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Abstract In the present paper, from the field of communications in physics and engineering, we select the (2 + 1)-dimensional
nonlinear electrical transmission line equation to be studied. The model under study is one of the models that has important
applications in the field of physics and telecommunications engineering. We acquire the soliton solutions by using two simple
methods. We present some figures in two and three dimensions to show that these solutions actually have the properties of soliton
waves.

1 Introduction

Transmission lines were the first electromagnetic waveguides ever invented. Examples of transmission lines are shown in Fig. 1. The
symbol for a transmission line is usually represented by two pieces of parallel wires, but in practice, these wires need not be parallel.
The nonlinear dynamics of the electrical transmission line equation come out in a large variety of scientific and engineering fields as
distributing cable television signals, connecting radio transmitters and receivers with their antennas, computer network connections
and high-speed computer data buses, trunklines routing calls between telephone switching centers [1–10]. In the electrical system,
the nonlinearity balancing the dispersion (related to the ladder nature of the line) is introduced by a capacitor, whose capacitance
is controlled by the imposed bias voltage, thus acting like a capacitive diode (“varicap” diode or varactor). The nonlinear signal
generated in this nonlinear transmission line (NLTL) is a localized electrical signal with a bell shape, propagating with features
of pulse soliton (i.e., translate at constant speed keeping a permanent bell shape) due to the effect of varactors periodically loaded
throughout the line [14]. The nonlinear electrical transmission line models (NETLEs) are convenient tools to study the propagation
of electrical solitons which can propagate in the form of voltage waves in nonlinear dispersive media. Afshari and Hajimiri [1],
Zayed and Alurrfi [2,3] solved the electrical transmission lines equation using first-order linear approximation, and Malwe et al. [4]
and El-Borai et al. [5] used the second-order curve fitting for the diode characteristics [11].

In this article, we introduce optical soliton solutions of the nonlinear transmission lines equation using two simple methods,
first one presented by Kudryashov [17]; it was applied in [18,19], and the second presented by Ali [16]. The nonlinear electrical
transmission line (NETL) is described as a model for long transmission lines. Our model is the voltage wave propagation of an
electrical transmission line which has been presented by Tala-Tebue [12,13] as:

utt − σ(u2)t t + β(u3)t t − u2
0δ

2
1uxx − u2

0
δ4

1

12
uxxxx − w2

0δ2
2uyy − w2

0
δ4

2

12
uyyyy = 0, (1)

where α, β, u0, w0, δ1, δ2 are real nonzero constants, and u = u(x, y, t) is the voltage in the transmission lines. (1) is the differential
equation governing the wave propagation in the network. The variables x and y are the propagation distances, and t is the time.
δ1 is the space between two adjacent sections in the longitudinal direction, while δ2 is the space between two adjacent sections in
the transverse direction. This nonlinear electrical transmission line model (NETLM) explains the wave distributions on the network
lines [12,13].

This manuscript is composed of the following sections: In Sect. 2, a mathematical description of the model is presented. In Sect. 3,
we give an overview of the used methods. In Sect. 4, the implementation of the proposed methods for finding the new exact solutions
describing nonlinear transmission lines is given. In Sect. 5, we illustrate our solutions by some graphs. Physical explanations for
some solutions are presented in Sect. 6. Finally, we briefly make a conclusion in Sect. 7.
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Fig. 1 Schematic representation
of the NETL

2 Mathematical description of the model

Consider the NLTLs as depicted in Fig. 2. un,m(t) is the voltage through the capacitor, C(un,m) is the capacitance in the shunt
branch, and L1 is the constant inductor in the series branch. Many identical dispersive lines are connected with each node by the
inductance L2 as shown in Fig. 2. The nodes have two distinct coordinates m and n, where m labels in the transverse direction and
n specifies the nodes in the propagation direction of the wave.

