
Eur. Phys. J. Plus (2022) 137:332
https://doi.org/10.1140/epjp/s13360-022-02529-6

Regular Art icle

Vacuum decay in quadratic gravity

Silvia Vicentini1,2,a, Massimiliano Rinaldi1,2,b

1 Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38123 Povo, TN, Italy
2 Trento Institute for Fundamental Physics and Applications (TIFPA)-INFN, Via Sommarive 14, 38123 Povo, TN, Italy

Received: 27 November 2021 / Accepted: 26 February 2022
© The Author(s) 2022, corrected publication 2022

Abstract Metastable states decay at zero temperature through quantum tunnelling at an exponentially small rate, which depends
on the Coleman–de Luccia instanton, also known as bounce. In some theories, the bounce may not exist or its on-shell action may
be ill-defined or infinite, thus hindering the vacuum decay process. In this paper, we test this possibility in modified theories of
gravity interacting with a real scalar field. We consider an Einstein–Hilbert term with a non-minimally coupled scalar field and a
quadratic Ricci scalar contribution. To tackle the problem, we use a new analytic method, with which we prove that the scalar field
on the bounce has a universal behaviour at large Euclidean radii, almost independently of the potential. Our main result is that the
quadratic Ricci scalar prevents the decay, regardless of the other terms in the action.

1 Introduction

Coleman and De Luccia discovered long ago how to describe the decay of a metastable state using the Euclidean path integral in the
semi-classical approximation [1–3]. Such decay is driven by quantum fluctuations, which yield the spontaneous nucleation of a true
vacuum phase in a bubbly shape. The nucleation rate is exponentially small, and the exponent is proportional to the Euclidean action
of the theory evaluated on a particular O(4)-symmetric trajectory (called Coleman–de Luccia instanton or bounce) between the
tunnelling point and the false vacuum. Since the equations of motion are nonlinear, the bounce is usually found numerically [4–13],
although some analytical solutions exist [14–20]. Analytic approximate solutions can also be found when the energy difference
between the false and the true vacuum is sufficiently small, in what is called the thin-wall approximation [3,14,16,18,21,22]). To
demonstrate that a bounce does not exist is trickier. For instance, in the thin-wall approximation, this happens when the action has
no minimum for finite non-vanishing values of the bounce radius. Most systems though cannot be studied in this approximation, and
the question cannot be settled. Similar results may be derived in the case of a single scalar field non-minimally coupled to gravity
but only if the gravitational backreaction is small [23,24].

Some cases of physical interest, such as modified gravity, have not been investigated much yet in the context of vacuum decay
[25]. In this paper, we begin to explore systematically this class of theories and focus in particular on finding obstructions to the
decay process when the false vacuum state has a flat geometry. One of our main results is that quadratic gravity terms forbid vacuum
decay at zero temperature. Such term is usually required by renormalizability in quantized field theories on a gravitational (classical)
background [26–28] and arises also as a low-energy limit of f (R) gravity. Since the equations of motion, in this case, are quite
involved, we introduce a new method that allows determining the bounce at large Euclidean radii, i.e. when it approaches the false
vacuum, which will be called “asymptotic bounce” in the following. To illustrate it, we first focus on single scalar field theories on
a fixed, flat background. We then extend it to Einstein–Hilbert gravity as well as modified gravity and determine it in the following
cases

• a single scalar field theory with Einstein–Hilbert gravity, a non-minimal coupling ξφ2R and a quadratic term R2.
• a single scalar field theory with non-minimal coupling ξφ2R and a quadratic term R2.

Our findings allow us to verify whether

1. the equations of motion have a solution such that all fields approach the false vacuum at infinity;
2. this solution has well-defined and finite on-shell action;

and, thus, if the vacuum decay process is hindered in the aforementioned modified gravity theories. While these conditions constrain
the Coleman–de Luccia bounce, they do not apply to static solutions such as the Hawking–Moss instanton, which contributes to
vacuum decay when the false vacuum has a de Sitter geometry [29]. The violation of Condition 1. means that only bubbles of infinite
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Fig. 1 Scalar field potential with
two classical vacua (left panel)
and its Euclidean counterpart
(right panel). φfv is the value of
the scalar field at the false
vacuum, separated from the local
minimum of the potential by a
barrier, on top of which φ = φtop.
φ0 marks the bounce initial
condition: the field undershoots
(overshoots) when released for
φtop ≤ φ ≤ φ0 (φ0 ≤ φ ≤ φtv)

radius are critical, that is the only solution satisfying the boundary conditions is the false vacuum static solution, and thus, there
is no phase transition to the true vacuum. If, instead, the on-shell action is infinite, the decay rate vanishes (the so-called vacuum
quenching [3]). The bounce action may also be ill-defined near the false vacuum, i.e. at the upper bound of integration: this happens,
for example, if our candidate metastable state is a minimum of the Euclidean potential, and thus a maximum in Minkowski space.1

Such a state does not exhibit any metastability, but only an instability related to the local unboundedness of the potential around such
a fixed point. As we will see, quadratic gravity falls precisely in this class of theories. The structure of the paper is the following:
In Sec. 2, we introduce our method by first analysing a single scale field theory without gravity and then by including standard
general relativity. In Sec. 3, we include quadratic corrections and a non-minimal coupling. In Sec. 4, we repeat our analysis without
the Einstein–Hilbert term, i.e. with a scale-invariant gravitational sector. The asymptotic bounce has also numerical implications
that are explored in Sec. 5. We finally conclude in Sec. 6 some remarks and future directions. To keep the discussion as simple as
possible, we confine the most technical details in the appendices.

2 Scalar asymptotic bounce with Einstein–Hilbert gravity

2.1 Scalar asymptotic bounce

A metastable scalar field decays due to quantum tunnelling at an exponentially small rate �, given by [1,2,30,31]

� = Ae−B , (1)

where B is the difference between the Euclidean action calculated on the bounce and the one computed in the false vacuum state.
Consider a single scalar field theory with a metastable state (φfv in Fig. 1) and O(4)−symmetric Euclidean action

S = 2π2
∫ +∞

0
dt t3

(
φ̇2

2
+ V (φ)

)
, (2)

where the dot indicates a derivative with respect to the Euclidean radius t , and φ = φ(t). For the time being, we assume also that
φfv = 0 and V (φfv) = 0 . The bounce is a solution to the equation of motion

φ̈ + 3φ̇

t
= dV

dφ
(3)

with boundary conditions

lim
t→+∞ φ(t) = φfv φ̇(0) = 0. (4)

According to Eq. (3), the scalar field is subjected to friction and evolves as a particle moving in the potential −V (φ). The bounce
thus may be determined as the critical trajectory which separates undershoot trajectories (the scalar field does not quite reach the
false vacuum, inverting its velocity somewhere between φfv and φtop) from overshoot ones (the scalar field reaches the false vacuum
with finite velocity).

