.

We want that the function N(t) is a positively increasing function N
′
(t) > 0 then N(t) < �

α
and N

′
(t) ≥ N(t). The aforementioned

inequality is known as the threshold population level in the literature. As a result, we infer that the accepted set of solutions to the
proposed model must be contained within:
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� =
{
(S,E, I1, I2,R) ∈ R

5+ : 0 ≤ S + E + I1 + I2 + R <
�

α

}
(11)

Here in biological terms R5+ is the positive cone of R5 that also contains its lower-dimensional faces.

6 Disease-free and endemic equilibrium point

6.1 Disease-free equilibrium point

The point that no disease exists in the population is known as the disease-free equilibrium point. Let set CDθS(t) =C DθE(t) =C

Dθ I1(t) =C Dθ I2(t) =C DθR(t) = 0 to compute the equilibrium points from system (3). Then
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

� − μ1S(t)I1(t)(1 + λ1I1(t)) − μ2S(t)I2(t)(1 + λ2I2(t)) − αS(t) = 0,

μ1S(t)I1(t)(1 + λ1I1(t)) + μ2S(t)I2(t)(1 + λ2I2(t)) − (ρ1 + ρ2)E(t) = 0,

ρ1E(t) − (α1 + β1)I1(t) = 0,

ρ2E(t) − (α2 + β2)I2(t) = 0,

β1I1(t) − β2I2(t) − αR(t) = 0.

(12)

Applying the required conditions E = I1 = I2 = 0 in the system (12) for disease-free equilibrium, then the disease-free equilibrium
point of the considered model (3) is given below:

(S0,E0, I01, I
0
2,R

0) =
(

�

α
, 0, 0, 0, 0

)

. (13)

6.2 Endemic equilibrium point

The endemic equilibrium point (S∗,E∗, I∗1, I∗2,R∗) of the system (12) is as follows:

S∗ = �

α + μ1I21λ1 + μ2I22λ2 + μ1I1 + μ2I2
,

E∗ = μ1I21λ1S + μ2I22λ2S + μ1I1S + μ2I2S

ρ1 + ρ2
,

I∗1 = Eρ1

β1 + α1
,

I∗2 = Eρ2

β2 + α2
,

R∗ = β1I1 + β2I2
α

.

7 Basic reproduction number

The virus’s reproduction number, also known as R0, is a way of rating a disease’s propensity to spread and calculate the average
number of individuals infected by one infected person. In general, this basic reproduction number R0 is an epidemiologic metric
used to describe the transmissibility of infectious agents or contagiousness. So in this section, we will utilize the next generation
matrix technique to calculate the basic reproductive number for this model. Therefore, the infected compartments of our model are
the following:

⎧
⎪⎪⎨

⎪⎪⎩

CDθE(t) = μ1S(t)I1(t)(1 + λ1I1(t)) + μ2S(t)I2(t)(1 + λ2I2(t)) − (ρ1 + ρ2)E(t),
CDθ I1(t) = ρ1E(t) − (α1 + β1)I1(t),
CDθ I2(t) = ρ2E(t) − (α2 + β2)I2(t),

(14)

The Jacobian matrix of the system (14) is given by:

J0 =
⎛

⎝
−(ρ1 + ρ2) μ1S0 μ2S0

ρ1 −(α1 + β1) 0
ρ2 0 −(α2 + β2)

⎞

⎠ .
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Now decomposing the matrix J0 in terms of A and B, that is J0 = A − B, we have:

A =
⎛

⎝
0 μ1S0 μ2S0

0 0 0
0 0 0

⎞

⎠ , B =
⎛

⎝
ρ1 + ρ2 0 0

−ρ1 α1 + β1 0
−ρ2 0 α2 + β2

⎞

⎠ .

The basic reproduction number is obtained from R0 = ρ(AB−1), so we have:

R0 = S0(μ1β2ρ1 + μ2β1ρ2 + μ1α2ρ1 + μ2α1ρ2)

(ρ1 + ρ2)(β1 + α1)(β2 + α2)
, (15)

where S0 = �
α
. Hence, Eq. (15) is the basic reproduction number for the proposed system.

