
Eur. Phys. J. Plus         (2022) 137:355 
https://doi.org/10.1140/epjp/s13360-022-02571-4

Regular Art icle

Crowding competes with trapping to enhance interfacial diffusion
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Abstract Diffusion of species on biological membranes or materials interfaces is expected to slow down with an increase in their
density, but also due to their intermittent binding to functional moieties or surface-defects. These processes, known as crowding
and trapping, respectively, occur simultaneously in a broad range of interfacial systems. However their combined effect on the
diffusion coefficients was not studied hitherto. Here, we analytically calculate and numerically validate by Monte Carlo simulations
an expression for the diffusion coefficient of a two-dimensional lattice gas in a field of immobilized traps. As expected, trapping and
crowding both suppress transport but, surprisingly, the diffusion coefficient is non-monotonous. Namely, increasing gas densities
increases trap occupancy while crowding is not overpowering, such that the diffusion reaches a maximum. These results should be
relevant to interfacial growth phenomena, as discussed in the context of nascent adhesions in cells.

1 Introduction

Diffusive transport at interfaces is an ubiquitous process in nature. Prototypical examples involve proteins on a phospholipid
membrane of a living cell [1], nanoparticles in liquid-filled solid pores [2], or molecules interacting with growing or functional
materials interfaces [3]. The characteristic of this transport is that it takes place on a two-dimensional surface, which by its structure
and molecular composition may be very complex. Often transport takes place at an appreciable concentration of diffusing species
which furthermore interact with defects on the surface or specifically incorporated functional moieties such as proteins on the
membranes [4]. These local interactions trap the diffusing species, intermittently arresting the particle, which in turn reflects on the
effective diffusion coefficient.

Diffusion on interfaces has been theoretically studied as a simplified problem of a stochastic motion on a lattice [5,6]. In these
models, steric hindrance between diffusing particles is typically introduced, which prevents double occupancy of the same lattice site.
For a gas of diffusing particles in these conditions, long-time diffusion coefficient has been determined by calculating many-particle
correlation functions [7–9], as well as by considering memory effects of diffusing particles [10]. These different approximations
were recently complemented with the exact calculation of the tracer particles’ probability distribution function on a crowded lattice
[11], yielding the diffusion coefficient as a function of gas density or surface coverage.

While the increased density of diffusing species rescales the diffusion constant at long times [12], interactions with defects,
however, yield a rich dynamic behavior [13,14], which was extensively studied using theoretical [15–17] and computational means
[18–20]. Particular efforts were focused on understanding the effect of interaction types on the diffusion of a tracer particle, which
lead to the random trap model [21], Havlin–Weiss comb model [22], or the quenched trap model [23].

Computational approaches provided insight on the effects of surface heterogeneity using the bivariate trap model [24,25]. Here,
the usage of lattice gas became established as they were shown to be a computationally efficient for coarse-graining and accurate
in the limit of large systems [26]. Hence, kinetic Monte Carlo simulations were used to study the diffusion of a tracer on a surface
with binding sites characterized by multiple energy levels [27]. It has been established that the tracer diffusion in the field of traps
exhibits a sub-diffusive motion on short time scales and normal diffusion on long time scales [1,27–29]. These works provided
significant impact on the role of the trap energetics on the diffusivity of a tracer [21], however, the combined effects of crowding
and trapping were not addressed so far in full depth to our knowledge.

In this work, we aim to rectify this situation by providing an approximate theory for surface diffusion of crowded particles in a
field of simple traps. We propose an expression for the long-time effective diffusion coefficient of the crowding particles using the
scaling argument as well as the master equation approach. The model is validated by a favorable comparison with Monte Carlo (MC)
simulations [30] (methodological details in Supplementary Information). In agreement with previous works [1,27–29], we find that
an intermittent sub-diffusive regime is inherited to the system as soon as the traps are introduced. More surprisingly, however, we
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Fig. 1 Depiction of a 2-D lattice
gas (solid spheres) in the field of
traps (red cones). If the particle
and trap position coincide, then
the particle can bind to the trap
with a probability Pon and unbind
with a probability Poff . Length
and time traversed by the particle
during diffusion from one trap to
another is referred as leff

t and
τt−t , respectively, while the time
in the trap is denoted as τoff

find that in the long time limit the diffusion coefficient may be enhanced by intermediate crowding effects for any concentration of
traps.

