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Abstract The purpose of this research is to explore the complex dynamics and impact of vaccination in controlling COVID-
19 outbreak. We formulate the classical epidemic compartmental model by introducing vaccination class. Initially, the proposed
mathematical model is analyzed qualitatively. The basic reproductive number is computed and its numerical value is estimated
using actual reported data of COVID-19 for Pakistan. The sensitivity analysis is performed to analyze the contribution of model
embedded parameters in transmission of the disease. Further, we compute the equilibrium points and discussed its local and global
stability. In order to investigate the influence of model key parameters on the transmission and controlling of the disease, we perform
numerical simulations describing the impact of various scenarios of vaccine efficacy rate and other controlling measures. Further, on
the basis of sensitivity analysis, the proposed model is restructured to obtained optimal control model by introducing time-dependent
control variables u1(t) for isolation, u2(t) for vaccine efficacy and u3(t) for treatment enhancement. Using optimal control theory
and Pontryagin’s maximum principle, the model is optimized and important optimality conditions are derived. In order to explore
the impact of various control measures on the disease dynamics, we considered three different scenarios, i.e., single and couple
and threefold controlling interventions. Finally, the graphical interpretation of each case is depicted and discussed in detail. The
simulation results revealed that although single and couple scenarios can be implemented for the disease minimization but, the
effective case to curtail the disease incidence is the threefold scenario which implements all controlling measures at the same time.

1 Introduction

COVID-19 is an infectious disease caused by a novel coronavirus that affects the human respiratory system. Initially, it was reported in
Wuhan city of China, in December 2019. The disease spread very quickly to the rest of the world and caused a million deaths. Certain
factors are responsible for the spreading of the infection such as social contacts, sneezing and breath of an infected individual. Due
to its uncertain dynamics, it was difficult to control the disease [1]. To reduce infection transmission different countries use different
strategies and most of them follow common policies, such as social distances and self-quarantine. Researchers around the world are
focusing on giving some useful strategies to overcome this COVID-19 epidemic. Vaccination is an effective controlling measure
that to protect against infectious disease. Vaccination along with the strict implementation of non-pharmaceutical interventions play
an important role to put down the burden of COVID-19 infection around the world. In order to explore the complex dynamics of the
ongoing pandemic, different approaches have been made. In this scenario, mathematical models are one of the considerable tools
and have been used effectively to present various aspects of COVID-19.

Several epidemic models have been developed to study the dynamics of COVID-19. For instance, Li and Zhang [2] investigated
an epidemic model to examine the transmission pattern of coronavirus infectious disease with nonlinear contact as well as recovery
rates. An extended SEIR model was proposed by Ghostine et al. [3], to observe the transmission of coronavirus COVID-19 in Saudi
Arabia. The aim of the proposed study was to analyze the vaccination impact on coronavirus. Fractional mathematical modeling
approach provides deeper insights into the dynamics of a phenomena including infectious diseases and its application can be found in
[4–6]. To analyze the effects of quarantine, self-isolation and environmental load, a mathematical model was presented Mohammed
et al. [5]. A nonlinear system of differential equations for the transmission of COVID-19 dynamics in Algeria was presented Yacine
et al. [6]. The authors carried out stability analysis and provide numerical simulation in order to predict the future forecast. Ullah
et al. [7,8] formulated new epidemic models coupled with optimal control problems to study the importance of some specific
variable control interventions on the pandemic of COVID-19 in Pakistan and vector-host diseases. The purpose of the study was
to explore the transmission pattern as well as to set up possible control strategies to reduce the infection spreading. Yang et al.
[9] considered a mathematical model that describes multiple transmission dynamics of COVID-19, and environmental reservoir
virus role in the spreading of this disease. Ahmad et al. [10] describe an epidemic model that investigates the spreading pattern
of COVID-19 and discussed its application based on the reported number of infected cases by WHO for Pakistan. Incorporating
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pathogens in the environment and using social distancing factors, a modified epidemic model was presented Samuel et al. [11].
The intention of this study was to predict the future situation of the COVID-19 epidemic, assuming different intervention scenarios
that might help to reduce epidemic risk. The optimal control analysis for the outbreak of coronavirus in the USA was carried out
by Calvin et al. [12], using SEAIR mathematical model. An epidemic model was designed Takasar et al. [13], that predict future
situation based on the number of infected cases and predicted the outcomes on the reported infected cases in Pakistan. The authors
carried out sensitivity and optimal control analysis based on the proposed model. It helped to minimize the infection spreading
by adopting those precautionary restrictions. Gatyeni et al. [14] formulated an optimal control problem based on an epidemic
model using the Pontraygain Maximum Principle. The purpose of the study was to observe the role of joint implementation of
social distance, mask usage, actively screening and testing in curtailing the spreading of COVID-19. Omame et al. presented the
formulation of a mathematical compartmental model addressing the dynamics of co-infection with COVID-19 in Brazil [15]. The
authors in [15] studied the optimal control measures coupled with cost-effective analysis to curtail COVID-19 in the selected region.
A similar mathematical analysis with a case study of Malaysia and Nigeria is conducted by Abidemi et al. and Olaniyi et al. in
[16,17], respectively. The authors in [16] considered the actual data reported in Malaysia from 3 March to 31 December of 2020
and parameterized the proposed model. Similarly, in [17], the authors took the cumulative cases between 10 March to 15 July 2020
in order to estimate the model parameters. An epidemic model with a latency period was studied by Liu et al. [18] to analyze the
forecast of the data reported in China. An SEIR model was implemented by Suwardi et al. [19], to analyze the spreading pattern
of COVID-19 in Indonesia. The authors considered vaccination and isolation as a model key parameters and observed the effect on
the transmission of corona-virus. Additionally, many mathematical models were constructed to study the outbreak of COVID-19
in northern African countries, India, Mexico, Italy, Spain, France as well as in Pakistan, the details are presented in Refs. [20–24].
To observe the impact of isolation/quarantine as a control measure of coronavirus transmission, several compartmental epidemic
models were developed in Refs. [25,26]. Khajanchi et al. [27] proposed an extended classical epidemic model with contact and
hospitalization strategies to study the COVID-19 outbreak. A time-dependent epidemic model was considered by Singh et al. [28],
to analyze the dynamics and critical as well as hospitalized cases.