8 Stability of equilibrium points

The stability of equilibrium points is investigated in this section. The Jacobian matrix of system (3) is as follows:

J =

⎛

⎜
⎜
⎜
⎜
⎝

−α − μ1I1(1 + λ1I1) − μ2I2(1 + λ2I2) 0 −μ1λ1SI1 − μ1S(1 + λ1I1) −μ2λ2SI2 − μ2S(1 + λ2I2) 0
μ1I1(1 + λ1I1) + μ2I2(1 + λ2I2) −ρ1 − ρ2 μ1λ1SI1 + μ1S(1 + λ1I1) μ2λ2SI2 + μ2S(1 + λ2I2) 0

0 ρ1 −α1 − β1 0 0
0 ρ2 0 −α2 − β2 0
0 0 β1 β2 −α

⎞

⎟
⎟
⎟
⎟
⎠

.

So, the Jacobian matrix of system at E0 is:

J(E0) =

⎛

⎜
⎜
⎜
⎜
⎝

−α 0 −μ1�
α

−μ2�
α

0
0 −ρ1 − ρ2

μ1�
α

μ2�
α

0
0 ρ1 −α1 − β1 0 0
0 ρ2 0 −α2 − β2 0
0 0 β1 β2 −α

⎞

⎟
⎟
⎟
⎟
⎠

.

Theorem 8.1 Let R0 and Ai, (i = 1, 2, 3) be defined by (15) and (17), respectively. If R0 < 1, then by Routh–Hurwitz stability
criterion [57], the disease-free equilibrium point E0 of the model (3) is locally asymptotically stable if and only if A1 > 0, A3 > 0
and A1A2 > A3.

Proof The characteristic equation of the Jacobian matrix at the disease-free equilibrium point is det(J(E0) − φ I ) = 0. Then one
can achieved the following:

(φ + α)2(φ3 + A1φ
2 + A2φ + A3) = 0, (16)

where
⎧
⎪⎨

⎪⎩

A1 = β1 + β2 + α1 + α2 + ρ1 + ρ2,

A2 = (ρ1 + ρ2)(β1 + α1) − �α−1(μ1ρ1 + μ2ρ2) + (β2 + α2)(β1 + α1) + (β2 + α2)(ρ1 + ρ2),

A3 = (β2 + α2)(ρ1 + ρ2)(β1 + α1) − �α−1(μ1ρ1(β2 + α2) + μ2ρ2(β1 + α1)).

(17)

Rewriting the A3 in terms of the basic reproduction number R0, A3 becomes:

A3 = (β2 + α2)(ρ1 + ρ2)(β1 + α1)(1 − R0).

It is obvious in the first factor of above characteristic Eq. (16) that two eigenvalues φ1 and φ2 are always negative for α > 0. The
other three eigenvalues can be obtained by solving the following equation:

φ3 + A1φ
2 + A2φ + A3 = 0. (18)

The remaining three eigenvalues have negative real parts, if they follow the Routh–Hurwitz criteria of order 3, such that A1 >

0, A3 > 0 and A1A2 > A3. Therefore, R0 < 1 if and only if all the eigenvalues have negative real parts. Which completes the
proof. 
�
Individuals who are asymptomatic yet infectious play a critical role in spreading the disease across the population. When R0 > 1,
the endemic equilibrium state of the model (3) is stable, as shown in the following theorem.
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Theorem 8.2 Let R0 andBi, (i = 1, 2, 3, 4) be defined by (15) and (20), respectively. If R0 > 1, thenBi > 0 for all i = 1, 2, 3, 4.

Then by Routh–Hurwitz stability criterion [57], the endemic equilibrium point E∗ of the model (3) is locally asymptotically stable
if and only if B1B2B3 − B2

2 − B2
1B4 > 0.