We now derive the asymptotic behaviour of the bounce for the theory in Eq. (2). Let us consider a generic undershoot trajectory
and look for an approximate solution for large t ≤ t∗, where t∗ marks the smaller radius at which the scalar field velocity changes

1 Despite this result seems trivial, as there is no potential barrier through which the scalar field can tunnel, early studies of the vacuum decay phenomenon
actually focused on tunneling without barriers [16]. Scalar field decay in a quartic potential with negative coupling is an example of this behaviour.
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sign (φ̇(t∗) = 0). In order to find the asymptotic bounce, we then take the limit t∗ → ∞. The right-hand side of Eq. (3), expanded
around t∗, reads (the subscript ∗ indicates quantities evaluated at t∗)

dV

dφ
=

(
dV

dφ

)
∗

+
∑
n≥2

fn∗
(t − t∗)n

n! (5)

where the general form of the coefficients fn∗ is reported in Appendix A. We require that every fn is such that the approximation

dV

dφ
≈

(
dV

dφ

)
∗

(6)

holds when t∗ is large.2 As explained in Appendix A, this means that we should require
(

d j V

dφ j

)
∗
φ̈
j−2∗ t∗2 j−2 � 1 (7)

for j ≥ 2. Under these conditions, Eq. (3) becomes

φ̈ + 3φ̇

t
=

(
dV

dφ

)
∗

(8)

and the solution reads

φ(t) = φ∗ −
(

dV

dφ

)
∗
t∗2

4
+

(
dV

dφ

)
∗
t2

8
+

(
dV

dφ

)
∗
t∗4

8t2 , (9)

where we used φ(t∗) = φ∗ and φ̇(t∗) = 0 to fix the two integration constants. Taking the limit φ∗ → 0 and t∗ → +∞, we find the
asymptotic behaviour of the bounce

lim
φ∗→0
t∗→+∞

φ̇(t) = −C0

t3 , lim
φ∗→0
t∗→+∞

(
dV

dφ

)
∗

= 4C0

t∗4 ,

lim
φ∗→0
t∗→+∞

φ(t) = C0

2t2 , (10)

from sufficiently large t up to t → +∞. The constant C0 is determined by the second limit in Eqs. (10). As

lim
t∗→+∞ φ̈∗t∗4 = 4C0 (11)

we should also impose the conditions
(

d2V

dφ2

)
∗
t∗2 � 1 , 4C0

(
d3V

dφ3

)
∗

� 1 , (12)

to guarantee that the constraint Eq. (7) holds, implying that the scalar field should be massless with small cubic self-interactions. By
using Eq. (10), it is trivial to verify that Condition 2. holds (while Condition 1. does not apply since we have only one equation of
motion). The asymptotic t−2 behaviour of the scalar field near the bounce in Eq. (10) has been already observed by [32] in the case
of Higgs decay with Einstein–Hilbert gravity.

A massive but light scalar field satisfies Eq. (10) for t∗ � m−1, while for t∗ 	 m−1 instead it should be proportional to e−mt

[33]. The proportionality constant may be determined with our method, but a finite mass makes calculations much more involved,
as Eq. (12) suggests that the potential is important at each order in the Taylor expansion.

2.2 Asymptotic bounce with Einstein–Hilbert gravity

The above results can be readily generalized in the case of a single scalar field theory with Einstein–Hilbert gravity, when the false
vacuum geometry is flat. The Euclidean action is

S =
∫

d4x
√
g

[
−M2

P R

2
+ 1

2
(∂φ)2 + V (φ)

]
. (13)

If the line element is O(4)-symmetric (in analogy with the flat space case Eq. (2))

ds2 = dt2 + ρ(t)2d�2
3 , (14)

2 We can formulate this condition also as t − t∗ ∼ −At∗ with A of order unity.
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Equation (15) becomes

S = 2π2
∫ +∞

0
dtρ(t)4

[
−M2

P R

2
+ φ̇2

2
+ V (φ)

]
. (15)

The equations of motion are

φ̈ + 3
ρ̇ φ̇

ρ
= dV

dφ
, (16)

ρ̇2 = 1 + ρ2

3M2
P

(
φ̇2

2
− V (φ)

)
. (17)

As V (φfv) = 0, we have that Eq. (17) yields

ρ(t) ≈ t + higher orders (18)

near the bounce at large times, thus readily giving Eq. (10) for a single scalar field theory with Einstein–Hilbert gravity. Note that
Eq. (10) along with Eq. (18), together with Eq. (17), proves that Condition 1. holds. Moreover, the action (15), computed on the
asymptotic bounce, is a convergent integral at t → +∞.

2.3 Examples

We now test our findings in two examples:3

• the Higgs potential

V (φ) = λ(φ)

4
φ4 (19)

where


(φ) = λ∗ + α′ ln (φ)2 + β ln(φ)4 (20)

and λ∗ = −0.0013, α′ = 1.4 × 10−5, β = 6.3 × 10−8 (see [34]);
• a polynomial potential with vanishing quadratic term

V (φ) = α1φ
5 + α2φ

4 + α3φ
3 (21)

where we choose α1 = 1, α2 = −1, α3 = 10−6.

One can easily prove that Eq. (7) is satisfied for φ∗ → 0 in the Higgs case for all α′, β, λ∗ and for α3C0 � 1 for the polynomial
potential. In both cases, we compare t∗ as a function of φ∗ as given by our theoretical prediction Eq. (10) (red line in Fig. 2) with
a numerical evaluation (black dots) and found good agreement among the two. The green line instead marks the position of the

minimum for the numerical calculation, which corresponds to the maximum of
dV

dφ
in the Higgs case. We took C0s to be the ones

determined numerically with the method described in Sec. 5 and reported in Table 1.

3 The asymptotic bounce in modified gravity

As mentioned in Introduction, the decay of a metastable state in single scalar field theories with modified gravity may be hindered
by the absence of a bounce with finite on-shell action. In this section, we consider Einstein–Hilbert gravity, a non-minimal coupling
ξφ2R, and a quadratic Ricci scalar αR2 and test for Conditions 1. and 2. in each case. These terms are usually required by
renormalizability in quantized field theories on a gravitational (classical) background [26–28]. The Euclidean action is (the line
element is again given by Eq. (14))

S = 2π2
∫ +∞

0
dtρ(t)3

(
φ̇2

2
+ V (φ) − M2

P

2
R − ξ

2
φ2R + α

36
R2

)

where

R = −6(ρ̇2 − 1 + ρρ̈)

ρ2 . (22)

3 The mass unit is G = (M2
P8π)−1 = 1.
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Fig. 2 Top: t∗ as a function of φ∗ for potentials Eq. (19) (on the left) and Eq. (21) (on the right), in the vicinity of the bounce (φ∗ → 0). Bottom: V ′(φ) as
a function of φ

Table 1 On-shell action computed with the asymptotic bounce cut-off with the shooting method (sm in the Table) one

φ0
|
S|
Ssm

S C0 t̄ t∗ (SJ − SE )

