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Abstract The ongoing COVID-19 epidemic spread rapidly throughout India, with 34,587,822 confirmed cases and 468,980 deaths
as of November 30, 2021. Major behavioral, clinical, and state interventions have implemented to mitigate the outbreak and prevent
the persistence of the COVID-19 in human-to-human transmission in India and worldwide. Hence, the mathematical study of the
disease transmission becomes essential to illuminate the real nature of the transmission behavior and control of the diseases. We
proposed a compartmental model that stratify into nine stages of infection. The incidence data of the SRAS-CoV-2 outbreak in
India was analyzed for the best fit to the epidemic curve and we estimated the parameters from the best fitted curve. Based on the
estimated model parameters, we performed a short-term prediction of our model. We performed sensitivity analysis with respect to
R0 and obtained that the disease transmission rate has an impact in reducing the spread of diseases. Furthermore, considering the
non-pharmaceutical and pharmaceutical intervention policies as control functions, an optimal control problem is implemented to
reduce the disease fatality. To mitigate the infected individuals and to minimize the cost of the controls, an objective functional has
been formulated and solved with the aid of Pontryagin’s maximum principle. This study suggest that the implementation of optimal
control strategy at the start of a pandemic tends to decrease the intensity of epidemic peaks, spreading the maximal impact of an
epidemic over an extended time period. Our numerical simulations exhibit that the combination of two controls is more effective
when compared with the combination of single control as well as no control.

1 Introduction

The novel coronavirus is bizarre due to several causes, making its transmission unpredictable and hard to control due to its peculiar
epidemiological traits. In December 2019, the COVID-19 pandemic has started in Wuhan city of Hubei Province, the Republic of
China, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and China became the epicenter, and has now
spread throughout the world [1]. As of November 30, 2021, the total number of confirmed cases 26,14,35,768 total number of deaths
52,07,634 [2]. The worldwide pandemic resulting from SARS-CoV-2 was preceded by other two epidemics of human coronavirus,
namely Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-
CoV) infections [3], posing the tremendous menace to the economy and global public health after the 2nd World War [4]. Presently
one of the major problems is that there is no clear picture or consensus on the future progression of the COVID-19 pandemic. The
possibilities of the source of the COVID-19 transmission incorporate (but not limited to) animals, human to human and intermediate
animal vectors [3].

Due to non-appearance of any pharmaceutical interventions, government of different countries is incorporating different policy
to control this pandemic and the most common one is the implementation of lockdown to maintain the social distancing, and contact
tracing [5]. This is an excellent measure to control the spreading of the COVID-19, but from an economic view point, the nationwide
lockdown may be the cause of an important financial catastrophe in the near future. Specifically, the lockdown in the 2nd most
populated country reduces the contact rate of the diseases, but complete control on disease transmission may not be obtained. Thus,
to dynamic the economic situation of a country, a complete nationwide lockdown for an uncertain period is not acceptable at all
in any circumstances. The index case for COVID-19 epidemic in India was reported on January 30, 2020, in Trissur district of
Kerala when a student returned from Wuhan, China [6]. The Govt. of India implemented one-day ‘Janata Curfew,’ to control the
SARS-CoV-2 epidemic and maintain the social distancing on March 22, 2020 [7], and the first lockdown throughout the country
for 21 days was implemented on and from March 25, 2020.
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Mathematical models of the infectious diseases through a system of differential equations are now ubiquitous. Mechanistic
mathematical models based on the system of nonlinear ordinary differential equations (ODEs) may give an important information
regarding the transmission dynamics of COVID-19 outbreak and its control as well as mitigation strategies. Kermack and McKendrick
[8] constructed a fundamental epidemic SI R model to study the human-to-human disease transmission dynamics of individuals
through three mutually exclusive phages of infection, namely susceptible (S), infected (I ) and recovered class (R) in the year
1927. More complex mathematical models have been introduced to study the COVID-19 transmission dynamics. Kucharski and
colleagues [1] investigated a mathematical model to study the transmission dynamics of COVID-19 outbreak for cases in Wuhan,
China (including cases that originated there), using stochastic approach and use data-driven analysis and estimate the data based
on likelihood of the outbreak taking place in other geographical locations. Tang and colleagues [9] constructed a compartmental
mathematical model to investigate the transmission dynamics of COVID-19 and compute the basic reproduction number R0 = 6.47,
which is very high for COVID-19 outbreak as well as for the infectious diseases. Khajanchi and Colleagues [10] constructed a
compartmental model to control and predict the COVID-19 outbreak for the overall India and for the four states of India. The
authors also introduce the effect of media to mitigate the spread of COVID-19 outbreak. Sarkar and Khajanchi [11] developed a
compartmental mathematical model to investigate the transmission dynamics and forecast the COVID-19 outbreak in seventeen
states of India and the overall India. Wu and colleagues [12] investigated a simple SIR model to delineate the transmission dynamics
of SARS-CoV-2 virus and also estimate the clinical severity for the coronavirus diseases. Giordano and colleagues [13] developed a
new compartmental mathematical model for SARS-CoV-2 epidemics to mitigate the transmission of COVID-19 among the human
and suggest to restrictive social distancing including lockdown, closing educational institutions contact tracing, etc.

In an extended version of the classical SEIR (susceptible–exposed–infected–recovered) model to study the intervention strategies
for infectious diseases incorporates the fact that asymptomatic and pre-symptomatic infected individuals play a key role in the
transmission dynamics of COVID-19 pandemic [14–23]. One oddity is how simply individual can get infected by someone without
any clinical symptoms. But there is a distinction between pre-symptomatic and asymptomatic spread. The transmission of virus by
persons who do not have symptoms and will never get symptoms from their infection is known as asymptomatic spread of the virus.
Thus, the asymptomatic individuals are the carrier of the virus and they could still get others very sick. The transmission of the virus
by persons who don’t look or feel sick, but will eventually get symptoms later is known as pre-symptomatic spread of the virus. The
pre-symptomatic individuals can also infect other person without knowing it.