Proof To show the local stability of the proposed model at endemic equilibrium point E∗, linearizing model (3) about E∗ such that:

J(E∗) =

⎛

⎜
⎜
⎜
⎜
⎝

−a1 0 −a2 −a3 0
a4 − (ρ1 + ρ2) a2 a3 0
0 ρ1 − (β1 + α1) 0 0
0 ρ2 0 − (β2 + α2) 0
0 0 β1 β2 −α

⎞

⎟
⎟
⎟
⎟
⎠

,

where

a1 = α + μ1I
∗
1(1 + λ1I

∗
1) + μ2I

∗
2(1 + λ2I

∗
2),

a2 = μ1I
∗
1λ1S

∗ + μ1S
∗(1 + λ1I

∗
1),

a3 = μ2I
∗
2λ2S

∗ + μ2S
∗(1 + λ2I

∗
2),

a4 = μ1I
∗
1(1 + λ1I

∗
1) + μ2I

∗
2(1 + λ2I

∗
2).

The characteristic equation associated with J(E∗) is:

(−φ − α)(φ4 + B1φ
3 + B2φ

2 + B3φ + B4) = 0, (19)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 = a1 + β1 + β2 + α1 + α2 + ρ1 + ρ2,

B2 = a1(β1 + β2 + α1 + α2 + ρ1 + ρ2) − a2ρ1 − a3ρ2 + β1(β2 + α2 + ρ1 + ρ2) + β2α1 + β2ρ1 + β2ρ2

+ α1ρ1 + α1ρ2 + α2ρ1 + α2ρ2 + α2α1,

B3 = a2ρ1(a4 − β2 − α2) + a1(−a2ρ1 − a3ρ2 + β2(α1 + ρ1 + ρ2) + β1(β2 + α2 + ρ1 + ρ2) + α2ρ1

+ α2ρ2 + α1ρ1 + α1ρ2 + α1α2) − a3β1ρ2 − a3α1ρ2 + a3a4ρ2 + β2α1ρ1 + β1α2ρ1 + β2α1ρ2

+ β1α2ρ2 + β1β2ρ1 + β1β2ρ2 + α1α2ρ1 + α1α2ρ2,

B4 = a4(a2ρ1(β2 + α2) + a3ρ2(β1 + α1)) + a1((β1 + α1)(−a3ρ2 + β2(ρ1 + ρ2) + α2(ρ1 + ρ2))

− a2ρ1(β2 + α2)).

(20)

From Eq. (19) it is clear that there are five corresponding eigenvalues of J(E∗). One of them is φ1 = −α, having negative real part.
The remaining four can be obtained by the solution of the following equation:

φ4 + B1φ
3 + B2φ

2 + B3φ + B4 = 0, (21)

Using Routh–Hurwitz criterion of order 4, we can conclude that given system (3) is local asymptotic stable at E∗. 
�

9 R0 Sensitivity analysis

The sensitivity analysis is applied to study the effect of the parameters on proposed COVID-19 outbreak model. In particular, it is
necessary to identify the most sensitive parameters causing a disturbance in model dynamics by a small change in numeric value.
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To check the R0 sensitivity, we calculate its derivatives as follows:

∂R0

∂�
= μ1β2ρ1 + μ2β1ρ2 + μ1α2ρ1 + μ2α1ρ2

α(ρ1 + ρ2)(β1 + α1)(β2 + α2)
,

∂R0

∂α
= −�(μ1β2ρ1 + μ2β1ρ2 + μ1α2ρ1 + μ2α1ρ2)

α2(ρ1 + ρ2)(β1 + α1)(β2 + α2)
,

∂R0

∂μ1
= �ρ1

α(ρ1 + ρ2)(β1 + α1)
,

∂R0

∂μ2
= �ρ2

α(ρ1 + ρ2)(β2 + α2)
,

∂R0

∂ρ1
= −�ρ2(μ2(β1 + α1) − μ1(β2 + α2))