Keeping in view the above literature review, in the proposed study we discuss the forecast and impact of vaccination in controlling
the COVID-19 epidemic based on infected confirm cases in Pakistan, for the period from March 1, 2021 to June 30, 2021. The data
for this selected period are chosen because the third wave of COVID-19 started in Pakistan on March 6, 2021. For this purpose, the
standard compartmental epidemic model is modified by introducing the vaccination compartment. Initially, the proposed model is
examined qualitatively. The elaborated numerical simulations figure out some important model parameters on the transmission of
COVID-19. Finally, the optimal control analysis is carried out in order to analyze the impact of different time-dependent controls.
The rest of the article is organized as follows. In Sect. 2, mathematical formulation is presented in detail. The qualitative analysis
such as positivity and boundedness, biologically feasible region, estimation of parameters, derivation of basic reproductive number
as well as stability results are discussed in the third section. The fourth section contains detail about the interpretation of basic
reproductive number on model important parameters. Section 5 describes the numerical simulation of the proposed model and
provides in the detail some deep insights into the model important parameters on the COVID-19 dynamic as well as the impact of
vaccination. In Sect. 6, we present the detail optimal control investigation of the proposed model is discussed in detail. Finally, the
work is concluded in Sect. 7, with some useful suggestions.

2 Mathematical model

We formulate a compartment epidemic model to examine the outbreak of COVID-19 pandemic and the impact of vaccination on
transmission and control of disease. To construct the model, at time t total available population is represented by N (t) and grouped
into five compartments according to the disease status. The population that can have contact with the infection are placed in the
susceptible compartment denoted by S(t). Those exposed to the virus and with no clinical symptoms developed, until complete
a latency period are referred to as exposed compartment E(t). The population with fully developed symptoms of coronavirus are
infectious and placed in the infected compartment I (t). The compartment V (t), contains the susceptible population with vaccination
and finally, the recovered individuals from the infection moved to recovered compartment R(t). Thus,

N (t) = S(t) + E(t) + I (t) + V (t) + R(t).

Further, we assume that the vaccinated and recovered individuals may have chance to contact with the virus and become susceptible
again, therefore they may join the compartment S(t). Based on the assumptions listed above, the transmission phenomena of
COVID-19 is stated in form of a nonlinear system of differential equations given by:

dS

dt
= � − β(I + κE)

S

N
− (ψν + μ)S + ηνV + θR,

dE

dt
= β(I + κE)

S

N
− (μ + γ )E,

dI

dt
= γ E − (μ + μ0 + ω)I,
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dV

dt
= ψν S − (μ + ην)V,

dR

dt
= ωI − (μ + θ)R, (1)

subject to initial conditions S(0) ≥ 0, E(0) ≥ 0, I (0) ≥ 0, V (0) ≥ 0, R(0) ≥ 0. In model (1), � denotes the population recruitment
rate and μ is natural mortality in all compartments. It is further assume that the population in E and I compartments are responsible
for the disease transmission where the transmissibly rate of exposed individuals is less than the individuals in I class [29]. The
susceptible individuals get infected after interacting with exposed and infected individuals. Therefore, the strength of infection is

λ = β(I + κE)
S

N
,

where β represent the effective contact rate, κ represents relative transmissibility rate. On the other hand, γ represents rate of infection
development with symptoms, μ0 is death rate due to infection and ω is rate of recovery from infection. ψν denote vaccination rate,
ην is vaccine waning rate and θ is loss of disease-acquired immunity. Hence, model (1) can be written as

dS

dt
= � − λS − (ψν + μ)S + ηνV + θR,

dE

dt
= λS − (μ + γ )E,

dI

dt
= γ E − (μ + μ0 + ω)I,

dV

dt
= ψν S − (μ + ην)V,

dR

dt
= ωI − (μ + θ)R. (2)

2.1 Data fitting and parameters estimation procedure

Estimation of the parameters involved in the proposed model from the actual disease incidence data is one of the important analysis
and provides an accurate prediction about the infection dynamics. Moreover, to conduct the numerical simulations more realistically,
the estimation of parameters from the statistical disease data is significant. This section deals with the estimation procedure using the
actual COVID-19 incidence data for a specific period of time (March 1 till June 30, 2021) reported in Pakistan. The parametrization
process of the proposed COVID-19 compartmental model developed in (2) is conducted via two approaches. Firstly, the recruitment
rate � as well as the natural mortality rate of population μ are obtained from the literature mentioned in Table 2. Secondly, rest of the
parameters are determined approximately from reported infected cases using the nonlinear least square procedure. The parameters
determination procedure is described in detail as follows:

Since on average the lifespan of Pakistani people is 67.7 [30], as a result the estimated natural death rate per day is μ =
1/(67.7 × 365). The birth rate per day, � = 8939, is figured out from total population of Pakistan. The remaining parameters are
determined from confirmed positive infected cases via the aforementioned statistical approach. The main objective function to be
utilized in this procedure is described as follows:

�̂ =
k∑

τ=1

(χtτ − χ̃tτ )
2 (3)

where χ̃tτ denote the confirmed COVID-19 infected cases, χtτ represents solution of the problem described in (1) at time tτ , and k
describe the considered actual daily reported cases.

The prediction of the proposed model (1) (depicted with solid plot) to the actual infected cases (depicted by red circles) is shown
in Fig. 1. The model simulation in Fig. 1 shows a better agreement with the real data curve. The values of the parameters results
from the estimation process are given in Table 1. The initial values of susceptance individuals are considered from [30], while the
infected population reported on March 1, 2021, (i.e., I (0) = 1392) is taken as initial value [31]. Therefore, the resulting estimated
value of R0 based on the estimated parameters values is approximately 1.46.

3 Model analysis

In this section, we present some fundamental qualitative features of the COVID-19 compartmental model (1). It includes positivity
and boundedness, model’s equilibria and their stability analysis. Moreover, an analytical expression for the important epidemiological
parameter, termed the basic reproductive number, is provided. The following lemma shows the positivity and boundedness of the
system (1) solution.
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Fig. 1 Simulation of the
data-fitting result for the proposed
transmission model (1) to the
actual infected cases in Pakistan
reported in third wave for the
period from March 1, 2021
through June 30, 2021
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Table 1 Biological description of system (1) variables

State variables Definition

S Susceptible individuals

E Exposed individuals

I Infected individuals

V Vaccinated individuals

R Recovered individuals

3.1 Positivity and boundedness

Lemma 3.1 Let ζ(t) = (S(t), E(t), I (t), V (t), R(t)) ∈ R5+ and the initial data ζ(0) ≥ 0, then all the solutions of model (1) are
nonnegative for all t > 0. Moreover,

lim
t→+∞ N (t) ≤ �

μ
.