2 The model and the scaling arguments

We start with placing Nw particles, mutually interacting with a hard wall repulsive potential, on a 2D square lattice with Ng lattice sites
of a length a0. The concentration of gas particles on the lattice is cw = Nw/Ng . A random walking particle will traverse a distance
a0 during time τ = a2

0/4D0, where D0 is the diffusion coefficient of a particle at infinite dilution. The concentration-dependent
diffusion coefficient Dcr (red symbols in Fig. 2) is determined as Dcr(cw, D0) = D0 p(cw) where p(cw) is the concentration-
dependent probability of a jump, whereby the larger the concentration, the smaller the effective diffusion coefficient. p(cw) can
also be seen as the factor normalizing the characteristic time to make a step in the crowded environment τcr = τ/p. It has been
calculated using different approaches, [7–9], while here we estimate it from backward correlations as in the anti-persistent random
walk (APRW) model [10]. The appropriateness of this choice, which is a compromise between accuracy over the entire density range
and simplicity, as demonstrated by comparison with MC simulations and with other models (see section I and Fig.1 in Supplementary
Information).

The lattice is furthermore decorated by Nt randomly placed traps, the concentration of which is denoted as ct = Nt/Ng . Despite
the fact that traps and particles are on the same lattice, there is no exclusion between particles and traps, and a lattice site can be
filled by both to emulate the interaction of the particle and a defect. Upon hopping onto a site with a trap, a diffusing particle binds
with the probability Pon (Fig. 1), and unbinds with the probability Poff . Following the detailed balance condition, the binding energy
is �Eb = −kBT ln(Pon/Poff ). The latter sets the concentration of bound particles 〈cb〉, which can be calculated analytically from
the partition function of the system [31], and its exact form is given in the SI.

To estimate the diffusion constant in the long time limit for the lattice gas in the field of traps Deff , we aim at coarsening the
diffusion process and finding the scaling function f

Deff (cw, ct , Pon, Poff ) = f (cw, ct , Pon, Poff )Dcr(cw). (1)

Specifically, we presume that the effective diffusion coefficient can be related to the square of the average distance between two traps
at which binding actually occurs 〈l2t 〉eff , and the time it takes to make this coarsened diffusion step τ eff , i.e. 4Deff = 〈l2t 〉eff/τ eff . Here,
the average square distance between two efficient traps can be related to the effective concentration of traps ρeff as 〈l2t 〉 = a2

0/ρeff .
The latter can be estimated from the density of free traps ct − 〈cb〉, to which a diffusing particle can bind with the probability Pon

such that ρeff = (ct − 〈cb〉)Pon.
The characteristic time τ eff comprises of the time that it takes to leave a bounded trap τoff , and the time to diffuse to the next

trap where it binds again τt−t , which is simply τt−t = 〈l2t 〉eff/4Dcr = τcr/ρ
eff . To leave the trap, a particle must unbind with

the probability Poff and make a step with the probability p(cw), and hence, τoff = τcr/[Poff p(cw)]. With τ eff = τoff + τt−t , it is
straightforward to estimate the effective diffusion coefficient as

Deff = Dcr

(
1 + Pon

Poff

ct − 〈cb〉
p(cw)

)−1

. (2)

3 The master equation approach

The same result can be derived by considering the master equation approach (see SI for details of the calculation). We focus on
the probability of finding a particle P(r, t), at position r at time t . Since the later emerges as a sum of the probability of finding a
particle unbound on that site Pcr(r, t) and the probability of finding the particle trapped on the same site Ptr(r, t), we can write

P(r, t) = Pcr(r, t) + Ptr(r, t). (3)
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The time evolution of both probabilities is given by:

∂Pcr(r, t)
∂t

= γ

2d

d∑
i=1

(Pcr(r − ei , t) + Pcr(r + ei , t)

−2Pcr(r, t)) − keonPcr(r, t) + keoff Ptr(r, t), (4)

and
∂Ptr(r, t)

∂t
= keff

on Pcr(r, t) − keff
off Ptr(r, t). (5)

Here, γ = p(cw)/τ is the hopping rate of the particle and keff
on , keff

off are the effective binding and unbinding rates of any particle. By
introducing Fourier transform

S(k, w) = 1/π

∫
�

dr
∫ ∞

0
dt P(r, t)ei(wt−k.r) (6)

of Eqs. (4) and (5) we can calculate the relation between dynamic structure factors Scr(k, w) and Str(k, w). By calculating real part
of total Fourier transform Re(S(k, w)) and using the relation

Deff = lim
w→0

( lim
k→0

πw2/k2Re(S(k, w))) (7)

we obtain

Deff = Dcr
keff

off

keff
on + keff

off

(8)

We note that for keff
on = 0 the effective diffusion constant Deff reduces to Dcr.

To understand what are the effective rates, we start from the realisation that a particle can only bind to a trap if the trap is empty.
Hence, the effective binding rate is

keff
on = Pon(ct − 〈cb〉)/τ. (9)

Similarly, effective unbinding rate of a bounded particle depends on the availability of a free site to jump, so

keff
off = Poff p(cw)/τ. (10)

Substituting these expression for effective rates in Eq. (1) yields Deff equal to that in Eq. (2).