α(ρ1 + ρ2)2(β1 + α1)(β2 + α2)
,

∂R0

∂ρ2
= �ρ1(μ2(β1 + α1) − μ1(β2 + α2))

α(ρ1 + ρ2)2(β1 + α1)(β2 + α2)
,

∂R0

∂α1
= − μ1�ρ1

α(ρ1 + ρ2)(β1 + α1)2 ,

∂R0

∂α2
= − μ2�ρ2

α(ρ1 + ρ2)(β2 + α2)2 ,

∂R0

∂β1
= − μ1�ρ1

α(ρ1 + ρ2)(β1 + α1)2 ,

∂R0

∂β2
= − μ2�ρ2

α(ρ1 + ρ2)(β2 + α2)2 .

Since, all the parameters are positive so ∂R0
∂�

, ∂R0
∂μ1

, ∂R0
∂μ2

, ∂R0
∂ρ2

> 0. It concludes that the reproduction number (R0) is increasing with
�,μ1, μ2 and ρ2. The normalized sensitivity indices corresponding to these parameters are estimated as follows:

	� = �

R0

∂R0

∂�
= 1,

	μ1 = μ1

R0

∂R0

∂μ1
= μ1ρ1(β2 + α2)

μ1ρ1(β2 + α2) + μ2ρ2(β1 + α1)
,

	μ2 = μ2

R0

∂R0

∂μ2
= μ2ρ2(β1 + α1)

μ1ρ1(β2 + α2) + μ2ρ2(β1 + α1)
,

	ρ2 = ρ2

R0

∂R0

∂ρ2
= ρ1ρ2(μ2(β1 + α1) − μ1(β2 + α2))

(ρ1 + ρ2)(μ1ρ1(β2 + α2) + μ2ρ2(β1 + α1))
.

Here, the sensitivity index can be constant depending on some parameters or can be free of any independent parameters. The
partial rank correlation coefficient (PRCC) results for significance of parameters involved in R0 can be seen in Fig. 2 and in Table 2.

10 Numerical results and discussion

In this section, we discuss the impact of parameters on reproduction number R0 in numerical simulations of the proposed model
using the fractional Euler method [58]. The numerical simulation of the present model (3) will be carried out to support the analytical
result using the value of the parameters as given in Table 1.

The sensitivity analysis is carried out by estimating the sensitivity indices based on the parameter values to examine the parameter
impact on R0. The sensitivity indices given in Table 2 are obtained by using the values of involved parameters. From the computed
sensitivity indices, it can be seen that a 10% increase in the recruitment rate �, asymptomatic transmission rate μ1, symptomatic
transmission rate μ2, and symptomatic infection rate ρ2 cause to increase the value of R0 by 10%, 2.6%, 7.3%, and 1.8%, respectively,
and can lead to an outbreak subsequently. However, it can be noticed that the symptomatic infection rate ρ2 does not affect R0

significantly. But on the other hand, asymptomatic infection rate ρ1, asymptomatic recovery rate β1, symptomatic recovery rate β2,
asymptomatic death rate α1 and symptomatic death rate α2 describe that increasing their values by 10% will decrease the value of
R0 by 1.8%, 2.5%, 5.5%, 0.1%, and 1.7%, respectively.

The impact of some parameters on the reproduction number is shown in Fig. 3. Figure 3a describes the reproduction number R0

sensitivity versus the asymptomatic transmission rate μ1 and asymptomatic death rate α1. Since from Table 2, it is clear that μ1 has
a positive impact while α1 has a negative impact on reproduction number R0. So, it can be seen in Fig. 3a the asymptomatic death
rate has no impact on R0 because no variation can be seen in R0 when α1 increases. On another side, the asymptomatic transmission
rate μ1 has a very high impact on R0. Figure 3b describes the reproduction number R0 sensitivity versus symptomatic infection rate
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Fig. 2 PRCC results for
significance of parameters
involved in R0

Table 1 List of used parameters in this study

Parameters Values/Day Source

� 4.21 × 10−05 [59]

α 4.21 × 10−05 [59]