The capacitance varied with the applied voltage which admits by the nonlinear capacitance of this network or varicap diode. The
voltage dependence relation is assumed to have a polynomial form given by

C(un,m) = (3βu2
n,m − 2σun,m + 1)C0, (2)

where C0, σ and β are constants. The electric charge stored in the capacitors is determined by this coefficients. Using the Kirchhoff
voltage law and Kirchhoff current law leads to the following set of propagation equations:

d2

dt2 (βu3
n,m − σu2

n,m + un,m) = (un,m−1 + un,m+1 − 2un,m)w2
0+

(un−1,m + un+1,m − 2un,m)u2
0,

(3)

with u2
0 = 1

L1C0
and w2

0 = 1
L2C0

. (3) is the differential equation governing the wave propagation in the network under consideration.
All of the lines have the same characteristic frequency. This is due to the fact that all of the lines are identical. The continuum
approximation is used by assuming un,m −→ u(x, y, t) for a weak nonlinearity and by setting that the wavelength is sufficiently
large relative to the length of a segment. Assuming that δ2 and δ1 are the spacings between two adjacent portions in the m and n
directions, respectively, we can use the continuum approximation to expand un,m±1 and un±1,mas:

un,m±1 = u ± δ2
∂u

∂y
+ δ2

2

2!
∂2u

∂y2 ± δ3
2

3!
∂3u

∂y3 + δ4
2

4!
∂4u

∂y4 + ...

un,m+1 + un,m−1 − 2un,m = δ2
2
∂2u

∂y2 + δ4
2

12

∂4u

∂y4 + ...

un±1,m = u ± δ1
∂u

∂x
+ δ2

1

2!
∂2u

∂x2 ± δ3
1

3!
∂3u

∂x3 + δ4
1

4!
∂4u

∂x4 + ...

un+1,m + un−1,m − 2un,m = δ2
1
∂2u

∂x2 + δ4
1

12

∂4u

∂x4 + ...

(4)

From the previous equations and for the perturbed voltage u, we acquire the following nonlinear partial differential equation:

∂2

∂t2 (u − σu2 + βu3) − u2
0(δ

2
2
∂2u

∂y2 + δ4
2

12

∂4u

∂y4 ) − w2
0(δ2

1
∂2u

∂x2 + δ4
1

12

∂4u

∂x4 ) = 0. (5)

Equation (5) models the wave propagation in an NETL [15].
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Fig. 2 Graph of (22) using the first simple method at α = 0.01, β = 0.1, σ = 0.2, � = 0.1, u0 = 0.1, w0 = 0.3, a1 = 0.3, c = 0.8, δ1 = 2, δ2 = 1

3 Overview of the methods

3.1 First simple method presented by Kudryashov [17]

Consider the following nonlinear partial differential equation

F(u, ut , ux , uy, utt , uxx , uyy, ...) = 0, (6)

where u = u(x, y, t) is the unknown function, and F is a polynomial in u and its partial derivatives.

Step 1: Use the wave transformation:

u(x, y, t) = U (ξ), ξ = ax + by − ct, (7)

where a, b are constants and c is the velocity of the traveling wave; (6) is reduced to a nonlinear ordinary differential
equation as:

P(U ′,U ′′,U ′′′, ...) = 0,U ′ = dU

dξ
(8)

Step 2: Assume the solution of (8) takes the form of a finite series

U (ξ) =
N∑

i=0

Ai (Q(ξ))i , (9)

where Ai (i = 0, 1, 2, ..., N ), AN �= 0, are unknowns with (Ai �= 0 to be calculated. The positive integer N will be
calculated by homogeneous balance technique.

Step 3: The function Q(ξ) satisfies the auxiliary differential equation:

(Q′(ξ))2 = α2Q(ξ)2(1 − �Q(ξ)2); (10)

(10) gives the following solution:

Q(ξ) = 4a1 exp(−αξ)

4a2
1 + � exp(−2αξ)

. (11)

Step 4: By substituting (9) and (10) into (8) and collecting all terms with the same power of Q(ξ)together, (8) converted into a
polynomial, taking each coefficient equal to zero, we obtain a system of algebraic equations.

Step 5: By using the Mathematica program, we can solve the system of algebraic equations to get the exact solution of (8).