Proof Let τ = sup{t > 0 : ζ(t) > 0} and from the epidemic model (2), we have

dS

dt
= � − (λ + ψν + μ)S + ηνV + θR ≥ � − (λ + ψν + μ),

can be further expressed as:

d

dt

(
S(t) exp

(
(μ + ψν)t +

∫ t

0
λ(ξ)dξ

))
≥ �

(
exp

(
(μ + ψν)t +

∫ t

0
λ(ξ)dξ

))
,

by integrating we have,

S(τ ) ≥ S(0)

(
exp

(
−

(
(μ + ψν)τ +

∫ τ

0
λ(ξ)dξ

)))
+ exp

(
−

(
(μ + ψν)τ +

∫ τ

0
λ(ξ)dξ

))

×
∫ τ

0
�

(
exp

(
(μ + ψν)η +

∫ η

0
λ(ξ)dξ

))
dη > 0.

Similarly, from rest of the equations in the model (2), we obtain desired interpretation following the same procedure.
Hence, it follows that ζ(t) = (S(t), E(t), I (t), V (t), R(t)) > 0 for all t > 0. To prove the subsequent part of Lemma (3.1), we

have 0 < ζ(0) ≤ Ņ(t). By adding equations involved in the system (2), we have

dN

dt
= � − μN − μ0 I

≤ � − μN .
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By simple manipulation, we have

N (t) ≤ N (0)e−μt + e−μt
∫ t

0
�e−μξdξ

≤ N (0)e−μt + �

μ
(1 − e−μt ).

Thus,

lim
t→+∞ N (t) ≤ �

μ
.

��
3.2 Invariant region

The biological feasible region for the transmission dynamic of COVID-19 epidemic model (1) is given by

� ⊂ R5+,

where,

� = {(S, E, I, V, R) ∈ R5+ : S + E + I + V + R ≤ �

μ
}.

Lemma 3.2 The closed region define by � ⊂ R5+ is positive invariant for the model (1) with nonnegative initial conditions in R5+.

Proof As we know that

N (t) = S(t) + E(t) + I (t) + V (t) + R(t),

then,

dN (t)

dt
= � − μN (t) − μ0 I

≤ � − μN (t) (4)

and

dN (t)

dt
≤ 0 if N (t) ≥ �

μ
for t ≥ 0,

but the solution of (4) is

N (t) ≤ N (0)e−μt + �

μ
(1 − e−μt ).

Therefore, N (t) ≤ �
μ

if N (0) ≤ �
μ

as t → ∞. On other hand N (t) > �
μ

if N (0) > �
μ

as t → ∞. Thus, the region � is positive

invariant, and all the solutions trajectories are attracted in R5+ ��
3.3 Disease free equilibrium

The COVID-19 epidemic model (1) has unique disease free and endemic equilibrium points given by P0 = (S0, E0, I0, V0, R0) =(
�(μ+ην)

μ(μ+ην+ψν)
, 0, 0,

�ψν

μ(μ+ην+ψν)
, 0

)
and PEE = (S∗, E∗, I∗, V∗, R∗), where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = �(μ+ην)M2
(μ+ην+ψν)[(R0−1)M1+μM2] ,

E∗ = �(μ+θ)(μ+μ0+ω)(R0−1)
(R0−1)M1+μM2

,

I∗ = γ�(μ+θ)(R0−1)
(R0−1)M1+μM2

,

V∗ = �ψνM2
(μ+ην+ψν)[(R0−1)M1+μM2] ,

R∗ = γω�(R0−1)
(R0−1)M1+μM2

,
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where M1 = μ(μ + θ)(μ + ω) + μγ (μ + ω + θ) + μ0(μ + γ )(μ + θ) and M2 = (μ + θ)(μ + μ0 + ω) + γ (μ + ω + θ).
In subsequent section, the epidemiological threshold parameter known as the basic reproductive number denoted by R0 is derived
analytically and discussed the stability analysis in detail for the system (1) equilibria.

3.4 The basic reproduction number R0

To calculate R0 the technique of next generation matrix is utilized. We considered E , I and V compartments. The secondary
infection in E class is β(I + κE) S

N , and there is no new infection in I and V . Therefor, f = [β(I + κE) S
N , 0, 0], and v =

[(μ + γ )E,−γ E + (μ + μ0 + ω)I,−ψν S + (μ + ην)V ]. Thus, the necessary matrices denoted by F̧ and V̧, respectively, at the
disease-free equilibrium is given by,

F̧ =
⎛

⎝
βκ S0

N0 β S0

N0 0
0 0 0
0 0 0

⎞

⎠ =
⎛

⎜⎝
βκ

�(μ+ην)

N0μ(μ+ην+ψν)
β

�(μ+ην)

N0μ(μ+ην+ψν)
0

0 0 0
0 0 0

⎞

⎟⎠ ,

also in this case N 0 = S0 + V 0 = �(μ + ην)

μ(μ + ην + ψν)
+ �ψν

μ(μ + ην + ψν)
= �

μ
.

Therefore, F̧ =
⎛

⎝
βκ(μ+ην)
μ+ην+ψν

β(μ+ην)
μ+ην+ψν

0
0 0 0
0 0 0

⎞

⎠ and V̧ =
⎛

⎝
μ + γ 0 0
−γ μ + μ0 + ω 0
0 0 μ + ην

⎞

⎠ ,

and F̧V̧−1 =
⎛

⎝
βκ(μ+ην)

(μ+γ )(μ+ην+ψν)
+ βγ (μ+ην)

(μ+γ )(μ+ην+ψν)(μ+μ0+ω)
β(μ+ην)

(μ+ην+ψν)(μ+μ0+ω)
0

0 0 0
0 0 0

⎞

⎠ .

Thus, using the above-mentioned concept, we obtained the following expression of R0

R0 = ρ(F̧V̧−1) = β(μ + ην)(γ + κ(μ + μ0 + ω))

(μ + γ )(μ + ην + ψν)(μ + μ0 + ω)
,

R0 = R1 + R2, (5)

where R1 = βγ (μ+ην)
(μ+γ )(μ+ην+ψν)(μ+μ0+ω)

and R2 = βκ(μ+ην)
(μ+γ )(μ+ην+ψν)

.