μ1 0.2516 Assumed

μ2 0.3110 [60]

λ1 0.2213 Assumed

λ2 0.3041 Assumed

ρ1 0.1516 Assumed

ρ2 0.1818 [60]

β1 0.0700 Assumed

β2 0.0300 Assumed

α1 3.50 × 10−03 Assumed

α2 9.70 × 10−03 [60]

Table 2 Sensitivity indices of the R0 against the parameters

Sensitivity index Value Sensitivity index Value

	� 1.00000 	ρ2 0.18764

	α −1.00000 	α1 −0.01271

	μ1 0.26706 	α2 −0.17907

	μ2 0.73293 	β1 −0.25435

	ρ1 −0.18764 	β2 −0.55385

ρ2 and asymptomatic transmission rate μ1. So it can be seen in Table 2 that both parameters has a positive impact on reproduction
number R0. But the impact of asymptomatic transmission rate is higher than the symptomatic infection rate, which is depicted in
Fig. 3b.

Figure 3c shows the reproduction number R0 sensitivity versus the symptomatic transmission rate μ2 and asymptomatic death rate
α1. The impact of the symptomatic transmission rate is positive on the reproduction number, while the impact of the asymptomatic
death rate is negative. The impact of asymptomatic death rate is almost negligible, but the effect of the symptomatic transmission
rate is quite high enough where can be seen in Fig. 3c. Figure 3d shows the reproduction number R0 sensitivity versus asymptomatic

123



  395 Page 12 of 20 Eur. Phys. J. Plus         (2022) 137:395 

Fig. 3 The behavior of R0 with different parameters
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(a) (b)

(c) (d)

Fig. 4 The solution behavior of the all compartments for various values of θ

recovery rate β1 and symptomatic recovery rate β2. Both parameters have a negative impact on the reproduction number R0 (see
Table 2), but the affect is almost the same, which is shown in Fig. 3d.

Figure 3e demonstrates the reproduction number R0 sensitivity versus the asymptomatic transmission rate μ1 and symptomatic
recovery rate β2. The transmission rate μ1 of the asymptomatic pathway has a positive impact on reproduction number R0 and
symptomatic recovery rate β2 has a negative impact on R0, which can be seen in Table 2. From Fig. 3e, we can conclude that the
symptomatic transmission rate μ1 effects the reproduction number more than the symptomatic recovery rate β2. Figure 3f describes
the reproduction number R0 sensitivity versus symptomatic death rate α2 and symptomatic recovery rate β2. Both parameters have
a negative impact on reproduction number R0. But the impact is almost the same, which is shown in Fig. 3f.

Now we discuss the numerical results of the governing model in terms of approximate solutions. To achieve this goal, we
used the efficient fractional-order Euler technique with the Caputo fractional operator. The initial conditions are considered as
S(0) = 1 − E(0) − I1(0) − I2(0) − R(0), E(0) = 5/20000, I1(0) = 0, I2(0) = 0, R(0) = 0 with the total population N = 1 and
the values of the parameter are given in Table 1. We have utilized the MATLAB software to simulate the numerical results. Graphs
are depicted the approximate solutions obtained by using the suggested numerical approaches under the value of the considered
parameters. The dynamics of the suggested model population are graphically shown in Fig. 4 using the Caputo fractional derivative
with time sequence framework. Figure 4a shows the population behavior for θ = 0.7, Fig. 4b shows the population behavior for
θ = 0.8, Fig. 4c shows the population behavior for θ = 0.9 and the population behavior for θ = 1.0 is shown in Fig. 4d.