The course of an epidemic can be delineated by a series of significant factors, but some of which are very difficult to understand
the present SARS-CoV-2 disease. Also, the basic reproduction number R0 is a key identifier for the transmissibility of the infectious
diseases, as R0 quantifies how contagious the disease is. The average number of secondary infections by a single infected person in
a whole susceptible class is known as R0, or more precisely the area under the pandemic curve. Again for R0 < 1, the disease due
to infection by the virus is expected to stop spreading, but for R0 = 1 an infected person can infect on an average single person;
that is, the spread of the disease is stable. Hence, the disease due to infection by the virus can spread and become epidemic if R0

becomes larger than unity. R0 can aid in understanding the effectiveness of the diseases, that is, under what condition the disease
can spread or stop [24].

Curbing the worldwide spread of COVID-19 needs implementation of multiple population-wide policies; however, how the
stringency and timing of such measures will influence ‘flattening the curve’ remains unknown. In order to answer some of the
important issues, we have proposed a compartmental mathematical model that forecasts the evolution of outbreaks and aids to assess
the effect of various policies to restrain the spread of the infection. We estimate the system parameters, and the data have been taken
from the World Health Organization (WHO) [2]. We perform a short-term prediction of the pandemic based on the estimated model
parameters, and the results show the increasing trend of the COVID-19 in India.

At the present situation, we maintain the outbreak related to the potentiality to obtain actual data that in turn will capable to use
real data for modeling work purposes, which are the perfect skeleton in agreement with upcoming phenomena [25]. Several efforts
have been taken into consideration to better understand the kinetics of epidemiological cycle of the coronavirus diseases [13,26–30].
The rearrangement of the system parameters in a practicable way, through the imposition of limits on the system in getting the
optimization of a given function that can be implemented using the theory of optimal control.

Various kinds of mathematical models have been created and established to investigate the interactive dynamics of the SARS-CoV-
2 outbreak with their dynamical behaviors [10,11,31–39]. The study related to data-driven model for the COVID-19 transmission
dynamics with the implementation of distributed time lag has been observed by Liu et al. [40]. Khyar et al. developed a multi-
strain SEIR model to study the complicated dynamics of the SARS-CoV-2 epidemic and observed that their model showed global
dynamics [41]. The theory of optimal control policies has been used to study the SARS-CoV-2 viral dynamics, and the authors
optimal doses are required to curtail the SARS-CoV-2 viruses [42,43]. Different kinds of qualitative behavior have been observed
in various mathematical models [44–47].

The implementation of the control theory in infectious diseases is very familiar: While modeling of the infectious diseases has
used that combinations of quarantine, isolation, clinically ill cases and vaccination are necessary to eliminate the infectious diseases,
the theory of optimal control suggests us how they should be maintained, by providing actual times for intervention with actual
dosages [48]. This optimization procedure has also been used in some advanced research the span of SARS-CoV-2 epidemic. The
theory of optimal control of a modified susceptible–exposed–infected–recovered (SEIR) mathematical model has been studied with
the aim to understand the impact of two inflexible lockdown policies on the UK [49].
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Herein, we are interested in employing the control theory procedure to better understand the ways to maintain the progression of
the SARS-CoV-2 outbreak in a case study of India by designing optimal disease intervention strategies. Moreover, we raised some
important questions that are not entirely investigated in the existing literature. Our proposed model exhibits the incorporation of
optimal control policy, to minimize the clinically ill individuals and isolated individuals where the response applicability of public
health policies is perpetuated. The SARS-CoV-2 outbreak has shown us that the public health facility is not only a medical issues
but also affects the country as a whole [43]. The theoretical analysis of the transmission dynamics of the SARS-CoV-2 pandemic
has also been studied in the present manuscript.

The article is organized in the following way: Sect. 2 briefly describes the assumptions and formulation of the compartmental
model. The mathematical analysis is shown in Sect. 2.1. In the next section, we performed rigorous model simulations to validate our
theoretical analysis by considering the estimated model parameters for the Republic of India. The system parameters are estimated
based on real world example on SARS-CoV-2 for India and performed a short-term prediction of the pandemic based on the estimated
parameter values. A discussion in Sect. 6 concludes the manuscript.

2 The mathematical model

Herein, we proposed a mathematical model that represents the transmission dynamics of SARS-CoV-2 or COVID-19 epidemic.
The total population is classified into nine compartments of the COVID-19 disease: S, susceptible (uninfected); E , exposed;
A, asymptomatic; P , pre-symptomatic; U , symptomatic infected (undetected); D, symptomatic infected (detected) or severely
symptomatic; I , isolation or hospitalization; R, recovered or healed; H , dead or extinct; collectively termed SEAPUDIRH. The
SEAPUDIRH dynamical system consists of nine nonlinear ordinary differential equations, delineating the evolution of the individuals
in each compartment over time t :

dS

dt
= −S

(
βp

P

N
+ βa

A

N
+ βu

U

N

)
,

dE

dt
= S

(
βp

P

N
+ βa

A

N
+ βu

U

N

)
− γeE,

d A

dt
= ργeE − γa A,

dP

dt
= (1 − ρ)γeE − (γp + ξp + ηp)P,

dU

dt
= ξp P − γuU, (1)

dD

dt
= γp P − γd D,

d I

dt
= γd D − (γi + ξi )I,

dR

dt
= γi I + γa A + γuU + ηp P,

dH

dt
= ξi I.