SJ

Higgs 0.071 10−4 2063.3 17.6 × 103 103 1010 ×
Polynomial α3 = 10−6 24 × 10−4 10−4 6.5961 1617 104 106 ×
Polynomial α3 = 10−5 76 × 10−4 10−5 6.6293 537 103 106 ×
Polynomial α3 = 10−4 23 × 10−3 10−3 6.7442 172 103 105 ×
Polynomial α3 = 10−3 68 × 10−3 10−3 7.1529 59.0 102 104 ×
Polynomial α3 = 10−2 18 × 10−2 10−3 9.0185 23.3 102 104 ×
Higgs + 0.1φ2R/2 154 × 10−3 10−5 2049 8160 105 108 5 × 10−5

Higgs + φ2R/2 17.7 × 10−3 ×10−5 2094 7.04 × 105 105 1010 3 × 10−3

Higgs + 10φ2R/2 2.00 × 10−3 10−3 2140 6.42 × 105 106 1010 3 × 10−2

The initial condition φ0, the on-shell action computed with the asymptotic bounce cut-off S and its relative deviation with respect to the shooting method
result are reported, along with C0 and the order of magnitude of t̄ and t∗

The equations of motion are

ρ̇2 = 1 + ρ2

φ̇2

2
− V (φ) + α

36
R2 +

(α

3
Ṙ − 6ξ φ φ̇

) ρ̇

ρ

3
(
M2

P + ξφ2 − α

9
R
) , (23)

φ̈ + 3
ρ̇ φ̇

ρ
= dV

dφ
− ξφR. (24)

In addition, we consider the trace of the Einstein equation

0 = − [
3M2

P + 3ξ(1 + 6ξ)φ2 + α�
]
R + 3φ̇2(1 + 6ξ) + 12V (φ) + 18ξφ

dV

dφ
. (25)

We first consider the non-minimal coupling case (ξ 
= 0, MP 
= 0 and α = 0) , which has been already extensively analysed, in
particular concerning Higgs decay [24,35–37]. No obstruction according to Conditions 1. and 2. has been found so far; thus, the
same should hold for generic massless fields, since, as we have demonstrated, the asymptotic bounce is fairly independent of the
potential. Still, we should verify whether Eq. (7) is sufficient for Eq. (10) to hold. Moreover, the asymptotic bounce itself may differ
from the ξ = 0 case. We will turn then to quadratic gravity.
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3.1 Non-minimal coupling only

As α = 0, φ is the only propagating scalar degree of freedom, and Eq. (24) depends on gravity both through the friction term and the
Ricci scalar. The former is approximately given by Eq. (18) near the bounce at large times. Using Eqs. (25) in (24) and expanding
around the false vacuum (φfv = 0), we get

φ̈ + 3
φ̇

t
= dV

dφ
− ξ

M2
P

φφ̇2(1 + 6ξ). (26)

Now we expand Eq. (26) around the turning point t∗, evaluate it for t ≤ t∗, take the large t∗ limit and see under which conditions the
zeroth-order term dominates the Taylor expansion, and thus, when Eq. (10) holds. Barring numerical cancellations,4 we can write

+∞∑
n=0

(
φφ̇2)

∗
(t − t∗)n

n! ≈
+∞∑
n=2

(
φ3)

∗
(t − t∗)n−2

n! (27)

apart from numerical factors. This gives

φ̈ + 3
φ̇

t
≈

+∞∑
n=0

(
dV

dφ

)
∗

(t − t∗)n

n! − ξ(1 + 6ξ)

M2
P

+∞∑
n=2

(
φ3

t∗2

)
∗

(t − t∗)n

n! (28)

if we take t − t∗ ≈ −At∗, where A is a constant of order unity. As quartic interactions always satisfy Eq. (7), we conclude that
such term does not give an appreciable contribution to the Taylor expansion at large times on the bounce. Thus, if Eq. (12) holds
on V (φ), we can safely approximate the potential as Eq. (6), and thus, Eq. (10) holds. Notice that taking Eq. (10) and ρ(t) ≈ t in
Eq. (23) gives consistently ρ̇ ≈ 1, and the Lagrangian decays sufficiently fast so that its integral Eq. (22) converges for t → ∞.
Thus, as expected, no obstructions to decay are found in this case. The same calculations may be carried out in the φfv 
= 0 case and
lead to analogous results, with a shifted integration constant

lim
φ∗→0
t∗→+∞

(
1 − 6ξ2φ2

fv

M2
P + ξ(1 + 6ξφ2

fv)

) (
dV

dφ

)
∗

= 4C0

t∗4 . (29)

3.2 Quadratic gravity only

We now set ξ = 0, α 
= 0. The scalar field equation of motion depends on gravity only through the friction term, while the trace
equation Eq. (25) gives the dynamics of R when subjected to a scalar field source, given by the trace of the stress-energy tensor.
In this case, we have two propagating degrees of freedom, the scalar field and the Ricci scalar. As we have coupled equations of
motion, it seems that we cannot use the same argument as above, since there is no clear undershoot/overshoot distinction in this
case. However, one finds that the scalar field equation of motion actually decouples near the bounce at all times. In fact, if Eq. (25)
holds at some time t , we can determine R as given by Eq. (25) with

� ≈ dt2

dt2 + 3

t

d

dt
. (30)

The Ricci scalar depends only on deviations from the flat space solution (see Eq. (22)), and so, if small at some time, it should remain
as such: in order to trigger large deviations from flat space in R, they should first appear in Eq. (30), but this means that higher-order
deviations from flat space (in R) are determined by lower-order deviations (in the friction term), which is impossible. Thus, we can
safely take Eq. (18) to hold in Eq. (23) at all times. To determine the Ricci scalar asymptotic bounce, we solve Eqs. (25) with (30).
We find R = Rhom + Rps with

Rhom = ε2C1
J1

(
ε t ′

)
t

,

Rps = −ε2 π

2

J1
(
ε t ′

)
t

∫ t

F(y)Y1
(
ε3 y′) y2dy

+ε2 π

2

Y1
(
ε3 t ′

)
t

∫ t

F(y)J1
(
ε y′) y2dy . (31)

4 Here we are using the fact that the second derivative of φ3 contains φφ̇2. We can trade one for the other because our calculations were carried out without
accounting for numerical factors, and thus, they are independent of possible numerical cancellation among different terms generated by φ3 in the Taylor
expansion.
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Here, J, Y are Bessel function of the first kind,

A =
√

3M2
P

|α| , t ′ = A(t + a) ,

{
ε = 1 α > 0

ε = i α < 0 ,
(32)

C1,2 are constants, and the function F(t) is given by

F(t) = 3φ̇(t)2

α
+ 12

α
V (φ(t)) . (33)

Using Eq. (10), we find that the Ricci scalar can be approximated as

R = ε2(C1 + C̃1)
J1 (ε At)

t
+ C̃2

Y1
(
ε3 At

)
t

+ O(t−6) (34)

where

C̃1 = −π

2
ε2

∫ +∞

0
F(y)Y1

(
ε3 y′) y2dy (35)