3.2 Second simple method presented by Ali [16]

We illustrate the modified Kudryashov method in this section as follows:

Step 1: Suppose a solution of (8) given in a series form:

U (ξ) =
N∑

i=0

Ai (Q(ξ))i , (12)

where Ai (i = 0, 1, 2, ..., N ), AN �= 0, are unknowns with (Ai �= 0 to be calculated.
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Step 2: The function Q(ξ) fulfills the differential equation:

(Q′(ξ))2 = α2(log(m))2Q(ξ)2(1 − �Q(ξ)2); (13)

the solution of (13) is introduced by:

Q(ξ) = 4a1m(−αξ)

4a2
1 + �m(−2αξ)

. (14)

Step 3: By substituting (12) and (13) into (8), we acquire a polynomial of Q(ξ). Setting all the coefficients of the like powers of
Q(ξ) to zero, we obtain a system of equations.

Step 4: We use the Mathematica program to solve the system of equations. Consequently, we can get the exact solution of (8).

4 Implementations of the methods

Using the transformation (7) into (1), it can be reduced to a nonlinear ordinary differential equation as below:

−2c2(σ − 3βU (ξ))U ′(ξ)2 + (a2u2
0δ

2
1 − b2w2

0δ2
2 + c2(1 − 2σU (ξ) + 3βU (ξ)2))U ′′(ξ)

+ 1

12
(a4u2

0δ
4
1 − b4w2

0δ4
2)U (4)(ξ) = 0. (15)

Integrating twice and considering the zero for both constants, we get:

(c2 + a2u2
0δ

2
1 − b2w2

0δ2
2)U (ξ) − c2σU (ξ)2 + c2βU (ξ)3 + 1

12
(a4u2

0δ
4
1 − b4w2

0δ4
2)U ′′(ξ) = 0. (16)

Balancing U 3 with U ′′ in (16), we have the following relation:

3N = N + 2 ⇒ N = 1. (17)

4.1 First simple method

From (9), the solution of (16) can be given in the form:

U (ξ) = A0 + A1Q(ξ), (18)

By substituting (18) in Eq. (16) with (10) and equating factors of each power of Q(ξ) in the resulting equation to zero, we reach a
nonlinear algebraic system as follows:

c2A0 − c2σ A2
0 + c2βA3

0 + a2A0u
2
0δ

2
1 − b2A0w

2
0δ2

2 = 0,

c2A1 − 2c2σ A0A1 + 3c2βA2
0A1 + a2A1u

2
0δ

2
1 + 1

12
a4α2A1u

2
0δ

4
1 − b2A1w

2
0δ2

2

− 1

12
b4α2A1w

2
0δ4

2 = 0,

−c2σ A2
1 + 3c2βA0A

2
1 = 0,

c2βA3
1 − 1

6
a4α2�A1u

2
0δ

4
1 + 1

6
b4α2�A1w

2
0δ4

2 = 0.

Solving the previous system, we can get the following sets of solutions:
Set 1:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 (−9β+2σ 2)−P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) + P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(19)

Substituting (19) in (18) with (11) and (7), we get the following solutions of (1):

u1,2(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (20)
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Set 2:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 (−9β+2σ 2)−P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) + P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(21)

Substituting (21) in (18) with (11) and (7), we get the following solutions of (1):

u3,4(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (22)

Set 3:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 (−9β+2σ 2)−P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) + P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(23)

Substituting (23) in (18) with (11) and (7), we get the following solutions of (1):

u5,6(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (24)

Set 4:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 (−9β+2σ 2)−P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) + P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(25)

Substituting (25) in (18) with (11) and (7), we get the following solutions of (1):

u7,8(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (26)

Set 5:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 (−9β+2σ 2)+P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) − P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(27)

Substituting (27) in (18) with (11) and (7), we get the following solutions of (1):

u9,10(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (28)
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Set 6:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 (−9β+2σ 2)+P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) − P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(29)

Substituting (29) in (18) with (11) and (7), we get the following solutions of (1):

u11,12(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (30)

Set 7:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 (−9β+2σ 2)+P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) − P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(31)

Substituting (31) in (18) with (11) and (7), we get the following solutions of (1):

u13,14(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (32)