We assume that the detected symptomatic or severely symptomatic infected individuals will no longer involve into the infections
because they are isolated and move to the hospitalized class. Thus, the infectious individuals belonging to pre-symptomatic (P),
asymptomatic (A) and symptomatic undetected individuals (U ) spread the disease. We consider that the COVID-19 pandemic
situation usually persists for a short time period, and thus, we neglect the demographic factors (that is, birth, death and immigration)
in our model. The parameters βa , βp and βu represent the probability of disease transmission rate due to contact between a uninfected
individuals subject to an asymptomatic, a pre-symptomatic and an undetected symptomatic infected individuals, respectively. These
parameters can be recast by social distancing strategies, for example, lockdown, closing educational institutions and remote working.
The exposed individuals develop to infectious class at the rate γe, implying the average time spent in the exposed class is 1

γe
days.

We assume that a fraction of individual move from the exposed compartment (E) to the infectious compartments (A) and (P),
respectively. Pre-symptomatic infected individuals develop to infectious class (undetected symptomatic and severely symptomatic)
at a rates ξp and γp , and thus, the average time spent in the pre-symptomatic compartment is 1

γp+ξp
days. Isolated or hospitalized

infectious individuals either recover at a rate γi or dead at a rate ξi , indicating the mean infectious period is 1
γi+ξi

days. The mortality
rate ξi (subject to the life-threatening symptoms) can be mitigated by means of improved therapeutics. The parameters γi , γa , γu
and ηp indicate the recovery rate for the four compartments of infected individuals, namely isolation, asymptomatic, symptomatic
undetected and pre-symptomatic, respectively. They may differ substantially if an appropriate treatment for the COVID-19 disease

123



  129 Page 4 of 22 Eur. Phys. J. Plus         (2022) 137:129 

Fig. 1 Graphical schematic diagram represents the interactions among different compartments of infection in the mathematical model SEAPUDIRH: S,
susceptible or uninfected; E , exposed; A, asymptomatic; P , pre-symptomatic;U , symptomatic undetected; D, symptomatic detected or severely symptomatic;
I , isolation or hospitalization; R, recovered or healed; H , dead or extinct

is known and adopted for the diagnosed patients. The interactions among the nine stages of COVID-19 compartmental mathematical
model are shown in Fig. 1.

In our model formulation, we ignore the probability of becoming susceptible individual again, after having already recovered
from the COVID-19 infection, as this appears to be ignorable based on early evidence [52].

2.1 Analysis of the mathematical model

Our SEAPUDIRH model system (1) is a bilinear system of nine ordinary differential equations. The model system is positive for
all t ≥ 0 as all the nine state variables are initialized at time 0 with nonnegative values. It can be noted that R(t) and H(t) are the
cumulative state variables, which depends only on the other state variables and their own initial values.

The SEAPUDIRH model is compartmental model and shows the mass conservation property, which can be checked by summing
all the state variables as follows:

Ṡ + Ė + Ȧ + Ṗ + U̇ + Ḋ + İ + Ṙ + Ḣ = 0,

and thus, the sum of the states (total population) is constant, say N , that is,

S + E + A + P +U + D + I + R + H = N ,

including the dead class. For the given initial values S(0), E(0), A(0), P(0), U (0), D(0), I (0), R(0), H(0) summing to N , we can
show that the state variables converge to an equilibrium state

Ŝ ≥ 0, Ê = 0, Â = 0, P̂ = 0, Û = 0, D̂ = 0, Î = 0, R̂ ≥ 0, Ĥ ≥ 0,

with Ŝ+ R̂+ Ĥ = N . Therefore, only the uninfected, the recovered and the death individuals are eventually present, indicating that
the epidemic scenario is no more. Thus, the possible equilibria are given by (Ŝ, 0, 0, 0, 0, 0, 0, R̂, Ĥ), with Ŝ + R̂ + Ĥ = N .

To understand the dynamics of the SEAPUDIRH system (1), we divide the entire population into three subclasses: The first
subclass incorporates just single variable S (representing to the uninfected population), the second subclass incorporates E , A,
P , U , D and I (the infectious population) that are nonzero only during the transient, and the last subclass incorporates R and H
(corresponding to recovered and dead class). We focus on the infected (second) subsystem that can be denoted as the E APUDI
subsystem. It is worthy to mention that when (and only when) the infectious individuals E + A+ P +U + D + I become zero, the
remaining state variables S, R and H are at an equilibrium. The uninfected variable S is monotonically decreasing and converges to
Ŝ, whereas the state variables R and H are monotonically increasing and converge to their asymptotic values R̂ and Ĥ , respectively,
which happen if and only if E , A, P , U , D and I converge to zero.

The whole system can be rewritten in the feedback structure, in which the E APUDI subsystem can be shown as a positive
linear system subject to a feedback signal f as follows. Denoting x = [E APUDI ]T , we can recast the E APUDI subsystem as

ẋ = Bx(t) + a f (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−γe 0 0 0 0 0
(1 − ρ)γe −γa 0 0 0 0

0 0 −r3 0 0 0
0 0 ξp −γu 0 0
0 0 γp 0 −γd 0
0 0 0 0 γd −r6

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

1
N
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

f (t), (2)
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where

yS(t) = bT x(t) = [
0 βa βp βu 0 0

]
x(t), (3)

yR(t) = cT x(t) = [
0 γa ηp γu 0 γi

]
x(t), (4)

yH (t) = dT x(t) = [
0 0 0 0 0 ξi

]
x(t), (5)

f (t) = S(t)yS(t), (6)

where r3 = (γp + ξp + ηp) and r6 = (γi + ξi ). The rest of the three variables satisfy the following differential equations

Ṡ(t) = −S(t)yS(t), Ṙ(t) = yR(t), Ḣ(t) = yH (t). (7)

The time-varying uninfected individual S(t) ultimately converges to a constant value Ŝ, and we can proceed with a parametric
investigation with respect to the asymptotic convergence of Ŝ. An important characteristics is stated in the following theorem.