C̃2 = π

2
ε2

∫ +∞

0
F(y)J1

(
ε y′) y2dy. (36)

Higher-order terms O(t−6) are computed by using the asymptotic forms of the Bessel functions J , Y for large arguments [38]

J∞
1 (z) =

√
2

π z
cos

(
z − 3π

4

)

Y∞
1 (z) =

√
2

π z
sin

(
z − 3π

4

)
. (37)

The Ricci scalar is dominated by the first two terms in Eq. (34) unless both C1 + C̃1 and C̃2 vanish. However, one can prove that C̃2

is always non-vanishing. In fact, we have
∫ +∞

0
F(t)J1(t

′)t2dt <

∫ +∞

0
t ′t2F(t)dt (38)

and the right-hand side is negative definite if
∫ +∞

0
t3

(
φ̇2

2
+ V (φ)

)
dt < −

∫ +∞

0
t3V (φ)dt. (39)

To prove that, we consider an off-shell scalar field profile which corresponds to the bounce of the same theory without gravitational
interaction. Then, the left-hand side of Eq. (39) is the bounce action of said theory, in the approximation of small gravitational
backreaction. As computed in [23], this profile may be used to determine the on-shell action of the theory with also an Einstein–
Hilbert term (i.e. the right-hand side).5 One finds [23] that it is always larger than the flat space one, making C̃2 < 0 for α > 0 and
C̃2 > 0 for α < 0.

Finally, using Eqs. (37) in (34) shows that R diverges for t → +∞ for α < 0, thus implying that Condition 1. is violated.
For α > 0, instead, R undergoes damped oscillations around the fixed point R = 0. Such oscillations are, to the leading order,
the same of a free massive scalar field around its minimum, and they make the action undefined in the upper limit of integration,
thereby violating Condition 2. It seems thus that adding a gravitational degree of freedom does not lead to vacuum decay from the
state φ = φfv, R = 0, independently on the value of α. This is related to the boundary value nature of the problem: it makes the
bounce solutions non-perturbative as new interactions or additional scalar fields are turned on.6 In the present case, the stress-energy

5 Actually, the approach undertaken in [23] is slightly different, and it considers the flat-space bounce as a background for a perturbative expansion, in order
to determine the action of a scalar field theory with an Einstein–Hilbert term as

S = S0 + A

M2
P

+ O(M−4
P )

where S0 is the on-shell action of the flat space theory and A is some real constant. Some concerns have been raised in the literature [36,39] about this point,
which is furtherly addressed in Appendix C.
6 This is analogous to what happens to massive scalar fields with quartic self-interactions. If the mass vanishes, there is a bounce given by

φ(t) =
√

2

λ

2R
t2 + R2

where R is the bounce radius φ0 = 2R, but it disappears as soon as the mass is turned on.
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tensor naturally couples gravity and matter, making the new (gravitational) degree of freedom necessarily interacting with the scalar
field. One may then ask whether the obstruction arises merely by the addition of the new degree of freedom or, instead, also by
non-derivative terms in Eq. (25). If the former holds, one might guess that a bounce is forbidden also in theories with a scalar field,
an Einstein–Hilbert term and a generic coupling αRn , with integer n, as they also have two degrees of freedom. Equation (25) in
that case is

αn(n − 1)Rn−3
(
RR̈ + 3ρ̇

ρ
RṘ + (n − 2)Ṙ2

)
= −6M2

p R + 6φ̇2 + 24V (φ). (40)

Near the bounce at large times one has (
R̈ + 3ρ̇

ρ
Ṙ

)
Rn−2 � R (41)

for n > 2 and Ṙ2Rn−3 � R for n > 3. Then, for n > 3, R is approximately given by

R ≈ φ̇2 + 4V (φ)

M2
P

(42)

which does not allow to exclude in principle a bounce. Then, obstructions related to Conditions 1. and 2. that arise in the n = 2 case
seem not to be merely related to the presence of derivatives of R in the Einstein trace equation. For n = 3 instead one has

α Ṙ2 = −M2
p R + φ̇2 + 4V (φ) (43)

near the bounce at large times. Now one would need to determine which terms dominate Eq. (43) and thus the asymptotic bounce
of R. Our calculations in Appendix rely though on a specific form of the equation of motion. Moreover, we weren’t able to find a
full solution to Eq. (40). This makes a solution not feasible with our present means.

3.3 Non-minimal coupling and quadratic gravity

We have seen that including a squared Ricci scalar results in a bounce action that is ill-defined for α > 0. Thus, we expect that
setting ξ 
= 0, along with α 
= 0 and M2

P 
= 0, does not change much the situation and we now show that this is the case. Equations
(24) and (25) are coupled, so we need first to disentangle them to read the scalar field asymptotic bounce and use it to find the Ricci
scalar. To do that, we use Eqs. (24) in (25) to replace non-derivative terms in R. We find

R = C1 +
∫ t

t ′−3
∫ t ′

F(t ′′)t ′′3dt ′dt ′′ (44)

with

αF(t) = 3φ̇2(1 + 6ξ) + 12V (φ) + 18ξφ
dV

dφ

− 3ξ

(
(1 + 6ξ)φ + M2

P

φ

) (
φ̈ + 3

φ̇

t
− dV

dφ

)
. (45)

Defining f (t) as
∫ t

t ′−3
∫ t ′

F(t ′′)t ′′3dt ′dt ′′ ≡ f (t)F(t) (46)

and replacing R in Eqs. (24) with (44), we find

φ̈F1(φ, t) + 3φ̇

t
F2(t) = dV

dφ
F3(t) + 12ξφV (φ) f (t) (47)

with

F1(φ, t) = 1 + 3ξ

α
φ f (t)

(
(1 + 6ξ)φ + M2

P

φ

)
≈ 3ξ

α
M2

P f (t) + 1 (48)

F2(φ, t) = 1 − 3ξ

α
(1 + 6ξ)φφ̇t f (t) + 3ξ

α
φ f (t)

(
(1 + 6ξ)φ + M2

P

φ

)
≈ 3ξ

α
M2

P f (t) + 1

(49)

F3(φ, t) = 1 + 18ξ2

α
φ2 f (t) + 3ξ

α
φ f (t)

(
(1 + 6ξ)φ + M2

P

φ

)
≈ 3ξ

α
M2

P f (t) + 1 (50)
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near the bounce at large times. Therefore, the scalar field equation of motion may be approximated as:

φ̈ + 3φ̇

t
= dV

dφ
(51)

for small φ, as if the non-minimal coupling was negligible. Thus, we find again that φ(t) ∝ t−2, which leads to the same obstructions
to vacuum decay as in the previous case.

4 Scale-invariant gravity

In this section, we consider a scale-invariant gravitational sector (that is we set MP = 0), leaving V (φ) as the only possible source
for mass scales in the theory. From a cosmological perspective, an extremely rich phenomenology arises if also the scalar field sector
is scale-invariant [40–42]; therefore, it is important to study the stability of these configurations against vacuum decay. As we will
see, our findings regarding the asymptotic bounce consistently differ from the ones found in the previous section.