Set 8:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 (−9β+2σ 2)+P1

α2βδ2
2 (u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2βw2

0δ2
2(9β − 2σ 2) − P1

α2β2w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2u2

0w
2
0(c2α2(9β − 2σ 2)2 + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(33)

Substituting (33) in (18) with (11) and (7), we get the following solutions of (1):

u15,16(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1 exp(−α(ax + by − ct)))

4a2
1 + � exp(−2α(ax + by − ct))))

. (34)

4.2 Second simple method

From (12), the solution of (16) is taken in the form:

U (ξ) = A0 + A1Q(ξ), (35)

By setting above solution (35) in (16) with (13) and equating the coefficients of the like powers of Q(ξ), we will arrive at a set of
nonlinear algebraic equations:

c2A0 − c2σ A2
0 + c2βA3

0 + a2A0u
2
0δ

2
1 − b2A0w

2
0δ2

2 = 0,

c2A1 − 2c2σ A0A1 + 3c2βA2
0A1 + a2A1u

2
0δ

2
1 + 1

12
a4α2 log2(m)A1u

2
0δ

4
1 − b2A1w

2
0δ2

2

− 1

12
b4α2 log2(m)A1w

2
0δ4

2 = 0,

−c2σ A2
1 + 3c2βA0A

2
1 = 0,

c2βA3
1 − 1

6
a4α2� log2(m)A1u

2
0δ

4
1 + 1

6
b4α2� log2(m)A1w

2
0δ4

2 = 0.
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Now, the following new exact solutions for (1) will be produced:
Set 1:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)−P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) + P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(36)

Substituting (36) in (35) with (11) and (7), we get the following solutions of (1):

u1,2(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (37)

Set 2:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)−P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) + P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(38)

Substituting (38) in (35) with (11) and (7), we get the following solutions of (1):

u3,4(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (39)

Set 3:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)−P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) + P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(40)

Substituting (40) in (35) with (11) and (7), we get the following solutions of (1):

u5,6(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (41)

Set 4:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)−P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) + P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(42)

Substituting (42) in (35) with (11) and (7), we get the following solutions of (1):

u7,8(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (43)
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Set 5:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)+P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) − P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(44)

Substituting (44) in (35) with (11) and (7), we get the following solutions of (1):

u9,10(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (45)

Set 6:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)+P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = −1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) − P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(46)

Substituting (46) in (35) with (11) and (7), we get the following solutions of (1):

u11,12(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (47)

Set 7:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a = −

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)+P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) − P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(48)

Substituting (48) in (35) with (11) and (7), we get the following solutions of (1):

u13,14(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (49)

Set 8:

A0 = σ

3β
, A1 = ±

√
2σ

√
�

3β
, a =

√
c2α2βu2

0δ2
2 log2(m)(−9β+2σ 2)+P1

α2βδ2
2 log2(m)(u2

0−w2
0)

3
√

βu0δ1
,

b = 1

3

√
c2α2β log2(m)w2

0δ2
2(9β − 2σ 2) − P1

α2β2 log2(m)w2
0δ4

2(−u2
0 + w2

0)
,

P1 =
√
c2α2β2 log2(m)u2

0w
2
0(c2α2(9β − 2σ 2)2 log2(m) + 108βσ 2(−u2

0 + w2
0))δ4

2 .

(50)

Substituting (50) in (35) with (11) and (7), we get the following solutions of (1):

u15,16(x, y, t) = σ

3β
±

√
2σ

√
�

3β

(4a1m−α(ax+by−ct))

(4a2
1 + �m−2α(ax+by−ct))

. (51)
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Fig. 3 Graph of (28) using the first simple method at α = 0.01, β = 0.1, σ = 0.2, � = 0.1, u0 = 0.1, w0 = 0.3, a1 = 0.8, c = 0.8, δ1 = 0.6, δ2 = 1
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Fig. 4 Graph of (34) using the first simple method at α = 0.01, β = 0.1, σ = 0.2, � = 0.1, u0 = 0.1, w0 = 0.3, a1 = 0.8, c = 0.8, δ1 = 0.6, δ2 = 1