Theorem 1 The E APUDI subsystem with uninfected individuals Ŝ is locally asymptotically stable if and only if

Ŝ

N
<

Ŝ∗

N
= γaγu(γp + ξp + ηp)

βaργu(γp + ξp + ηp) + (1 − ρ)γa{βpγu + βuξp} . (8)

Proof Since at early stages S ≈ N and all the other individuals E , A, P , U , D, I , R, D � N , one can conduct a linearization of the
above system of equations. This informs us about the early stage growth of the COVID-19 outbreak, in particular the exponential
growth rate. The variational matrix of the linearized system around the equilibrium point (Ŝ, 0, 0, 0, 0, 0, 0, R̂, Ĥ) is given by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − Ŝ
N βa − Ŝ

N βp − Ŝ
N βu 0 0 0 0

0 −γe
Ŝ
N βa

Ŝ
N βp

Ŝ
N βu 0 0 0 0

0 ργe −γa 0 0 0 0 0 0
0 (1 − ρ)γe 0 −(γp + ξp + ηp) 0 0 0 0 0
0 0 0 ξp −γu 0 0 0 0
0 0 0 γp 0 −γd 0 0 0
0 0 0 0 0 γd −(γi + ξi ) 0 0
0 0 γa ηp γu 0 γi 0 0
0 0 0 0 0 0 ξi 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The above Jacobian matrix has three zero eigenvalues, and the six eigenvalues are the roots of the given polynomial

L(λ) = F(λ) − Ŝ

N
M(λ),

where

F(λ) = (γe + λ)(γa + λ)(γd + λ)(γu + λ)(γi + ξi + λ)(γp + ξp + ηp + λ),

M(λ) = βaργe(γu + λ)(γd + λ)(γi + ξi + λ)(γp + ξp + ηp + λ)

+(1 − ρ)βpγe(γa + λ)(γu + λ)(γd + λ)(γi + ξi + λ)

+(1 − ρ)βuγeξp(γa + λ)(γd + λ)(γi + ξi + λ).

The transition function from f to yS for the system of equations (2)-(6) is Q(λ) = M(λ)
F(λ)

. Since the SEAPUDIRH system (1) is

positive, thus the H∞ norm of Q(λ) is equal to Q(0) = M(0)
F(0)

.

Therefore, by the standard root locus (small gain argument) on the positive SEAPUDIRH system Q(λ), we can conclude that
the polynomial is Hurwitz (as all the roots lie in the left-hand plane) if and only if the expression (8) holds, where Ŝ∗ = N

Q(0)
, which

proves the theorem.
It can be observed that, therefore, we define the basic reproduction number and we are well justified to define the basic reproduction

number

R0 = N

Ŝ∗ = βaρ

γa
+ (1 − ρ)

γp + ξp + ηp

(
βp + βuξp

γu

)
,

and stability of the steady state occurs for Ŝ∗
N R0 < 1. ��
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3 Sensitivity analysis of basic reproduction number (R0)

To determine how best to mitigate the human mortality and morbidity due to COVID-19, it is very important to understand the
importance of multiple factors responsible for the transmission of coronavirus. At the beginning, transmission of the virus is directly
associated to the basic reproduction number R0. The main reason for sensitivity analysis is to investigate the robustness of model
predictions to the system parameter values, as there are errors in collected data and presumed system parameter values. We perform
the sensitivity analysis to delineate the impact of parameters which are related to the basic reproduction number R0, and hence the
impact of those parameters on the system dynamics. Also, sensitivity analysis gives an idea about the intervention strategies.

More precisely, when a system parameter alters, then the sensitivity indices allow us to quantify the relative change in a variable.
In order to do the sensitivity analysis, we compute the normalized forward sensitivity index of R0 and these indices quantify the
relative change in R0 with respect to the relative change in its parameter. Thus, the normalized forward sensitivity index of R0 [51],
with respect to the parameter βa , is given by

Υ
R0
βa

= ∂R0

∂βa
× βa

R0
= ρ

βa
× βa

R0
= ρβaγu(γp + ξp + ηp)

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)
.

In similarly way, we can find the sensitivity indices of R0 with respect to the other system parameters.

Υ R0
ρ = ρβaγu(γp + ξp + ηp) − ργa(βpγu + βuξp)

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

Υ R0
γa

= −ρβaγu(γp + ξp + ηp)

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

Υ R0
γp

= −(1 − ρ)γaγp(βpγu + βuξp)

(γp + ξp + ηp)
[
ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

]

Υ
R0
ξp

= (1 − ρ)γaξp
[
βu(γp + ηp) − βpγu

]
(γp + ξp + ηp)

[
ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

]
Υ R0

ηp
= −(1 − ρ)γaηp(βpγu + βuξp)

(γp + ξp + ηp)
[
ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

]
Υ

R0
βp

= (1 − ρ)βpγaγu

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

Υ
R0
βu

= (1 − ρ)βuγaξp

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

Υ R0
γu

= −(1 − ρ)βuγaξp

ρβaγu(γp + ξp + ηp) + (1 − ρ)γa(βpγu + βuξp)

From the above expression, we obtain that Υ
R0
βa

, Υ
R0
βp

, Υ
R0
βu

> 0, Υ
R0
ξp

> 0 if βu(γp + ηp) > βpγu and Υ
R0
ρ > 0 if βaγu(γp + ξp +

ηp) > γa(βpγu + βuξp). We also obtain that Υ
R0
γa , Υ

R0
γp , Υ

R0
ηp , Υ

R0
γu < 0. Notice that R0 does not depend on the system parameters

γd , γe, γi , ξi , so Υ
R0
γd = Υ

R0
γe = Υ

R0
γi = Υ

R0
ξi

= 0.