Figure 5 shows the solution behavior of S(t), E(t), I1(t), I2(t), and R(t) for θ = 0.7, 0.8, 0.9, 1.0. Figure 5a shows that
the susceptible population decreases rapidly at different rates and stabilizes after about 100 days due to restriction of individual
movements. As we can see that the decay rate is faster for a small value of θ , since the susceptible population S(t) is decreasing,
which affects the exposed population E(t) and more individuals get the infection. That is why we see an increase in the exposed
population in Fig. 5b. Besides, the exposed population E(t) in Fig. 5b is increased very quickly after 15 days and a decrease occurs
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(a) (b)

(e)

(d)(c)

Fig. 5 The solution behavior of S(t), E(t), I1(t), I2(t) and R(t) under different fractional order
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Table 3 Loop iterations corresponding to the sensitive parameters

Parameters Loop iteration Type of effect

Total Infection Plot Reproduction Number Plot

(1 ≤ i ≤ 5) (1 ≤ i ≤ 15)

μ1 μ1 + i× 0.05 μ1 + i× 0.001 Individual

μ2 μ2 + i× 0.05 μ2 + i× 0.001 Individual

ρ2 ρ2 + i× 0.05 ρ2 + i× 0.001 Individual

� � + i× 0.001 � + i× 0.000001 Individual

μ1, � μ1 + i× 0.005 μ1 + i× 0.005 Combined effect

� + i× 0.001 � + i× 0.000001 of μ1 and �

μ2,� μ2 + i× 0.005 μ2 + i× 0.005 Combined effect

� + i× 0.001 � + i× 0.000001 of μ2 and �

(a) (b)

Fig. 6 (a) Reproduction number with respect to μ1 and (b) Variation in total infection

almost after 70 days and then stables after 110 days. This decrease is happened due to the imposition of movement restrictions.
Moreover, the exposed population increases and decreases rapidly for smaller values of θ as compared to bigger values.

The asymptomatic class I1(t) and symptomatic class I2(t) in Fig. 5c and d have almost the same pattern, but the asymptomatic
population becomes stable after 150 days and the symptomatic population becomes stable after 200 days. Both populations have
grown rapidly, but the decline occurred due to standard operating procedures (SOPs) and vaccinations. The infection increases and
decreases quickly for smaller values of θ . Since we know that many innocent people have been died due to this pandemic, but there
are many who have survived as well due to timely treatment and following the SOPs. Most people have been vaccinated and are now
protected from infection. 52.9% population have received their first dose of the COVID-19 vaccination worldwide till November 13,
2021 [61], which reduced the infection and that is why the recovery rate has almost been stable. So in Fig. 5e, it can be seen that the
recovery rate is almost 83% of the population. The increase in recovery is due to a strong protection rate, people’s awareness about
the infection, government action, and vaccination. Besides, this rise up of recovery is also different for various values of fractional
order.

Here, we discuss the impact of the parameters �,μ1, μ2 and ρ2 on the basic reproduction number R0, where the values of
mentioned parameters is given in Table 2. The sensitive indices (mentioned above parameters) will be used to assess the propensity
of the total infection (I1 + I2) curve. Table 3 shows the loop iterations used to simulate model (3). The simulation has used different
sensitive parameter values to generate graphs of total infection and basic reproduction number R0 to examine the COVID-19 epidemic
pattern while the other parameters remain unchanged. The graphs are displayed via a panel in Figs. 6, 7, 8, 9, 10, 11, where the left
showing the basic reproduction number pattern and the right indicating the total infection behavior concerning a specific sensitive
parameter.

According to the sensitivity analysis, the symptomatic transmission rate μ2 is the second most sensitive component impacting
the epidemic. The parameters μ1 and μ2 have nearly a similar effect on basic reproduction number R0. In comparison with
asymptomatic transmission rate μ1 in Fig. 6a, with symptomatic transmission rate μ2 in Fig. 7a, μ2 causes a quicker and higher
increase in the total infection. The graph in Fig. 7b shows that roughly 58 percent of the overall population becomes infected with the
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(a) (b)

Fig. 7 (a) Reproduction number with respect to μ2 and (b) Variation in total infection

(a) (b)

Fig. 8 (a) Reproduction number with respect to ρ2 and (b) Variation in total infection

symptomatic transmission rate μ2 on day 40 (approximately). In contrast, about 52 percent of the total population becomes infected
with asymptomatic transmission rate μ1 on day 48 in Fig. 6b. Consequently, maintaining self-isolation and quarantine would be the
most effective ways to control COVID-19, which is disseminated by symptomatic transmission.