3.5 Stability of disease-free equilibrium

Theorem 3.3 The DFE, P0 is locally asymptotically stable if R0 < 1 and else unstable.

Proof The Jacobian of model (1) at DFE, P0 =
(

�(μ+ην)
μ(μ+ην+ψν)

, 0, 0,
�ψν

μ(μ+ην+ψν)
, 0

)
is,

J (P0) =

⎛

⎜⎜⎜⎜⎜⎝

−μ − ψν − βκ(μ+ην)
μ+ην+ψν

− β(μ+ην)
μ+ην+ψν

ην θ

0 −γ − μ + βκ(μ+ην)
μ+ην+ψν

β(μ+ην)
μ+ην+ψν

0 0
0 γ −μ − μ0 − ω 0 0
ψν 0 0 −μ − ηv 0
0 0 ω 0 −θ − μ

⎞

⎟⎟⎟⎟⎟⎠

and the corresponding characteristic polynomial is

P(ξ) = (−ξ − θ − μ)(ξ + μ)(ξ + μ + ην + ψν)(a2ξ
2 + a1ξ + a0), (6)

where

a2 = 1,

a1 = μ + μ0 + ω + (γ + μ)(1 − R2),

a0 = (γ + μ)(μ + μ0 + ω)(μ + ην + ψν)(1 − R0).

The positivity of a0 and a1 is guarantee by R0 < 1. Thus by Routh–Hurwitz stability criteria for degree two polynomial, the DEF
is locally asymptomatically stable in �. ��

The global dynamics of DFE , P0 of the COVID-19 epidemic model presented in (1) is explored in the following result.

Theorem 3.4 The disease-free equilibrium P0 is global asymptotically stable if R0 < 1, otherwise unstable.
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Proof Consider the Lyapunov function of the form

υ(E, I ) = E + gI, where g = β(μ + ην)

(μ + ην + ψν)(μ + μ0 + ω)
.

The Lyapunov derivative is given by:

dυ

dt
= dE

dt
+ g

d I

dt
,

=
[
β(I + κE)

S

N
− (μ + γ )E

]
+ g

[
γ E − (μ + μ0 + ω)I

]
.

Since,

S(t) ≤ S0 = �(μ + ην)

μ(μ + ην + ψν)
and N (t) ≤ �

μ
then

S(t)

N (t)
≤ μ + ην

μ + ην + ψν

.

It follows that

dυ

dt
≤

[
κ

μ + ην

μ + ην + ψν

+ gγ − (μ + γ )

]
E +

[
β

μ + ην

μ + ην + ψν

− (μ + μ0 + ω)g

]
I

=
[
βκ

μ + ην

μ + ην + ψν

+ β(μ + ην)

(μ + ην + ψν)(μ + μ0 + ω)
γ − (μ + γ )

]
E,

+
[
β

μ + ην

μ + ην + ψν

− (μ + μ0 + ω)
β(μ + ην)

(μ + ην + ψν)(μ + μ0 + ω)

]
I

= (μ + γ )

[
β(μ + ην)(γ + κ(μ + μ0 + ω))

(μ + γ )(μ + ην + ψν)(μ + μ0 + ω)
− 1

]
E,

= (μ + γ )[R0 − 1]E .

Thus, dυ
dt < 0 if R0 < 1 and dυ

dt = 0 if and only if E(t) = 0. Substituting E(t) = 0 in (1) leads to (S(t), E(t), I (t), V (t), R(t)) →
(S0, E0, I0, V0, R0), as t → ∞. Furthermore, the largest compact invariant set of P0 is {(S(t), E(t), I (t), V (t), R(t)) ∈ � : dυ

dt =
0}. Hence, by LaSalle’s Invariance Principle, it follows that the disease-free equilibrium point is globally asymptotically stable in
� whenever, R0 < 1. ��
3.6 Stability of endemic equilibrium

Theorem 3.5 The PEE is locally asymptotically stable when R0 > 1. Moreover, PEE is unstable otherwise.

Proof The Jacobian of system (1) at PEE = (S∗, E∗, I∗, V∗, R∗) is,

J (PEE ) =

⎛

⎜⎜⎜⎜⎝

−κ11 −κ12 −κ13 ην θ

−κ21 −κ22 κ23 0 0
0 γ −κ33 0 0
ψν 0 0 −κ44 0
0 0 ω 0 −κ55

⎞

⎟⎟⎟⎟⎠
(7)

where

κ11 = μ + ψν + λ, κ12 = βκ
μS0

�R0
, κ13 = β

μS0

�R0
,

κ21 = λ, κ22 = μ + γ − βκ
μS0

�R0
, κ23 = β

μS0

�R0
,

κ33 = μ + μ0 + ω, κ44 = μ + ην, κ55 = μ + θ.

The corresponding characteristics equation is,

P(ζ ) = ζ 5 + b4ζ
4 + b3ζ

3 + b2ζ
2 + b1ζ + b0,

where

b4 = �(μ + γ )(μ + θ)(μ + μ0 + ω)(R0 − 1)

μM2S0
+ (μ + γ )

(
1 − R2

R0

)
+ (μ + μ0 + ω),

b3 = κ12κ21 + κ33κ44 + (κ33 + κ44)κ55 + κ22(κ33 + κ44 + κ55)

+ κ11(κ22 + κ33 + κ44 + κ55) − (γ κ23 + ηνψν),
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b2 = γ κ13κ21 + κ22κ33(κ44 + κ55) + κ44κ55(κ11 + κ22) + κ12κ21(κ33 + κ44 + κ55)

+ κ11(κ33κ44 + (κ33 + κ44)κ55 + κ22(κ33 + κ44 + κ55)) − γ κ23(κ11 + κ44 + κ55)

− ηνψν(κ22 + κ33 + κ55),

b1 = κ33κ44κ55(κ11 + κ22) + κ11κ55(κ22κ33 + (κ22 + κ33)κ44),

+ κ21(γ κ13(κ44 + κ55) + κ12(κ33κ44 + κ55(κ33 + κ44))) + γ ηνψνκ23,

− γ (κ23κ44κ55 + κ11κ23(κ44 + κ55) + θωκ21) − ηνψν(κ22κ33 − (κ22 + κ33)κ55)

b0 = (μ + θ)(μ + ην)(μ + γ )(μ + μ0 + ω)M1(R0 − 1)

μM2S0
.