Since βa, βp and βu are the probability of disease transmission rate, Υ
R0
βa

, Υ
R0
βp

, Υ
R0
βu

> 0, which implies that the increment of

βa, βp and βu will cause R0 to increase. Here, Υ
R0
ξp

> 0 and Υ
R0
ρ > 0, which implies that increment of rate of pre-symptomatic to

symptomatic undetected (ξp) and fraction of asymptomatic carriers (ρ) will cause R0 to increase. Again, Υ R0
γa , Υ

R0
ηp , Υ

R0
γu < 0, so the

increment of recovery rates γa, ηp and γu will cause R0 to decrease. Moreover, the increment of the rate at which pre-symptomatic

infected individuals become symptomatic detected (γp) will cause R0 to decrease as Υ
R0
γp < 0. These conclusions are biologically

acceptable.
From the expressions of Υ

R0
βa

, Υ
R0
βp

, Υ
R0
βu

, Υ
R0
ξp

, Υ
R0
ρ , Υ

R0
γa , Υ

R0
γp , Υ

R0
ηp and Υ

R0
γu , it is easy to show that |Υ R0

βa
|, |Υ R0

βp
|, |Υ R0

βu
|,

|Υ R0
ξp

|, |Υ R0
ρ |, |Υ R0

γa |, |Υ R0
γp |, |Υ R0

ηp |, |Υ R0
γu | < 1. Here, Υ

R0
βa

= −Υ
R0
γa , which implies that the perturbations in the parameters βa and

γa produce equal and opposite change in R0. Also here, Υ
R0
βu

= −Υ
R0
γu , which implies that the perturbations in the parameters βu

and γu produce equal and opposite change in R0. Again, Υ R0
ρ < Υ

R0
βa

, which implies that the perturbation in ρ produces a relatively

low changes in R0 comparing to the perturbation in βa . The sensitivity index Υ
R0
βa

becomes most positive if the following inequality
holds:

(1 − ρ)βuγaξp(γp + ξp + ηp) < (1 − ρ)γaξp(βpγu + βuξp) + ρβaγu(γp + ξp + ηp)
2,

(1 − ρ)βpγaγu < ρβaγu(βpγu + βuξp),
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Table 1 Description of the SEAPUDIRH model parameters used for numerical simulations

Parameters Description Values & Unit References

βp Disease transmission rate due to contact between
susceptible and pre-symptomatic

0.3649 day−1 Estimated

βa Disease transmission rate due to contact between
susceptible and asymptomatic

0.2788 day−1 Estimated

βu Disease transmission rate due to contact between
susceptible and undetected symptomatic

0.3690 day−1 Estimated

γe Transition rate from exposed to infectious 0.15 day−1 [16]

ρ Fraction of asymptomatic carriers 0.67 Dimensionless Estimated

γa Rate at which asymptomatic infected individuals
become recovered

0.1428 day−1 Estimated

γp Rate at which pre-symptomatic infected
individuals become symptomatic detected

0.93575 day−1 Estimated

ξp Rate at which pre-symptomatic infected
individuals become symptomatic undetected

0.01425 day−1 Assumed

ηp Transition rate of pre-symptomatic to recovery 0.0112 day−1 [16]

γu Recovery rate of undetected symptomatic
infected

0.428 day−1 Assumed

γd Transition rate of symptomatic detected to
isolation or hospitalization

0.736 day−1 [13]

γi Transition rate of isolation to recovery 0.008 day−1 [10]

ξi Mortality rate of isolated infected subject to the
life-threatening symptoms

0.000037 day−1 Assumed

Table 2 Sensitivity indices of R0 evaluated at the baseline parameter values listed in Table 1

Parameters βa βp βu ρ γa γu ξp ηp γp

Sensitivity index 0.9099 0.0872 0.0094 0.7271 −0.9099 −0.0089 0.0056 −0.0081 −0.0877

(1 − ρ)βuγaξp < ρβaγu(βpγu + βuξp).

The sensitivity index Υ
R0
γa becomes most negative if the following inequality holds:

ρβaγu(γp + ξp + ηp)
2 > (1 − ρ)γaγp(βpγu + βuξp),

ρβaγu(γp + ξp + ηp)
2 > (1 − ρ)γaηp(βpγu + βuξp),

ρβaγu(γp + ξp + ηp) > (1 − ρ)γaβuξp.

Hence, the absolute value of the normalized forward sensitivity index becomes largest for the parameters βa and γa . Positive
sensitivity indices imply that R0 is an increasing function of the corresponding system parameter and negative indices indicate that
R0 is a decreasing function of that system parameter. As for example, Υ

R0
βa

= 0.9099 indicates that if βa is increased by 10%, then

the R0 is also increased by 9.09% Table 1. Again, for Υ
R0
γa = −0.9099 indicates that 10% increment in γa will decrease R0 by

9.09%. From Table 2, it can be observed that the disease transmission rate βa and the fraction of asymptomatic carriers ρ are most
sensitive parameter which has positive impact on R0 and the parameters γa and γp show more negative impacts on R0 Fig. 2 shows
sensitivity of the model parameters with respect to R0.