4.1 Non-minimal coupling

We begin with the simplest case, when also α = 0. By combining Eq. (25) with Eq. (24) to eliminate R, we find an analogous
equation to Eq. (3), namely

ü + 3
ρ̇ u̇

ρ
= dW

du
≡ 4

1 + 6ξ

(
u

dV

du
− 2V (u)

)
, (52)

where u ≡ φ2. As for Eq. (3), if u is massless with sufficiently small cubic interactions with respect to the potential W (u), we have
that the asymptotic behaviour is as in Eq. (10) and thus

φ(t) =
√
C0

t
. (53)

Plugging this solution in Eq. (23), we see that there is an inconsistency in boundary conditions for gravity, as using ρ(t) = t and
Eq. (10) we find at leading order in the large t limit

ρ̇2 = 3 + 1

3ξ
− V (φ)t4

3ξC0
+ O

(
t−1) . (54)

Thus, there is no bounce if the false vacuum lives on flat space, unless also the scalar field sector is scale-invariant, with potential7

V � 1

C0
(6ξ + 1) φ4. (55)

This situation changes if the scalar field has a non-vanishing false vacuum value. In fact, if the potential is such that V (φfv) = 0,
φfv 
= 0 and V (u) satisfies Eq. (12), we have that, on the bounce at large times,

φ(t) ≈
√

φ2
fv + C0

2t2 . (56)

From the discussion above, we expect that the asymptotic bounce is reached only in a narrow region around φfv (otherwise we would
get again Eq. (54)), namely

φ2
f v 	 C0

2t2 (57)

and thus we can replace Eq. (56) with

φ(t) ≈ φfv + C0

4φfvt2 . (58)

Using Eqs. (24), (58) and Eq. (18), we get

ρ̇(t) = 1 + O
(
t−4) . (59)

7 Our analysis actually excludes scale-invariant potentials as there is no undershoot/overshoot distinction in that case. The asymptotic bounce (and thus
possible violations of conditions 1. and 2. ) should thus be found with other methods.
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Equation (57) implies that, if φfv is much smaller than the potential barrier width 
8 the scalar field has not yet reached the asymptotic
bounce regime when V (φ) > 0. This possibly makes ρ̇ vanish, if additionally V (φ) 	 φ̇2, making φ self-accelerated.9 Imposing
ρ̇ = 0 for φ ≈ φfv + 
 and using V (φ) 	 φ̇2 gives

ρ2

 = 3ξ(φfv + 
)2

V (φfv + 
)
. (60)

This behaviour is avoided if ρ
 > t̄ , where t̄ indicates the time by which

φ̇2

2
= V (φ) (61)

on the asymptotic bounce, which in turn gives

C0 = −2φfv t̄
3
√

2V (Bφfv) (62)

where B is some constant of order unity. Setting also

ufv ≈ C0

2t̄2 (63)

we find the condition on φfv, 
 and ξ in order for the bounce to exist

6ξ(φfv + 
)2V (Bφfv)

φ2
fvV (φfv + 
)

+ 1 < 0. (64)

This condition is marginally satisfied for φfv ≈ 
 and ξ ≈ 1

24
. Decreasing ξ shrinks the range of φfv for which a bounce is forbidden.

Moreover, Eq. (63) underestimates the actual t̄ , thus having the same effect. We tested this result taking as V (φ) the Higgs potential
Eq. (19) with φ → φ − φfv. We computed numerically the values of φfv for which F(φfv, ξ) = 0, with F(φfv, ξ) defined as

F(φfv, ξ) ≡ 6ξ(φfv + 
)2V (Bφfv)

φ2
fvV (φfv + 
)

+ 1 (65)

and reported the result in Fig. 3 (on the right) as a function of ξ . We found that the zero of F(φfv, ξ) decreases for increasing ξ ,
and they lie approximately at φfv ≈ 
 ≈ 5 × 10−9G−1/2. We also found the bounce numerically, varying φfv ∈ [10−8, 10−3] and
ξ ∈ [0.01, 10]. The on-shell action is reported in Fig. 3, on the left. We found that the action sharply increases for φfv ≥ 10−8, and
there is no bounce for lower φfv. The value of φfv for which the bounce disappears increases for increasing ξ . They are larger than
the prediction reported in Fig. 3 as t̄ is actually an underestimation of the matching time.

These considerations suggest that a non-minimally coupled Higgs field has no bounce, since it has a vacuum expectation value
at v = 246 GeV ≈ 10−17G1/2 � 
. Actually, v is generated by the interplay of a mass term and the quartic interaction: the Higgs
mass affects the asymptotic bounce and in principle changes these results. Nonetheless, much of our reasoning is focused on the
behaviour near the potential barrier, which is unaffected by the mass term in a large range of field values. Still, the condition in
Eq. (64) depends on the scalar field behaviour near the false vacuum, and thus, it should be reconsidered in the massive scalar field
case. This will be addressed in future work.

4.2 Quadratic gravity

We consider here the effect of quadratic gravitational terms on the bounce, by setting MP = 0, ξ = 0, α 
= 0. As in Sect. 3, the
scalar field on the bounce at large times is independent of R, and so, if Eq. (7) holds, then we have Eq. (10). The solution to the trace
equation when the scalar field is given by Eqs. (10) and (18) holds, is

R(t) = C1 + C2

2t2 + 3C2
0

8t4α
+ 12

∫ t dt ′

t ′3

∫ t ′
dt ′t ′3V

(
C0

2t2

)
(66)

with C1 and C2 are real constant. Using Eqs. (66) , (18) and Eq. (10) in Eq. (23), we find ρ̇ 
= 1 at large times on the bounce. This
result is independent of the values of C1 and C2. Thus, there is no bounce for scale-invariant gravity with a quadratic Ricci scalar
and flat Euclidean spacetime in the false vacuum.