4 Results and comparison with simulations

Intuitively, one expects a monotonic decay of the effective diffusion coefficient with increasing the concentration of particles cw ,
which indeed is the result observed in the absence of traps (ct = 0 (red line and points in Fig. 2)). However, as soon as traps are
introduced (ct > 0), the effective diffusion coefficient starts to non-monotonically vary with the gas density and a maximum in
Deff (cw) is predicted by Eq. (2). This surprising property of lattice gas diffusion in the field of traps is confirmed by MC simulations
(symbols in Fig. 2a). Quantitative agreement between theory and simulations is obtained at low cw < 0.3 (irrespective of ct ) and
ct < 0.3 irrespective of cw (see Fig. 2c). At large densities cw > 0.6 and ct > 0.5, the agreement is qualitative (deviations larger
than 50, see white area in Fig. 2c), which suggest that higher-order correlations play an important role in this range of parameters.

In order to understand the mechanism underlying the non-monotonic behaviour of Deff , we extract the probability distribution
of the actual path length traversed by walkers between two successive trapping events lMC

d (Fig. 3). We also sample the distribution
of time between two trapping events τMC

d (inset of Fig. 3). We clearly see that at low concentrations of cw, both typical lengths of
the path, and the actual time between two trapping events is in average short, which means that the particles spend most time in the
traps, this being detrimental to the effective diffusion coefficient. We denote this regime as “trapping-dominated diffusion”.

The importance of trapping in this regime is confirmed by studying the diffusion of transparent particles, for which the hard
core repulsion is omitted and more than one can be on the same lattice site. The normalized effective diffusion for these type of
walkers Deff is, as expected unaffected by increasing cw at ct = 0 (red dashed line in Fig. 2b). Naturally, however, in the presence
of traps the Deff drops. At low densities of walkers, particle correlations play no role and the diffusion constant of transparent and
hard particles coincides, which can be seen by comparison dashed and full lines in Fig. 2b). Naturally at high densities the diffusion
coefficient saturates with the fraction of occupied traps, as crowding effects do not contribute.

For moderate cw , the characteristic τMC
d becomes significant while the tails of the distribution of lMC

d are the thickest as seen by
inspection of Fig. 3). This means that at these concentrations the particles spend extended time meandering through the system. In
this regime, a high level of trap occupancy is achieved by the significant concentration of walkers, but the crowding effects are not
sufficient to prevent the diffusion - i.e. the walkers move away from occupied traps before they interact with a free trap. This yields
“crowding enhanced diffusion” - a regime in which increasing the gas density increases the diffusion coefficient.
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(a) (b) (c)

Fig. 2 Diffusion coefficient as a function of trap density. Comparison of analytic modeling and simulations. a Effective diffusion coefficient, normalized
by the diffusion coefficient at infinite dilution, as a function of the lattice gas concentration cw for various trap densities ct (ct = 0, 0.1, 0.2, 0.3 and 0.4)
with Pon = 0.5 and Poff = 0.001 shown in log-linear scale. Results of MC simulations are shown with symbols, and theory (Eq. 2) with solid lines. b
Comparison of Deff between hard core particles (symbols) and transparent particles (dashed line) from MC simulation. c The deviation of effective diffusion
coefficient between our theory and simulation. The parameters we used in our calculations are mostly obtained from the ligand-receptor protein diffusion
system on biological membranes (see SI for details). Diffusion coefficient D0 is 1nm2/s [32]. The affinity for the trap is Eb = 6KBT , which is a typical
binding energy of a ligand-receptor pair during membrane adhesion [33–35]

Fig. 3 The probability
distribution of the path length of a
particle between two successive
trapping events (lMC

d ) is shown for
cw = 0.1, 0.3 and 0.9 for fixed
ct = 0.1, Pon = 0.5 and
Poff = 0.001 . In the inset,
corresponding distribution of time
between two successive trapping
events of a particle (τMC

d ) is

shown. Corresponding 〈lMC
d 〉 and

〈τMC
d 〉 is presented in the inset.

The data is obtained from kinetic
Monte Carlo simulations as
presented in lattice units

At high cw , nearly all traps are occupied, hence the walkers survive the longest between two trapping events, but they make
significantly shorter paths than in the intermediate regime. This is because the likelihood for making a step onto a next site decreases
significantly due to the high concentration of the particles, and therefore, there is enough time to actually interact with the trap. In this
regime, particle-particle correlations between second order become important. We denote this regime as “the crowding dominated
diffusion”.