4 Optimal control problem

The control measures play an important role in mitigating the transmission of the COVID-19 dynamics. Thus, in this section we
formulate an optimal control problem using u1(t) and u2(t) as time-dependent control variables corresponding to the mathematical
model (1). We are mainly interested to investigate the effect of these intervention strategies on the transmission of the COVID-19
virus. We minimize the infected population and the hospitalized population by using the theory of optimal intervention strategies
[53]. We performed the theoretical analysis as well as numerical illustrations to show how these control strategies make an evident
on the transmission of COVID-19 pandemic and to minimize the disease burden with their implementations. The definition of the
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Fig. 2 The plot represents the
normalized forward sensitivity
indices of the basic reproduction
number R0 with respect to the
baseline system parameter values
specified in Table 1
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parameters and supposition leads to the model (1) which implies a coupled system of nonlinear differential equations with nine state
variables, that is, S(t), E(t), A(t), P(t), U (t), D(t), I (t), H(t) and R(t). In our control problem, we implemented two control
variables ui (t) (i = 1, 2) that externally control the number of isolated or hospitalized cases and clinically ill or symptomatic
infected cases over a specified time window. Now, we delineate these two control strategies and then investigate their impact on
COVID-19 transmission dynamics.

4.1 To provide better treatment to the clinically ill or infected individuals

Better treatment strategy to the symptomatic infected population not only weakens the disease prevalence but also influences its
development. It is very essential to the individuals to consult with a doctor if the mildly symptom is observed in this body. The
individuals should not neglect by considering it as a mildly cases. Consulting to the doctors at the beginning can reduce the disease
transmission, and thus, a saturated isolation rate ε1u1(t)D

1+ξ1D
is implemented in our original model (1) where ε1 represents the rate at

which clinically ill cases move to the hospitals for medical treatment without neglecting the symptoms with magnitude u1 and half
saturation constant ξ−1

1 . There are different costs related to the medicines, kits, diagnosis, health protocols, etc., during the period
when an individual detected with coronavirus symptoms is taken into account. Hence, we consider that the treatment intensity u1(t)
as a control variable lies between 0 and 1 where 0 represents case when an individual ignores his/her mild symptoms and 1 indicates
the case when an individual consults with doctor neglecting the mild symptoms.

4.2 Better treatment strategy to the isolated individuals

The disease mortality can be lower by providing proper antivirals or vaccination against novel coronavirus to the isolated or
hospitalized individuals at the very beginning of infection. It influences the development of the diseases too. It is to be noted that
the vaccine is accessible and given to the population who are admitted in the nursing home or hospitals in a limited amount. As
the accessibility of resources associated with the medical treatments, financial crisis, disease diagnosis, etc., all the equipment is
restricted. To keep this mind, we implemented intervention strategy in our original model (1) by introducing a saturated treatment
rate function ε2u2(t)I

1+ξ2 I
where ε2 represents the treatment rate with magnitude u2 along with half saturation constant ξ−1

2 . Different
costs related to the medicines, health problem, isolation, vaccination, medical kits, etc., at the time of medication period are need to
be taken into account. Thus, we consider u2(t) as a control variable lying between 0 and 1, where 0 represents no response and 1
represents full response after the treatment.

Our main aim is to obtain the optimal treatment strategy for the clinically ill population and isolated individuals with minimum
cost. To do this, we consider the admissible set for two control variables u1(t) and u2(t) defined as follows:

U =
{
u1(t), u2(t) : 0 ≤ u1(t), u2(t) ≤ 1, t ∈ [0, T ]

}
. (9)

After introducing the controls in the original system (1), we get the following system of equations:

dS

dt
= −S

(
βp

P

N
+ βa

A

N
+ βu

U

N

)
,

dE

dt
= S

(
βp

P

N
+ βa

A

N
+ βu

U

N

)
− γeE,

d A

dt
= ργeE − γa A,

dP

dt
= (1 − ρ)γeE − (γp + ξp + ηp)P,

dU

dt
= ξp P − γuU, (10)
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dD

dt
= γp P − γd D − ε1u1(t)D

1 + ξ1D
,

d I

dt
= γd D − (γi + ξi )I + ε1u1(t)D

1 + ξ1D
− ε2u2(t)I

1 + ξ2 I
,

dR

dt
= γi I + γa A + γuU + ηp P + ε2u2(t)I

1 + ξ2 I
,

dH

dt
= ξi I,

subject to the minimize the objective functional

J (u1(t), u2(t)) =
∫ T

0

(
c1D + c2 I + w1

2
u2

1 + w2

2
u2

2

)
dt. (11)

Here, J is the total cost and at any time t , the integrand L(D, I, u1(t), u2(t)) = c1D + c2 I + w1

2
u2

1 + w2

2
u2

2 represents the current

value of the cost. The positive parameters w1 and w2 represent the weight constants, which balance the units of the integrands
[44,46,54].

4.3 Existence of optimal control

In this section, the existence of optimal solution of the system (10) with objective functional (11) is verified. We assure the existence
of the control pair u∗

1 and u∗
2 in

Φ = {ui is measurable, 0 ≤ ui ≤ 1 for t ∈ [0, T ], i = 1, 2} ,

which minimizes the cost functional J .

Theorem 2 There exist optimal controls u∗
1 and u∗

2 in Φ corresponding to the control problem (10) and (11) on a fixed interval
[0, T ].
Proof We will use Lukes [53] results to proof the theorem. In order to ensure the existence of optimal controls, the conditions listed
below must be satisfied:

1. The boundedness of the solution of the control system (10) confirms the existence of the solution of control system (10).
2. The optimal control set and the corresponding state variables are non-empty.
3. The solution of the control system (10) is bounded above by a linear function in the control as well as state variables.