5 Graphical illustrations

In this manuscript, we have presented only a few results to avoid the overload of the document. One could obtain more general
results by more general choices of the parameters. For example, the graph of (22) using the first simple method at α = 0.01, β =
0.1, σ = 0.2,� = 0.1, u0 = 0.1, w0 = 0.3, a1 = 0.3, c = 0.8, δ1 = 2, δ2 = 1 is introduced in Fig. 2. In Fig. 3, the graph of (28)
using the first simple method at α = 0.01, β = 0.1, σ = 0.2,� = 0.1, u0 = 0.1, w0 = 0.3, a1 = 0.8, c = 0.8, δ1 = 0.6, δ2 = 1 is
presented. In Fig. 4, the graph of (34) using the first simple method at α = 0.01, β = 0.1, σ = 0.2,� = 0.1, u0 = 0.1, w0 = 0.3,

a1 = 0.8, c = 0.8, δ1 = 0.6, δ2 = 1 is presented. The graph of (37) using the second simple method at α = 0.01, β =
0.1, σ = 0.1,� = 0.15, u0 = 0.1, w0 = 0.3, m = 0.1, a1 = 0.1, c = 0.8, δ1 = 1.5, δ2 = 1 is presented in Fig. 5. In
Fig. 6, the graph of (41) using the second simple method at α = 0.01, β = 0.1, σ = 0.1,� = 0.2, u0 = 0.1, w0 = 0.3,

m = 0.1, a1 = 0.2, c = 0.8, δ1 = 2, δ2 = 1 is presented. Finally, we showed the graph of (51) using the second simple method at
α = 0.01, β = 0.1, σ = 0.2,� = 0.1, u0 = 0.1, w0 = 0.3, m = 0.1, a1 = 0.8, c = 0.8, δ1 = 0.6, δ2 = 1 in Fig. 7.
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Fig. 5 Graph of (37) using the second simple method at α = 0.01, β = 0.1, σ = 0.1,� = 0.15, u0 = 0.1, w0 = 0.3, m = 0.1, a1 = 0.1, c = 0.8, δ1 =
1.5, δ2 = 1
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Fig. 6 Graph of (41) using the second simple method at α = 0.01, β = 0.1, σ = 0.1,� = 0.2, u0 = 0.1, w0 = 0.3, m = 0.1, a1 = 0.2, c = 0.8, δ1 =
2, δ2 = 1
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Fig. 7 Graph of (51) using the second simple method at α = 0.01, β = 0.1, σ = 0.2, � = 0.1, u0 = 0.1, w0 = 0.3, m = 0.1, a1 = 0.8, c = 0.8, δ1 =
0.6, δ2 = 1
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Fig. 8 Graph of (34) using the
first simple method

Fig. 9 Graph of (51) using the
second simple method

6 Physical explanations for some solutions

In this section, we illustrate the application of the results established above. These solutions are solitons and are obtained by using
two methods. The solutions that were found have application in telecommunications for the transport of information because solitons
have the capability to propagate at long distances without attenuation and without changing their shapes. The solutions have shown
that these solitons are more resistant to perturbations than others. Therefore, using the solutions in the network under consideration,
we conclude that the system might be more robust to weak external perturbations. Also, in Fig. 8, we see at σ = 0.3, 0.35, 0.4 the
amplitude of the wave is growing as σ increases and as β varies: β = 0.2, 0.25, 0.3, the amplitude of the wave wanes as β increases.
In Fig. 9, when m increases: m = 0.2, 0.3, 0.45, also the amplitude of the wave increases and when a1 varies: a1 = 1, 1.5, 2, the
amplitude of the wave decreases as a1 is raised.

7 Conclusion

At the end of this work, we studied the (2 + 1)-dimensional nonlinear electrical transmission line equation and it has important
applications in many fields such as physics and telecommunications engineering. We acquired the soliton solutions by using two
simple methods. We obtained various analytical solutions for this model using two newly well-established methods. The solutions
that we obtained show that the two methods are effective methods that produce different types of solutions. We have shown the
accuracy of the obtained results by introducing illustrative proper figures.
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