R0 > 1 ensure that the coefficients b4, b3, b2, b1, b0 are positive. Further, it is easy to show that the necessary conditions of
Routh–Hurwitz stability criteria for degree five polynomial, b4b3b2 > b2

2 + b2
4b1, and (b4b1 − b0)(b4b3b2 − b2

2 − b2
4b1) >

b0(b4b3 − b2)
2 + b1b2

0 holds. Thus, the PEE is locally asymptotically stable in �. ��
Theorem 3.6 The endemic equilibrium point is globally asymptotically stable if R0 > 1.

Proof Consider the appropriate Lyapunov function given by (8),

F(S, E, I, V, R) = (α1V∗ − α2S∗) ln
(

S + V

S∗ + V∗

)
− (E∗ + I∗ + R∗)ln

(
E + I + R

E∗ + I∗ + R∗

)
, (8)

where

α1 = (μ + γ )(μ + ην + ψν)

ψν

, α2 = β(γ + κ(μ + μ0 + ω))

μ + μ0 + ω
,

then,

dF
dt

= (α1V∗ − α2S∗)
S + V

(
dS

dt
+ dV

dt

)
− E∗ + I∗ + R∗

E + I + R

(
dE

dt
+ d I

dt
+ dR

dt

)
.

Notice that

α1V∗ − α2S∗ = �(μ + γ )M2(1 − R0)

(R0 − 1)M1 + μM2

E∗ + I∗ + R∗ = �M2(R0 − 1)

(R0 − 1)M1 + μM2
.

Since, S(t), E(t), I (t), V (t), R(t) are all nonnegative for t > 0, by manipulation we have,

dS

dt
+ dV

dt
≤ � + θR and

dE

dt
+ d I

dt
+ dR

dt
≤ β(I + κE),

Therefore,

dF
dt

≤ �M2(1 − R0)

(R0 − 1)M1 + μM2

(
μ + γ

S + V
(� + θR) + 1

E + I + R
(β(I + κE))

)

≤ 0 if and only if R0 > 1.

Furthermore, d
dtF = 0 whenever, PEE = (S∗, E∗, I∗, V∗, R∗). The largest invariant set of {P∗ = (S(t), E(t), I (t), V (t), R(t)) ∈

� : d
dtF = 0} is singleton set {PEE }. Thus, it follows according to LaSalle’s Invariance Principle that the endemic equilibrium

point PEE is globally asymptotically stable in � whenever R0 > 1. ��
3.7 Interpretation of R0 versus model parameters

In this section, we demonstrate graphically the effect of some important COVID-19 model (1) parameters on the R0 as shown
in Figs 2, 3, 4 and 5. In Fig. 2, it is observed that with a low vaccination rate ψν and higher effective contact rate β, the value
of R0 rises. On the other hand, with the larger value of ψν , R0 is getting smaller value less than 1. This behavior is due to the
opposite sensitivity indices of these parameters. The interpretation of κ and ψν is observed on R0 in Fig. 3. It is noticed that R0

is significantly decreased with an increased vaccination rate. It means that the increase in vaccination rate effectively decrease R0

and the disease transmission will be minimized. Figure 4 depicts the impact of parameters ην (the vaccine waning rate) and ψν (the
vaccination rate) on R0. For certain diseases, the immunity wanes over a period of time naturally and susceptible individuals will
reinfect. To boost, immunity vaccination is important. In Fig. 4, we noticed that R0 rises with waning of vaccination in susceptible
at a higher rate. On the other hand, R0 will reduce providing vaccination to more susceptible will help to boost their immunity and
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Fig. 2 Interpretation of β and ψν

on R0

Fig. 3 Interpretation of κ and ψν

on R0

Fig. 4 Interpretation of ην and
ψν on R0

it results in reducing the chances of getting an infection. Figure 5 interprets the effect of contact rate β of infected and the relative
transmissibility rate κ of exposed individuals on R0. It is analyzed that the greater the values of β and κ , the greater will be R0.
This behavior is due to the positive sensitivity indices of these parameters. In order to reduce R0, it would be better to impose strict
restrictions on social contacts. In Fig. 6, the of behavior parameters β and ην on R0 is illustrated. The close observations indicate
that the basic reproductive number R0 has an increasing effect with higher β and ην . It means that the lose of immunity and more
social contacts will increase the chances of getting and spreading infection.
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Fig. 5 Interpretation of β and κ

on R0

Fig. 6 Interpretation of β and ην

on R0

Table 2 Biological descriptions of system (1) parameters with estimated values

Parameters Description Values (per/day) Source

� Recruitment rate 8939 Estimated

β Effective contact rate 0.4114 Fitted

κ Relative transmissibility rate 0.3131 Fitted

μ Natural mortality rate 1
67.7×365 [30]

μ0 Death rate from disease in I 0.022 [31]

γ Transmission from E to I 0.0164 Fitted

ψν Rate of vaccination 0.0380 Fitted

ην Vaccine waning rate 0.0057 Fitted

ω Recovery rate of infected individuals 0.1000 Fitted

θ Loss of disease-acquired immunity 0.1762 Fitted

4 Numerical simulation and discussion

This section deals with the numerical simulation of epidemic model (1) to examine the complex dynamics as well as the impact
of vaccination on transmission and controlling of corona-virus infection. The proposed model is solved numerically using RK4
iterative scheme. The simulation is performed in MATLAB by using initial data S(0) = 220870336, E(0) = 50000, I (0) =
1392, V (0) = 0, R(0) = 0 and the estimated parameters from the reported infected cases in Pakistan, given in Table 2. This section
further, describes the interpretation of the impact of some model key parameters on the outbreak of COVID-19 graphically. Figure 7
describes the behavior of symptomatic and exposed individuals with a variation of effective contact rate β. We have analyzed the
impact for the estimated baseline effective contact rate value (β = 0.4114) as well as reduce it by 10%, 20% and 30%, respectively.
It is noticed that a reasonable decrease is observed in symptomatic as well as in exposed individuals with 30% reduction in effective
contact rate to the estimated baseline value. It means that imposing strict restrictions on social contact will reduce the chances of new
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(a) (b)

Fig. 7 Impact of effective contact rate β on symptomatic and exposed population

(a) (b)

Fig. 8 Impact of transmissibility rate κ on symptomatic and exposed population

infective cases. The effect of relative transmissibility rate on infected and exposed population is illustrated in Fig. 8. The behavior
is initially observed for the baseline value κ = 0.3131.