The integrand in the cost functional J , L(D, I, u1(t), u2(t)) = c1D + c2 I + w1

2
u2

1 + w2

2
u2

2 is convex on the control set Φ. The

exist constants a1, a2 > 0 and b > 0 such tat c1D + c2 I + w1
2 u2

1 + w2
2 u2

2 ≤ a1 + a2
(|u1|2 + |u2|2

)q/2 where a1 depends upon the
upper bounds of D and I and b2 = max {u1, u2}. ��
4.4 Characterization of optimal control

Now, we need to estimate the value of optimal controls u∗
1(t) and u∗

2(t) such that

J (u∗
1, u

∗
2) = min

u1, u2∈Φ
J (u1, u2) (12)

where

Φ = {ui is measurable, 0 ≤ ui ≤ 1 for t ∈ [0, T ], i = 1, 2} .

The Lagrangian is given by

L(D, I, u1(t), u2(t)) = c1D + c2 I + w1

2
u2

1 + w2

2
u2

2. (13)

The Hamiltonian is defined as follows:

H(D, I, u1, u2, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9)

= L(D, I, u1(t), u2(t)) + λ1
dS

dt
+ λ2

dE

dt
+ λ3

d A

dt
+ λ4

dP

dt
+ λ5

dU

dt

+λ6
dD

dt
+ λ7

d I

dt
+ λ8

dR

dt
+ λ9

dH

dt
(14)
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where the adjoint variables can be obtained as the solution of the following system of differential equations

λ′
1(t) = −∂S

∂t
= (λ1 − λ2)

(
βp

P

N
+ βa

A

N
+ βu

U

N

)
I,

λ′
2(t) = −∂E

∂t
= (λ2 − λ4)γe + (λ4 − λ3)ργe,

λ′
3(t) = −∂A

∂t
= (λ1 − λ2)βa

S

N
+ (λ3 − λ8)γa,

λ′
4(t) = −∂P

∂t
= (λ1 − λ2)βp

S

N
+ (λ4 − λ6)γp + (λ4 − λ5)ξp + (λ4 − λ8)ηp,

λ′
5(t) = −∂U

∂t
= (λ1 − λ2)βu

S

N
+ (λ5 − λ8)γu, (15)

λ′
6(t) = −∂D

∂t
= −c1 + (λ6 − λ7)γd + (λ6 − λ7)

ε1u1

(1 + ξ1D)2 ,

λ′
7(t) = −∂ I

∂t
= −c2 + (λ7 − λ8)

ε2u2

(1 + ξ2 I )2 + (λ7 − λ8)γi + (λ7 − λ9)ξi ,

λ′
8(t) = −∂R

∂t
= 0,

λ′
9(t) = −∂H

∂t
= 0.

satisfying λi (T ) = 0, for i = 1, 2, 3, . . . , 9, that is the transversality conditions. Now, using Pontryagin’s maximum principle
[53,54] we characterize the optimal control pair u∗

1 and u∗
2 as follows:

Theorem 3 Let u∗
1 and u∗

2 be optimal control variables and S∗, E∗, A∗, P∗,U∗, D∗, I ∗, R∗, and H∗ be corresponding optimal
state variables of the system (10)-(12). Then, there exists adjoint variable λ = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9) ∈ R9 that satisfies
the canonical equations (15) with transversality conditions λi (T ) = 0, for i = 1, 2, 3, . . . , 9. The corresponding optimal controls
u∗

1 and u∗
2 are given as,

u∗
1 = min

{
max

{
0, (λ6 − λ7)

ε1D

w1(1 + ξ1D)

}
, 1

}
, (16)

and

u∗
2 = min

{
max

{
0, (λ7 − λ8)

ε2 I

w2(1 + ξ2 I )

}
, 1

}
. (17)

Proof Let u∗
1 and u∗

2 be the given optimal control variables and S∗, E∗, A∗, P∗,U∗, D∗, I ∗,
R∗, and H∗ be corresponding optimal state variables of the system (10) which minimize the cost functional (11). Hence, by
the Pontryagin’s maximum principle, there exist adjoint variables λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 and λ9, which satisfy canonical
equations (15) with transversality conditions λi (T ) = 0, for i = 1, 2, 3, . . . , 9. Now, using the optimality condition, we obtain

∂H

∂u1
= 0 at u1 = u∗

1 and
∂H

∂u2
= 0 at u2 = u∗

2.

Thus, we obtain u∗
1 = (λ6 − λ7)

ε1D

w1(1 + ξ1D)
and u∗

2 = (λ7 − λ8)
ε2 I

w2(1 + ξ2 I )
.

Hence, using the above results along with the characteristics of control set Φ, we obtain

u∗
1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (λ6 − λ7)
ε1D

w1(1+ξ1D)
< 0,

(λ6 − λ7)
ε1D

w1(1+ξ1D)
, (λ6 − λ7)

ε1D
w1(1+ξ1D)

≤ 1,

1, (λ6 − λ7)
ε1D

w1(1+ξ1D)
> 1,

and

u∗
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, (λ6 − λ7)
ε1D

w1(1+ξ1D)
< 0,

(λ6 − λ7)
ε1D

w1(1+ξ1D)
, (λ6 − λ7)

ε1D
w1(1+ξ1D)