The three regimes are clearly denoted in the diffusivity phase diagram (Fig. 4) which highlights the importance of the mean
number of occupied traps 〈cb〉. For a given ct , the latter increases with increasing cw until saturation, which in the case of reasonable
large binding affinities presumes that either nearly all walkers are bound, or that nearly all traps are occupied, depending on their
relative total number. In both cases, the particles are still diffusing and binding-unbinding kinetics are still ongoing. The boundaries
between the three regimes are determined from the inflection points in Deff/D0 vs cw for a given ct (red dashed lines in Fig. 4), with
Deff maximized for the particular concentration of particles cw as determined analytically (black dotted line) and fully supported
by simulations (black symbols).

5 Discussion and conclusions

In summary, we discussed the simultaneous effect of crowding and trapping on surface diffusion. Using scaling arguments and from
the master equation approach, we show that the diffusion is directly related to the density of free traps and not to the absolute density
of traps, the occupancy of which is defined by the density of the gas and affinity of the gas for the traps. We find the so-called
trapping-dominated diffusion as long as there are more traps than walkers in the system allowing significant interactions of the two,
impeding the capacity of walkers to explore the system. When the number of traps and walkers are comparable crowding-enhanced
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Fig. 4 Contour plot of the mean concentration of bound particles 〈cb〉 in the cw-ct plane. The intersection points between solid black lines and red dashed
lines represent the inflection points, calculated from our theory. Two red dashed inflection lines divide the plot into three regions, namely trapping-dominated
diffusion region (TDD), crowding enhanced diffusion region (CED) and crowding-dominated diffusion region (CDD). The black dashed line and points
represent the critical concentration of crowding, at which the effective diffusion coefficient is maximized. The lines have been calculated from our theory,
whereas the discrete data points have been obtained from MC simulation using Pon = 0.5 and Poff = 0.001

diffusion takes place, where the diffusivity increases with the density of walkers. In this regime, a large number of traps are occupied
but there is a significant fraction of particles still able to diffuse in an environment that is not overly crowded, which optimizes the
diffusion constant. Finally, if the number of walkers dominates, than crowding becomes significant even at relatively low cw . The
traps are, by and large occupied, but the particles have a smaller likelihood to move to the next site as it is likely already occupied.
Consequently the system displays crowding-dominated diffusion where the effective diffusion constant continuously decays with
the density of walkers. These results are confirmed by scaling arguments, analytical modeling and kMC simulations.

This mechanism is distinct from recent observation of enhanced diffusion in active systems. The latter was characterized in
several theoretical studies, including in diffusion of rod-shaped active particles [36], tracer diffusion inside active particles bath [37]
and external force driven tracer diffusion [38]. In these systems diffusion is enhanced either by the energetics of active particles or
by external force driven dynamics. However, in our minimalistic model of lattice gas in the presence of traps crowding-enhanced
diffusion relies solely on the interplay between crowding and trapping as part of equilibrium thermodynamics.

In various systems such as proteins on membranes interacting with the cell environment, colloidal films or granular particles in
trapping potentials, or in diffusion on solid interfaces with defects, the simultaneous effects of crowding and trapping are common.
Our theoretical model provides the key tools to analyze such systems. However, to further broaden its applicability or framework
could be extended to account for lateral “cis” interactions between traps and walkers. Modeling crowded membranes, may also
require the inclusion of multitude of walkers and trap types. This would impose stronger correlations.

From the experimental point of view, recent progress in label-free single-molecule techniques such as iSCAT, and development
of more stable dies used in STED microscopy, can provide detailed analysis of the discussed systems. One prominent example
is a measured 4-fold decrease in diffusivity of integrins diffusing on the cell membrane and interacting with RGD fragments on
the surface forming focal adhesion [39], which is consistent with our crowding-dominated regime. Following the characteristics of
nascent adhesions [4,40], our model would predict trapping-dominated regime (see SI Fig.4a), with a crossover in diffusivity taking
place during maturation of adhesions. While this prediction is yet to be confirmed, an interesting consequence of such a change in
diffusivity is the change in the effective unbinding probability of integrins (see SI Fig.4b). This can have an impact on the system’s
entropy production, and the sensing efficiency of the ensemble. This intriguing effect will be investigated more thoroughly in the
future.

Few recent experimental studies, furthermore, suggested that crowding can favorably affect diffusion. One example is the
facilitated diffusion of DNA-recognizing protein during specific target search over a long DNA strand [41–43], which is a system
that shows similar features as our model. Non-monotonous behavior was also observed in simulations of a tracer diffusing in a field
of particles crowding the environment, as a function of the density of crowder and the depth of the minimum of the tracer-particle
interaction potential, which is a result consistent with our findings albeit in three dimensions [44,45]. Moreover, in three dimensions
both experimental and theoretical studies on polymer transport in a crowded medium suggested that crowding enhances long-term
diffusivity [46,47]. It would be therefore interesting to extend our work from surface to volume diffusion and account for more
complex behavior and properties of traps.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjp/s13360-022-02571-4.
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