8 The potential barrier width is defined here as the range of φ such that V (φ) > 0.
9 Having ρ̇ = 0 somewhere on the bounce forbids to satisfy the requirement ρ̇ > 0 at large t . In fact, this means that values for t such that ρ̇ = 0 should
come in pairs but, after the first zero, one has

d

dt

(
φ̇2

2

)
= dV (φ)

dt
− 3

ρ̇φ̇2

ρ
>

dV (φ)

dt

and thus one cannot have another one.
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Fig. 3 Left: numerical bounce action as a function of φfv (in units G = 1). The non-minimal coupling is changed from ξ = 0.01 (red) to ξ = 10 (blue).
The action sharply increases for φfv ≈ 10−8. The bounce disappears for lower values of φfv. Right: zeros of F(φfv, ξ) as a function of ξ

4.3 Non-minimal coupling and quadratic gravity

We consider now a theory with a scalar field non-minimally coupled to gravity and a quadratic Ricci term, namely we set ξ 
= 0,
α 
= 0, MP = 0, and repeat the calculations of the MP 
= 0 case. In order to have a finite bounce action, f (t) should satisfy

lim
t→+∞ φ2 f (t) = 0 (67)

as F(t) is monotonically decreasing at large times on the bounce

f (t) =
∫ +∞
t t ′−3

∫ +∞
t ′ t ′′3F(t ′′)
F(t)

≤
∫ +∞

t
t ′−3

∫ +∞

t ′
t ′′3 = t2

8
. (68)

We find

F1(φ, t) ≈ F2(φ, t) ≈ F3(φ, t) ≈ 1 (69)

so again

φ̈ + 3φ̇

t
= dV

dφ
(70)

for small φ. Thus, we expect that φ satisfies Eq. (10) at large times on the bounce and (from Eq. (44))

R = C2

2t2 + 3(1 + 6ξ)C2
0

8αt4 (71)

assuming that the potential contributes only to higher orders in inverse powers of t . Plugging these solutions in Eq. (23), we find
that Condition 1. is violated. The situation might improve by considering a non-vanishing vacuum value for the scalar field φfv 
= 0.
This would amount to adding a linear non-minimal coupling to gravity, φR, and having an Einstein–Hilbert term on the bounce at

large times, given by
ξφ2

fv

2
R. The first one changes the right-hand side of Eq. (24) by a multiplication constant, while we already

say that Condition 2. is violated for MP 
= 0. Thus, we expect that there is no bounce also in this case.

5 Numerical implications of the asymptotic bounce

Having the asymptotic bounce at disposal allows improving existing numerical methods and introducing some new others. In this
section, the possible implications of the asymptotic bounce for the shooting method are considered, and an alternative numerical
method to find the bounce is discussed.

A cut-off for the shooting method

In the shooting method, one finds the bounce numerically as the trajectory bracketed between undershoots and overshoots. This
allows determining it with arbitrary precision, computational limits aside. In general, using this method implies a large range of
integration, as the bounce initial condition φ(0) can be large (O(0.1MP )) and/or the friction term can be very effective in slowing
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down the scalar field. Moreover, one should compute the bounce with sufficient precision to get a good estimate of the on-shell
action SE . The Lagrangian must be integrated up to a cut-off, which should be carefully chosen. Knowing the asymptotic bounce
allows for a different method to find the (numerical) on-shell action instead of truncation by matching the numerical bounce with
the asymptotic one at some t̄ . The action may be computed as

SE = SC,1 + SC,2 (72)

with

SC,1 ≡ 2π2
∫ t̄

0

√
ḡL(φ̄, R̄)dt (73)

SC,2 ≡ 2π2
∫ ∞

t̄
t3L(φ+∞, R+∞)dt (74)

where R̄ and φ̄ are determined numerically and φ+∞, R+∞ are, respectively, the scalar field and the Ricci scalar as given by the
asymptotic bounce, which in our case depends on an integration constant C0. C and t̄ may be determined by continuity as

t̄ + 2
φ(t̄)

φ̇(t̄)
= 0 (75)

and C = −t̄3 φ̇(t̄). Overshoot trajectories satisfy Eq. (75) at some finite t̄ and then

φ(t) < φ+∞(t) for t > t̄ . (76)

Instead undershoot trajectories near the bounce have

φ(t) > φ+∞(t) (77)

at sufficiently large times, and thus, there may be no t̄ for which Eq. (75) holds. Then, t̄ may be determined as the point of closest
approach

3 − 2
φ(t̄)φ̈(t̄)

φ̇(t̄)2
= 0. (78)

The matching time as defined here separates the bounce-like behaviour of undershots and overshots from the region in which they
part, and thus, it should get infinitely large on the bounce. Nonetheless, t̄ is always finite off the bounce, and in particular t̄ ≤ t∗.

The on-shell action SC with the asymptotic bounce cut-off and the one found with the shooting method Ssm in scalar field theories
with Einstein–Hilbert gravity and a non-minimal coupling are compared in Table 1. We found that t̄ � t∗ and t̄ have a maximum
on the bounce as a function of φin (Fig. 4). There is a small relative deviation among SC and Ssm , and calculations in the Jordan and
in the Einstein frame are in good agreement. In the Higgs case, C0 roughly corresponds to the one derived from minimization of the
on-shell action, with a small backreaction [23]

C0 = 2 lim
t→+∞ h(t)t2 = 4

√
2

|λ| R = 17.4 × 105 with R = 350.

An alternative numerical method

The discussion above suggests that, for every trajectory with initial conditions

φ(0) = φin φ̇(0) = 0 (79)

that, in general, has infinite on-shell action, there is another one that is on-shell only for t < t̄ and that has finite SC . SC should
have a stationary point on the bounce, as Eq. (10) holds on-shell for φ(0) = φ0. One can show that SC has a saddle point there
(see Appendix B), and thus, it is not suitable for minimization to find the bounce. Instead, by slightly changing this functional, one
can turn the saddle point into a minimum (or a maximum), at least in the case of single-scalar field theories with Einstein–Hilbert
gravity and a non-minimal coupling. The full calculation is reported in Appendix B. The new functional is given by

SC,1 ≡ 2π2
∫ t̄

0
ρ̄(t)3L(φ̄, R̄)dt

SC,2 ≡ 2π2
∫ ∞

t̄
t3

(
C2

2t6 + V

(
C

2t2

))
dt (80)

and it has a minimum on the bounce for ξ ≥ −1

6
and a maximum otherwise (see Figs. 5, 6). The computational time is of the same

order of magnitude of the shooting method one (see Table 2), which gives no clear advantage in using this method over the standard
shooting method.
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Fig. 4 Matching time t̄ as a
function of the initial condition
φin for a single-scalar field theory
with Einstein–Hilbert gravity. The
maximum marks the bounce initial
condition φ0. Plots from red to
blue correspond to theories with
potential Eq. (21) (from
α3 = 10−6 to α3 = 10−2), the
green one for the Higgs theory
with Einstein–Hilbert gravity (the
potential is Eq. (19))

Fig. 5 SC as a function of φin in units of G for a single scalar field with potential Eq. (19), Einstein–Hilbert gravity and a non-minimal coupling (top left:
ξ = 0.1, top right: ξ = 1, bottom ξ = 10)

6 Discussion

Vacuum decay is a very important test to assess the quantum stability of a field configuration with gravity, but it is often very difficult
to perform calculations. Most of these are numerical with poor analytical control. In this paper, we looked for an analytical method
that potentially can overcome this issue and applied it to quadratic gravity with massless scalar fields. We used it to find the large-time
behaviour of the bounce (what we called the “asymptotic bounce”), provided that some restrictions on the scalar field potential (in
particular a masslessness condition) hold. We showed that this result can be extended to include modified gravity scenarios too. In
this way, we can test for the finiteness of the action and the consistency of bounce boundary conditions for all fields, which we called
Conditions 1. and 2. in the Introduction. In particular, we have studied well-founded modifications of gravity, which are required
by renormalizability, namely the non-minimal coupling among the scalar field and the Ricci scalar R together with the R2 term.
We separately analysed the effect of such terms on the asymptotic bounce and tested for Conditions 1. and 2. for each theory. Our
analysis shows that:

• In the presence of Einstein–Hilbert gravity, a bounce is allowed when a non-minimal coupling is included, while it is forbidden
with a squared Ricci term;

• when the gravitational sector is scale-invariant (no Einstein–Hilbert term), a bounce is allowed when a non-minimal coupling is
included if the field acquires a non-vanishing false vacuum value, which is larger than the width of the potential barrier. However,
it is still forbidden when one adds a R2 term.