Furthermore, reducing the baseline value of κ by 10%, 20% and 30%, significant reduction is observed in infected and exposed
individuals. The smallest number of infective and exposed individuals is observed with 30% reducing the relative transmissibility
rate. It means that increasing the social distancing will reduce the relative transmissibility rate, and it results in a decline the disease
transmission. Figure 9 illustrates the impact of vaccination on symptomatic and exposed individuals. Initially, the behavior is observed
with estimated baseline value of vaccination rate ψν = 0.0380. By enhancing it with 50% from the baseline value, an effective
decrease occurs in both infected and exposed individuals. According to a biological point of view, vaccines contain anti-virus and
are responsible to boost the immune system of suspects, and it will increase the recovery rate that is why a decrease is observed
in the infected population. The effect of ην (vaccine waning rate) on infected and exposed population is shown in Fig. 10. Firstly,
the behavior is analyzed for the estimated baseline value of vaccine waning rate, i.e., ην = 0.0057. Moreover, 10%, 30%, 50% and
80% reduction in ην to the estimated baseline value shows that infected, as well as exposed populations, will decrease significantly.
The lowest peaks are observed in the case of ην = 0.0011.
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(a) (b)

Fig. 9 Impact of vaccination rate ψν on symptomatic and exposed population

(a) (b)

Fig. 10 Impact of vaccine waning rate ην on symptomatic and exposed population

5 Model sensitivity

The sensitivity analysis of basic reproductive number R0 against the model parameters are very important aspects of the presented
study. It enables us to figure out the most influential parameters that take place in disease transmission and control. In this section, the
sensitivity analysis of various key parameters of COVID-19 model (1) is carried out. The purpose of this procedure is to investigate
the importance of model embedded parameters relative to R0. To compute the sensitivity indices, one can take into account the
developed formula by Chitnis et al. [32]. The standard sensitivity index of R0 is given by:

SR0
ζ = ζ

R0

∂R0

∂ζ
, (9)

where ζ denotes the model parameters. The partial differentiation of R0 with respect to model parameters is carried out in Math-
ematica and evaluated its values by using estimated parameters given in Table 2. The calculated indices are given in Table 3. It
provides information that how the various parameters are influential to the disease transmission and prevalence. The parameters
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Table 3 Sensitivity indices of R0 to COVID-19 model parameters

Parameters Sensitivity indices

β 1

κ + 0.699693

μ + 0.0035634

μ0 − 0.0541357

ω − 0.246071

γ − 0.697232

ην + 0.862636

ψν − 0.868761

Fig. 11 Sensitivity of R0 to
embedded parameters of system
(1)

with positive indices means it has direct dependence on R0, i.e., increasing these parameters will increase R0 and reverse relation
exists in case of parameters with negative indices.

In Table 3, the parameters with positive indices are β, κ, μ and ην , which means that they have direct effect on R0. It shows that
by increasing (or decreasing), these mentioned parameters R0 value will increase (or respectively decrease). On the other hands,
parameters μ0, ω, γ and ψν have negative indices. It indicates the inverse relation with R0 and ultimately, the increase in these
parameters will decrease the value of R0 and vice versa. The PRCC values of the selected parameters in the graphical form are
shown in Fig. 11.

6 Optimal control problem

The impact of isolation, i.e., reduction in effective contacts, enhancement in vaccine efficacy and treatment with constant rates
on COVID-19 infectious disease dynamics was analyzed in previous section. In the present section, an optimal control problem
is formulated for the mitigation of COVID-19 based on introducing three time-dependent controls denoted by u1(t), u2(t) and
u3(t) in the model (1). The purpose of introducing these time-dependent controls is to analyze the effect of its variation with
time on the dynamic of COVID-19. The developed control problem is given by (10). The control variable u1(t) is used for the
reduction in effective contacts of expose and infected individuals with susceptible, previously kept constant. To analyze vaccine
efficacy enhancement, time-dependent control u2(t) is introduced, while the control u3(t) is introduced for enhancement of infection
treatment. Thus, the formulated COVID-19 control model is obtained by incorporating the control variables mentioned above is as
follows:

dS

dt
= � − β(I + κE)

S

N
(1 − u1(t)) − (u2(t) + μ)S + ηνV + θR,

dE

dt
= β(I + κE)

S

N
(1 − u1(t)) − (μ + γ )E,

dI

dt
= γ E − (μ + μ0 + u3(t))I,

dV

dt
= u2(t)S − (μ + ην)V,
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dR

dt
= u3(t)I − (μ + θ)R, (10)

subject to the nonnegative initial conditions. In order to reduce the COVID-19 infection transmission, the cost function

J (u1, u2, u3) =
∫ T f

0

{
A1E + A2V + A3 I + 1

2
(A4u

2
1 + A5u

2
2 + A6u

2
3)

}
, (11)

need to be minimized. The constants Am for m = 1, . . . , 6, are used for the balancing cost factors, and T f represents the final time.
Due to nonlinear intervention among the population, quadratic objective functional is take into account, for details see references
[7,8,15,16].

The main goal of our observations is to search for optimal control variables u∗
i , for i = 1, 2, 3 associated with isolation, efficacy

of vaccination and treatment enhancement respectively, such that

J (u∗
1, u

∗
2, u

∗
2) = min

�
{J (u1, u2, u3)}.

The control set corresponding to the problem under consideration is given by

� = {(u1, u2, u3) : [0, T f ] → [0, 1], (u1, u2, u3) is a Lebesgue measurable}.
The Lagrangian and Hamiltonian related to the developed COVID-19 control system (10) is defined as

L = A1E + A2V + A3 I + 1

2
(A4u

2
1 + A5u

2
2 + +A6u

2
3), (12)

and

H = A1E + A2V + A3 I + 1

2
(A4u

2
1 + A5u

2
2 + +A6u

2
3)

+ λ1

[
� − β(I + κE)

S

N
(1 − u1(t)) − (u2(t) + μ)S + ηνV + θR

]

+ λ2

[
β(I + κE)

S

N
(1 − u1(t)) − (μ + γ )E

]

+ λ3[γ E − (μ + μ0 + u3(t))I ]

+ λ4[u2(t)S − (μ + ην)V ]

+ λ5[u3(t)I − (μ + θ)R],

(13)

where the symbols λm , for m = 1, 2 . . . , 5, represent the adjoint variables.