Figure 8 depicts the effect of the symptomatic infection rate ρ2 on basic reproduction number R0 and on total infection. From
Table 3 and Fig. 8a, it can be seen that the symptomatic infection rate ρ2 is less sensitive to the R0. Moreover, as shown in Fig. 8b,
it has a significant impact on the total infection of COVID-19 pandemic. Figure 9b shows the high effect of recruitment rate � on
R0. Also, it is shown for a minimal increase in �, the total number of infected people increases significantly.

Imposing a ban on population migrating from one place to another would thus be the most effective way of handling this outbreak.
The initial strategic action policy should be to established a management plan to control � in order to keep R0 < 1. As it is shown in
Fig. 9a, the value of R0 reaches from 5.8 to 20 for a minimal change in � from 0.00004 to 0.00016, indicating that the recruitment
rate to a region during the transmission of COVID-19 has a significant impact on the pandemic.

Furthermore, Figs. 10 and 11 present the simultaneous impact of (�,μi), (i = 1, 2) on basic reproduction number and total
infected population. Figure 10 illustrates the impact of (�,μ1) on R0 and the total infected population while Fig. 11 demonstrates the
impact of (�,μ2). Both total infection graphs 10b and 11b are almost identical but (�,μ2) significantly impacts basic reproduction
number compared to (�,μ1). This means that the severe endemic will happen if the recruitment rate and symptomatic transmission
rate change simultaneously.

Recently, India has faced the second wave of the COVID-19 pandemic, which had serious implications in the form of spiraling
cases, restricted availability of essential medications, and increased mortality, particularly among the young population. After the
second wave, the country was infected approximately by 34.4 million individuals and about 0.4 million died innocent people as of
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(a) (b)

Fig. 9 (a) Reproduction number with respect to � and (b) Variation in total infection

(a) (b)

Fig. 10 (a) Reproduction number with respect to � and μ1 and (b) Variation in total infection

(a) (b)

Fig. 11 (a) Reproduction number with respect to � and μ2 and (b) Variation in total infection
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Fig. 12 Real data vs. Simulated
data for the second wave of
COVID-19 in India from 22
February 2021 to 10 November
2021

November 13, 2021. The second wave was spread rapidly and had severely impacted the whole country. It is thought to be the second
worst epidemic to hit India nearly after a century. The last menace occurred during the 1918 influenza outbreak, which claimed the
lives of millions people. Here, we have taken the real data of COVID-19 spread in India from February 22, 2021, until November
10, 2021, from reference [62] and compared it with the simulated data in this research, which is shown in Fig. 12.

11 Conclusion

This study was aimed to investigate the effect of symptomatic and asymptomatic transmissions on the coronavirus (COVID-19)
outbreak using a fractional-order mathematical model, which is achieved successfully. The existence theory and uniqueness of
proposed model solution have been carried out with the help of Schaefer- and Banach-type fixed point theorems. The local stability
of the model is established through the Routh–Hurwitz criteria, which is concluded that the disease-free equilibrium is stable for
R0 < 1, whereas the endemic equilibrium becomes stable for R0 > 1 and unstable otherwise. The effect of the various parameters
on the reproduction number (R0) has also been analyzed. Besides, the transmission of the disease under various fractional orders is
investigated. In Fig. 11, it can be seen that the recruitment rate and symptomatic transmission rate are significantly impacting the
reproduction number. Therefore, the COVID-19 epidemic can be significantly reduced by controlling people from migrating and
strictly enforcing personal measures simultaneously. The total infected population plot has been compared with the real infected
population of India’s second wave of COVID-19 outbreak (proportion of the population) in Fig. 12 which showed the great agreement
of simulated results in this research with the real data. It is worth mentioning that the proposed model here can be studied under
stochastic or fuzzy differential operators in future research.
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