We believe that our method can be extended to include more general scenarios that are certainly worth exploring. In fact, finding
the asymptotic bounce for massive theories would allow us to extend the flat spacetime result of [33] to gravitational settings.
This might have important implications on Higgs decay [23,24,30,32,35–37,43–58], in which the mass term is usually neglected.
Moreover, vacuum decay from de Sitter spacetime is particularly important to test for Conditions 1. and 2 in the early and current
Universe. Regarding the latter, we should mention that existing calculations regarding Higgs decay with a non-minimal coupling
are carried out in the flat spacetime approximation in the false vacuum state (see, for example, [36,37]). Our method may provide
new windows in which other decay channels (such as decay through the Hawking–Moss instantons) dominate.
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Fig. 6 SC as a function of φin in units of G for a single scalar field with potential Eq. (19), Einstein–Hilbert gravity and a non-minimal coupling (top left:
ξ = 0.1, top right: ξ = 1, bottom ξ = 10)

Table 2 We report the computational time needed to find the bounce by minimization with the shooting method, in theories with a scalar field with potentials
Eqs. (19) and (21) and Einstein–Hilbert gravity

tC tC,sm

Higgs 374s 134s

Polynomial α3 = 10−6 350s 93s

Polynomial α3 = 10−5 277s 102s

Polynomial α3 = 10−4 276s 76s

Polynomial α3 = 10−3 331s 113s

Polynomial α3 = 10−2 346s 211s∗
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Appendix A: coefficients fn

Here, coefficients fn of Eq. (5) are computed. Radial derivatives of arbitrary order are denoted by an index (n), while radial derivatives
of first and second orders are denoted by one dot or two dots, respectively. Derivatives of the potential with respect to the scalar

field of order i are indicated as
di V

dφi
. As fns are computed at ρ∗, all quantities are implicitly evaluated at the turning point (recall
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that φ̇∗ = 0). Using Eq. (3), one gets

di V

dφi

(n+1)

=
(

di+1V

dφi+1 φ̇

)(n)

, φ(n) =
(

d2V

dφ2 φ̇

)(n−3)

+
n−1∑
i=2

Bi
φ(i)

ρn−i
(A1)

where Bi s are numerical factors, whose value is not relevant for the following discussion.
Using the first equation in Eq. (A1), the (n+1)-th derivative of V ′ may be written as

dV

dφ

(n+1)

= d2V

dφ2 φ(n+1) + · · · +
(

d2V

dφ2

)(n−1)

φ̈ = φ̈

((
d3V

dφ3

)(n−3)

φ̈ + · · · + d3V

dφ3 φ(n−1)

)

+φ(3)

((
d3V

dφ3

)(n−4)

φ̈ + · · · + d3V

dφ3 φ(n−2)

)
+ · · · + d2V

dφ2 φ(n+1) (A2)

which can be further expanded using again Eq. (A1). Then, one gets

dV

dφ

(n+1)

= d2V

dφ2 φ(n+1) + d3V

dφ3 (φ̈ φ(n−1) + φ(3)φ(n−2) + · · · + φ(n+1)/2φ(n+1)/2)

+ d4V

dφ4 (φ̈2φ(n−3) + φ(3)φ̈φ(n−4) + · · · + φ(n+1)/3φ(n+1)/3φ(n+1)/3) + · · · . (A3)

Each
di V

dφi
in Eq. (A3) is multiplied by i − 1 terms that are derivatives of φ̈. They are of order n + 5 − 2i or lower, and thus, these

terms are non-vanishing only if n + 5 − 2i > 1. So, the highest-order derivative
dı̄ V

dφ ı̄
that appears in Eq. (A3) is the one satisfying

n + 5 − 2 ı̄ = 3 for even n and n + 5 − 2 ı̄ = 2 for odd n. Expanding radial derivatives of φ̈ in Eqs. (A3) using (A1), V ′(n+1) may
be expressed in terms of derivatives of the potential with respect to the scalar field, φ̈ = V ′∗ and ρ∗ only. From Eq. (A3), one finds
that the highest-order derivative (the ı̄-th term) is multiplied only by radial derivatives of the scalar field of order 2 or 3 and thus it
contributes as

dı̄ V

dφ ı̄

φ̈ ı̄−1

ρ
even n,

dī V

dφ ı̄
φ̈ ı̄−1 odd n (A4)

to fn .
The second-highest derivative ı̄ − 1 is multiplied by radial derivatives of the scalar field of order 2, 3, 4, 5. Using Eq. (A1),

derivatives of order 4 and 5 may be expressed in terms of lower derivatives. As can be seen from Eq. (A1), this results in an additional
V ′′ contribution (numerical coefficients are omitted for simplicity)

dı̄−1V

dφ ı̄−1

φ̈ ı̄−2

ρ3

(
1 + A1

d2V

dφ2 ρ2
)

even n,

dı̄−1V

dφ ı̄−1

φ̈ ı̄−1

ρ2

(
1 + A2

d2V

dφ2 ρ2
)

odd n. (A5)

The third-highest derivative ı̄ − 2 is multiplied by radial derivatives of the scalar field of order 2, 3, 4, 5, 6, 7. Using Eq. (A1), to
express derivatives of order 4, 5, 6, 7 in terms of lower order ones, one finds additional contributions with respect to the previous
case

dı̄−2V

dφ ı̄−2

φ̈ ı̄−3

ρ5

(
1 + A3

d2V

dφ2 ρ2 + A4

(
d2V

dφ2 ρ2
)2

+ A5
d3V

dφ3 ρ4φ̈

)
even n,

dı̄−2V

dφ ı̄−2

φ̈ ı̄−3

ρ4

(
1 + A6

d2V

dφ2 ρ2 + A7

(
d2V

dφ2 ρ2
)2

+ A8
d3V

dφ3 ρ4φ̈

)
odd n. (A6)

In general, the ı̄ − i th term has contributions from terms in Eq. (A3) that are multiplied with a radial derivative of the scalar field of

order n−2i +3 or higher. In this way, the dependence of the ı̄ − i th term on φ̈ and
d j V

dφ j
can be fully determined. The dependence on

ρ can be fixed by dimensional consistency. In particular, in each ı̄ − i-th term, these contributions appear always in the combination
d j V

dφ j
φ̈ j−2ρ2 j−2 with j ≥ 2.