6.1 Optimal control solution

To obtain the optimal solution of COVID-19 control problem (10), Pontryagin’s maximum principle [33] is utilized. For this purpose
it is assumed that u∗

1, u∗
2 and u∗

3 are desired optimal solution. Therefore, the associated Pontryagin’s maximum principle conditions
that will be used in the solution process are as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz
dt = − ∂

∂λm
H(t, u∗

j , λm),

∂
∂uH(t, u∗

j , λm) = 0,

dλm (t)
dt = − ∂

∂zH(t, u∗
j , λm).

(14)

The mentioned conditions in (14) has been utilized in the subsequent theorem to get the optimal system solution.

Theorem 6.1 The optimal controls u∗
1, u

∗
2, u

∗
3 and control system (10) solutions S∗, E∗, I ∗, V ∗ and R∗ that minimize the objective

functional J (u1, u2, u3) over�. Then, there exists adjoint variables λm, wherem = 1, 2, . . . , 5, along with transversality conditions
λm(T f ) = 0 such that

dλ1

dt
= β(I + κE)

N∗ − S∗

N∗2 (1 − u1(t))(λ1 − λ2) + u2(λ1 − λ4) + λ1μ,

dλ2

dt
= −A1 + β

(κ(N∗ − E∗) − 1)S∗

N∗2 (1 − u1(t))(λ1 − λ2) + γ (λ2 − λ3) + λ2μ,

123



Eur. Phys. J. Plus         (2022) 137:156 Page 15 of 25   156 

dλ3

dt
= −A3 + β

((N∗ − I ∗) − κE∗)S∗

N∗2 (1 − u1(t))(λ1 − λ2) + u3(t)(λ3 − λ5) + λ3(μ + μ0),

dλ4

dt
= −A2 + β

(I ∗ + κE∗)S∗

N∗2 (1 − u1(t))(λ2 − λ1) + ην(λ4 − λ1) + λ4μ,

dλ5

dt
= β

(I ∗ + κE∗)S∗

N∗2 (1 − u1(t))(λ2 − λ1) + θ(λ5 − λ1) + λ5μ.

Moreover, the respective optimum controls u∗
i , where i = 1, 2, 3 are all present as follows:

u∗
1 = min

{
1, max

(
βS∗(I ∗+κE∗)(λ2−λ1)

A4N∗ , 0

)}
,

u∗
2 = min

{
1, max

(
0,

S∗(λ1−λ4)
A5

)}
,

u∗
3 = min

{
1, max

(
0,

I ∗(λ3−λ5)
A6

)}
.

(15)

Proof The results in (15) are obtained for the Hamiltonian function given in (13), by using transversality conditions and Pontryagin’s
maximum principle conditions given in (14). Moreover, the optimal controls u∗

1, u∗
2 and u∗

3 in (15) are computed, by implementing

the condition
∂H(t,u∗

j ,λm )

∂u j
= 0 given in (14). ��

6.2 Simulation of the control problem

Numerical simulations of the proposed COVID-19 vaccine model, with control (10) as well as without control (1), are carried out
to analyze the usefulness of the indicated preventative measures. A well-known iterative scheme RK4 is used in order to compute
the numerical solution of the proposed models. The parameters used in simulation are given in Table 2, while the weights and
balancing constants are chosen as A1 = 0.1, A2 = 0.001, A3 = 10, A4 = 200, A5 = 100, A6 = 10. The dynamics of distinct
populations with control measures and without control are shown in Figs. 12, 13, 14, 15, 16, 17 and 18 represented with blue dashed
curve and red bold curve, respectively. The control model is simulated by considering three different scenarios in order to analyze
the effectiveness or impact of each control strategy on the disease incidence. These scenarios are constructed based on various
intervention approaches for control, i.e., single, coupled, and threefold control variables. The first scenario with single control is
chosen in such a way that only a single control can be utilized at a time. The second scenario or coupled controls investigates the
impact of two controls at a time. Finally, the third scenario depicts the impact of threefold controls or all control measures on the
dynamics of model state variables. We discuss the graphical impact of each scenario in detail as follows:

6.2.1 Scenario 1: strategies with single control variable

In this scenario, three control strategies u1(isolation to reduce effective contacts), u2( vaccination) and u3(treatment) are discussed
separately to study their individual impact on the disease dynamics. In the first case, we assume the control set u1 �= 0, u2 = 0 and
u3 = 0, i.e., only the time-dependent isolation control variable is implemented, and the rest of two are ignored. This control strategy
corresponds to lockdown measures, i.e., avoiding public gathering. The details are shown in Fig. 12a–e. It is noticed that with control
strategy the exposed, infected and recovered individual are decreased reasonably. It means that strengthening the lockdown measures
will help in reducing the effective contacts of peoples in community, which corresponds to minimize the chances of getting infection
of susceptible. Figure 13a–e describes the impact of single control strategy assuming u2 �= 0, i.e., the variable vaccination is taken
into account, and there will be no control implementation on effective contacts and treatment so it is assumed that u1 = 0 and u3 = 0.
One can analyze from the plotted curves that this control strategy is more effective. A significant decrease is seen in susceptible,
exposed and infected individuals, while enhancement is observed in vaccinated individuals by using this control strategy. According
to biological facts, vaccination boosts the immunity system of suspects, since it contains anti-viral drugs effective against COVID-19
virus. Therefore, utilizing this control measures will reduce number of infected individuals and spreading of infection. Next, we
assume control on recovery from infection only with time-dependent treatment, i.e., consider the control set u1 = 0, u2 = 0 and
u3 �= 0. Figure 14 describes the impact of this strategy, whereas sub-graphs(a-e) show its corresponding impact on model different
population compartments. One can observe from the plotted curves with using this control strategy that no reasonable decrease
is observed in susceptible. On the other hand, slight decrease is noticed in exposed as well as infected individuals. It means that
utilizing only this control strategy u3 is not as effective as u1 �= 0 and u2 �= 0. Thus, implication of isolation and vaccination control
measures are useful and will help to reduce the COVID-19 infection from the community.
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(a) (b)

(c) (d)

(e)

Fig. 12 Graphical results of the model (10) with isolation intervention control only, i.e., u1 �= 0, u1 = 0 and u3 = 0
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(a) (b)