Consider

lim
t∗→+∞ φ̈∗ρ4∗ = 0. (A7)
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If all derivatives of the potential in the scalar field are finite for φ → 0, then

d j V

dφ j
φ̈∗

j−2
ρ∗2 j−2 � 1 for j > 2 and large ρ∗. (A8)

If also

(
d2V

dφ2

)
∗
ρ∗2 � 1, then

(
dV

dφ

(n+1)
)

∗
≈

i=ı̄−2∑
i=0

Ãi

(
dV ı̄−i

dφ ı̄−i

)
∗

φ̈ ı̄−i−1∗
ρ∗2i+1 even n,

(
dV

dφ

(n+1)
)

∗
≈

i=ı̄−2∑
i=0

Ãi

(
dV ı̄−i

dφ ı̄−i

)
∗

φ̈ ı̄−i−1∗
ρ∗2i odd n, (A9)

and the sum in Eq. (5) is negligible with respect to V ′∗ for large ρ∗ if Eq. (A8) holds.

Appendix B: SC has a saddle point on the bounce

SC , as defined in Eq. (72), has a saddle point on the bounce, which can be turned into a minimum or maximum by slightly changing
SC,2. One has

dSC
dC

= 2π2 t̄3
(
V (φ(t̄)) − V

(
C

2t̄2

))
+ π2 C

t̄2 + π2
∫ +∞

t̄

dV

dφ

(
C

2t2

)
t dt + Bφ + Bg. (B1)

Here Bφ , Bg are boundary terms for the scalar field and for gravity, that appear by using the equations of motion in the variation of
the first term of Eq. (72). There is one for the scalar field

Bφ = t̄3φ̇(t̄)
δφ

δC
(t̄) = −π2C

t̄2 , (B2)

while the gravitational one can be computed from the Hawking–Gibbons–York boundary term [59,60] evaluated at t = t̄

δSGHY =
∮

∂V
d3xε

√|h|nαV
α (B3)

with

V α = gμνδ�α
μν + gαμδ�ν

μν

δ�α
βγ = 1

2
gαμ(∂βδgγμ + ∂γ δgβμ − ∂μδgγβ) + 1

2
δgαμ(∂βgγμ + ∂γ gβμ − ∂μgγβ) (B4)

and δgαβ is the variation of the metric, that has inverse δgαβ = −gμαgνβδgμν . Moreover, nα is the unit normal to ∂V and h is
the determinant of hαβ , the induced metric on the boundary. ε is +1 if ∂V is timelike, −1 if it is spacelike. Choosing a timelike
future-oriented one-form nα = (1, 0, 0, 0), one gets

Bg = π

16
t̄3 (

2gαβδġαβ + δgαβ ġαβ

) = 0 (B5)

Thus, the first term in Eq. (B1) dominates, and it gives

dSC
dC

≈ 0
d2SC
dC2 ≈ 0. (B6)

One can turn the saddle point into a minimum or a maximum in the case of a single-scalar field with Einstein–Hilbert gravity and a
non-minimal coupling. To do that, SC may be redefined as

SC ≡ SC,1 + SC,2 (B7)

where

SC,1 ≡ 2π2
∫ t̄

0
ρ̄3

( ˙̄φ2

2
+ V (φ̄) − M2

P

2
R̄ − ξ

2
φ̄2 R̄

)
dt

SC,2 ≡ 2π2
∫ ∞

t̄
t3

(
C2

2t6 + V

(
C

2t2

))
dt. (B8)
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Now

dSC
dC

= −2π2 M
2
P

2
R t̄3 dt̄

dC
− 2π2 ξ

2
R φ2 t̄3 dt̄

dC
+ π2

∫ +∞

t̄

dV

dφ

(
C

2t2

)
t dt. (B9)

To determine t̄(C), the bounce velocity is matched with the numerical estimate

− C0

(t̄ + δ)3 = −C

t̄3 (B10)

where δ is a real number that satisfies ρ(t) − t ≈ δ at large times on the bounce. It gives

C = C0

(
1 − 3δ

t̄

)
+ h.o. (B11)

where higher orders are suppressed at large t̄ and for δ 
= 0 . Thus,

dt̄

dC
= t̄2

C03δ
(B12)

to lowest order. Equation (B9) then gives

dSC
dC

≈ −π

8
R(t̄) t̄3 dt̄

dC
≈ −C0π

2

3δt̄
= −C0(C0 − C)π2

9δ2 (1 + 6ξ)
d2SC
dC2 ≈ π2

9δ2 (1 + 6ξ)

(B13)

SC has a minimum on the bounce for ξ > −1

6
and a maximum otherwise.

7 Appendix C: Bounce action from a perturbative expansion

Some concerns have been raised in the literature [36,39] as regards the use of a perturbative expansion to determine the bounce
action of a scalar field theory with an Einstein–Hilbert term as done in [23]. To do that, one expands the scalar field and the scale
factor around the bounce in flat space as

φ(t) = φ0(t) + κφ1(t) (C1)

ρ(t) = t + κρ1(t). (C2)

Using the equations of motion, the action is expanded in the same way and one finds that the on-shell action is determined by

S = S0 + A

M2
PR2

for M2
PR2 	 1 (C3)

with S0 the flat space on-shell action, A a real constant and R the bounce radius, φ0 = 2R. Then, it is minimized with respect to R.

Actually, it has been shown [36] that φ1 in a scalar field theory with negative quartic potential does not satisfy the proper boundary
conditions and thus the perturbative expansion is unreliable. There might be, however, an alternative interpretation of the calculation
that makes the final result justified. Consider two theories that have a bounce, and one of them is the vanishing coupling limit of the
other (in this case it is the single scalar field theory arising from the MPR → +∞ limit of the same theory with Einstein–Hilbert
gravity). By continuity, the action, as the coupling is turned on, changes by a small amount, for sufficiently small values of the
coupling. Moreover, if the gravitational backreaction is small, one might choose an off-shell profile with the same shape as φ0(t),
as a function of an arbitrary parameter R, and use it to determine a correction for ρ1(t) and thus SE , which is to be minimized as
a function of R. If the action has a minimum, the off-shell profile is, to first order in O(M−2

P ), the bounce one of the full theory.
In this way, one avoids to use the perturbation equation for the scalar field and uses the flat space solution only as a field profile to
keep the action functional finite.

To keep the approximation under control is instead trickier. While the natural choice might be requiring MPR 	 1, one can see
that a transformation that leaves the equations of motion Eqs. 16)–(17) unchanged

V (φ) → αV (φ) t → t α−1/2 ρ → ρ α−1/2 with real α (C4)

changes the action as αSE → SE . Changing α, R can be arbitrarily small, increasing λ accordingly. In this case, the relevant
parameter is thus MPR

√
λ. The detailed generalization to theories with multiple couplings λi seems to be more involved, despite

one may guess that

MPR
√

λi 	 1 (C5)

keeps the gravitational backreaction small.
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