(c)

(e)

(d)

Fig. 13 Graphical results of the model (10) with vaccination control only, i.e., u1 = 0, u2 �= 0 and u3 = 0
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(a) (b)

(d)(c)

(e)

Fig. 14 Graphical results of the model (10) with treatment control only, i.e., u1 = 0, u2 = 0 and u3 �= 0
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(a) (b)

(d)(c)

(e)

Fig. 15 Graphical results of the model (10) with isolation intervention and vaccination control only, i.e., u1 �= 0, u1 �= 0 and u3 = 0
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(a) (b)

(c) (d)

(e)

Fig. 16 Graphical results of the model (10) with isolation and treatment interventions only, i.e., u1 �= 0, u2 = 0 and u3 �= 0
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(c) (d)

(e)

(a) (b)

Fig. 17 Graphical results of the model (10) with vaccination and treatment controls, i.e., u1 = 0, u2 �= 0 and u3 �= 0
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(a) (b)

(c) (d)

(e)

Fig. 18 Graphical results of the model (10) with effective contact, vaccine waning and recovery from infection controls, i.e., u1 �= 0, u2 �= 0 and u3 �= 0
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6.2.2 Scenario 2: strategies with couple control variables

In the second scenario, the analysis of utilizing coupled control strategies on COVID-19 dynamics is carried out. Initially, the time
variable isolation and vaccine control measures are used as control interventions, i.e., u1 �= 0 and u2 �= 0, while the treatment
control is not taken into account, i.e., u3 = 0. The biological impact of this control strategy is shown in Fig. 15. From the results
produced by system (10) with control, it is observed that the susceptible, exposed and infected population significantly decreased
as compared with the results of system (1) without control, while enhancement is seen in vaccinated individuals. This reveals the
fact that strictly implementing the lockdown strategy to avoid public gathering as well as isolating the infected individuals and
providing vaccination will effectively reduce the infection incidence. Figure 16 demonstrates the impact of combine implementation
of isolation and treatment controls by using the control set u1 �= 0, u2 = 0 and u3 �= 0. From the sub-graphs 16a–e, a reduction
is seen in exposed and infected individuals but there is no significant difference in the population of susceptible and vaccinated
population. Finally, we combine the time-dependent vaccination and treatment control measures as controlling intervention, while
the isolation control is ignored in this case, i.e., by considering the control set u1 = 0, u2 �= 0 and u3 �= 0. The graphical results
with control and without control are shown in Fig. 17, more significant results are observed in this case. The susceptible, exposed
and infected individuals are decreased significantly and enhancement is observed in vaccinated individuals. Thus, it noticed that
utilizing the controls set u1 �= 0, u2 �= 0, u3 = 0 and u1 = 0, u2 �= 0, u3 �= 0 one can observed that the infected population in
respective compartments are decreased faster than in case of u1 �= 0, u2 = 0 and u3 �= 0. Moreover, we conclude that using the
coupled control strategies is more effective as compared with single one and will help to reduce the COVID-19 infection notably.

6.2.3 Scenario 3: strategies with threefold (all) control variables

In the third scenario, we analyzed the joint impact of isolation, vaccination as well as treatment control measures on the dynamic
of COVID-19 infectious disease in order to explore the biological impact of all control measures simultaneously on the disease
incidence. For this purpose, the control set u1 �= 0, u2 �= 0 and u3 �= 0 is considered and the model with and without variable controls
is simulated. Using the optimal controls in system (10), the obtained graphical results are shown in Fig. 18. Figure 18a–e describes
the dynamics of the respective population compartments with and without control. It is noticed that with using this threefold control
scenario the susceptible decrease rapidly and the vaccinated population enhances significantly as compared without (or constant)
control strategy. Moreover, the exposed and infected populations also decrease significantly. In summary, the simulation in this
scenario suggests that the implication of the proposed control measures simultaneously is more suitable and significant to minimize
the infection in a community and can protect the future disease incidence.

7 Conclusion

The conducted study is focused on formulation, qualitative and numerical investigation of the compartmental-based COVID-19
vaccine model. Initially, the model is rigorously analyzed. Moreover, utilizing the optimal control theory, COVID-19 vaccine model
is optimized to set up some appropriate control measures that are beneficial to minimize the infection. The purpose is to analyze
outbreaks and the vaccination impact on COVID-19 transmission as well as control. The model is fitted to Pakistan real data of
confirmed infected cumulative COVID-19 cases for a selected time period. The following are the main results from this investigation:

1. By using the model fitting technique, the epidemiological parameters that have been incorporated into the model are estimated.
To obtain a reasonable fit to real COVID-19 data reported for Pakistan, the proposed model has been solved numerically using
an iterative scheme along with the least square approach.

2. The basic reproductive number R0 is derived using the estimated and fitted parameters and its approximate numerical value is
1.46.

3. The model’s (1) equilibria are both locally and globally asymptotically stable if the epidemiological threshold parameter R0 < 1
and R0 > 1, respectively.

4. The sensitivity indices of the proposed model parameters relative to the basic reproductive number R0 are computed in order to
quantify the relative importance of each parameter on the disease dynamics. The effect of various important model (1) parameters
on R0 is provided graphically. It is observed that the most sensitive parameters are β (the effective contact rate) and κ (relative
transmissibility rate), responsible for the transmission of infection. On the other hand, a higher vaccination rate ψν will reduce
disease transmission. Further, it is concluded that the COVID-19 epidemic will be reduced to some reasonable extent by reducing
contact rate β, transmissibility rate κ and with increasing rate of vaccination ψν .

5. The proposed model is simulated numerically to meet the theoretical results, provide the influence of various scenarios of
vaccination strategy and other controlling measures on eradication of COVID-19 infection.

6. A control model is developed based on sensitivity analysis by incorporating three time-dependent controls u1(t) (isolation to
decreases the effectiveness of interactions), u2(t) (to improve vaccine efficacy) and u3(t)(to enhance treatment) in the initiated
COVID-19 vaccine model. Moreover, Pontryagin’s maximum principle is implemented in order to derive the necessary optimality
conditions.
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7. To minimize the infection three different scenarios are considered. It is observed that utilizing the control strategyu3(t) (treatment)
separately is not effective to curtail the infection. However, implementing all proposed control measure at the same time is
effective to reduce the risk of infection transmission.
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