≤ 1,

1, (λ6 − λ7)
ε1D

w1(1+ξ1D)
> 1,

which can be equivalently written as (16) and (17). ��
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Fig. 3 The figure represents the
comparison of the corresponding
susceptible (S), exposed (E),
asymptomatic (A),
pre-symptomatic (P),
symptomatic undetected (U ),
clinically ill or symptomatic
detected (D), isolated or
hospitalized (I ), recovered (R)

and dead (H) classes without
intervention strategies, with the
implementation of intervention
strategies (only u1 control).
Optimal treatment strategy (solid
blue line) demonstrates reduction
of the (D), (I ) and (H) classes
and increase in the (R) class when
compared with the no controls
(solid black curves). The
parameter values are given in
Table 1
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We numerically solved the control system (10) subject to the objective functional J (u∗
1, u

∗
2) with system parameter values which

are listed in Table 1, and we assume the initial population as
[
S(0), E(0), A(0), P(0), U (0), D(0), I (0), R(0), H(0)

]
=

[
13.5 × 108, 9700, 3200, 50, 10, 03, 0, 0, 0

]
. We use forward–backward sweep method to solve the optimality system

numerically. The state equations are solved forward in time and after that the adjoint state system solved backward in time using
Runge–Kutta fourth-order iterative scheme. The values of the controls are updated at each iteration. The process is repeated to
reach a desired convergence criteria. We have compared our model with the implementation of optimal control strategy and without
administration of optimal control policy, and the variation of the state variables in the presence of optimal controls and in the
absence of optimal control is shown in Figs. 3, 4 and 5. It is observed that there is no significant effect of the optimal controls for
the S, E, A, P and U populations.

We employ two different optimal treatment strategies, namely u1(t) and u2(t). The solid black curves for epidemic (without
administration of intervention strategies) are exhibited to highlight the difference from those generated via implementation of optimal
treatment polices. The solid blue epidemic curves (with the implementation of single control u1(t) only) are shown the reduction of
the symptomatic detected cases, isolated cases and dead population when compared with the no intervention scenario. It can also
be noted that the recovered population increases after the implementation of single optimal control u1(t) when compared without
administration of controls, that is, u1(t) = u2(t) = 0. Thus, the implementation of single control is better in comparison with the
without control policy. The impact of the time-dependent optimal control u1(t) only [ here u2(t) = 0] is shown in Fig. 3. This
numerical simulation shows significant decrease in the density of I , H and D populations and significant increase in R population.

Again, the impact of the time-dependent optimal control u2(t) only [ here u1(t) = 0] is plotted in Fig. 4. The solid blue epidemic
curves (with the implementation of single control u2(t) only) show the reduction of the symptomatic detected cases, isolated cases
and dead population when compared with the no intervention scenario (solid black curves). It can also be noted that the recovered
population increases after the implementation of single optimal control u2(t) when compared without administration of controls,
that is, u1(t) = u2(t) = 0. From the numerical simulation (see Fig. 4), we can infer that the effect of the optimal control u2(t) is
more effective than the optimal control u1(t).

The time series Fig. 5 represents the impact of each treatment strategies on the disease state variables in the presence of the
optimal control strategy and in the absence of optimal treatment strategy. These plots demonstrate the cases under no control
(u1(t) = u2(t) = 0), with the combination of two different controls (u1(t), u2(t)). The solid black curves for epidemic (without
implementation of intervention strategies) are shown to highlight the difference from those generated through the administration
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Fig. 4 The figure represents the
comparison of the corresponding
susceptible (S), exposed (E),
asymptomatic (A),
pre-symptomatic (P),
symptomatic undetected (U ),
clinically ill or symptomatic
detected (D), isolated or
hospitalized (I ), recovered (R)

and dead (H) classes without
intervention strategies, with the
implementation of intervention
strategies (only u2 control).
Optimal treatment strategy (solid
blue line) demonstrates substantial
reduction of the (D), (I ) and (H)

classes and substantial increment
of the (R) class when compared
with the no controls (solid black
curves). The parameter values are
given in Table 1
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of optimal treatment polices. The solid blue epidemic curves (with the administration of the combined of two controls) exhibit
the significant reduction of the symptomatic detected cases, isolated or hospitalized cases and dead individuals when compared
with the no intervention strategies. The reduction of the symptomatic infected (detected) class (D) becomes maximum when
the optimal controls u1(t) and u2(t) are applied simultaneously. It is worthy in mentioning that the recovered individuals (R)
increased substantially when compared with the no control cases as well as the implementation of single controls u1(t) and u2(t).
Implementation of the combination of two controls is better when compared with the no control policy as well as the single control
policy. Thus, from the numerical simulations (Fig. 5) we can infer that the employment of intervention strategy has an effect in
controlling the spread of novel coronavirus epidemic. Also, we can conclude that the combination of two controls is more effective
when compared with the implementation of the single control.

The time evolution of the control variables u1(t) and u2(t) is shown in Fig. 6 with respect to the disease transmission rate (βa)

due to contact between susceptible and asymptomatic population. Figure 7 shows the time evolution of the control variable u1(t)
with respect to the parameter ε1 (left panel) and the time evolution of the control variable u2(t) with respect to the parameter ε2

(right panel). The time evolution of the control variable u1(t) and u2(t) is shown in Fig. 8 with respect to the rate (γa) at which
asymptomatic infected individuals become recovered.

We designed an analysis with only u1 optimal control policies, that is, implementing of optimal control strategy on isolated or
hospitalized individuals. Numerical simulations of the proposed COVID-19 model, collectively SEAPUDIRH, have been shown
with the application of only u1 optimal control and without implementation optimal control in Fig. 3. Implementation of only u1

control decreases the symptomatic detected individuals (D), isolated or hospitalized population (I ), dead cases (H ) and consequently
the recovered class (R) has been increased. More people become recovered, and less number of people become infected after the
successful implementation of only u1 optimal control. Also, the number of death cases decreased after the introduction of only u1

optimal control.
Next we implement the single optimal control u2 for the saturated treatment rate with u1 = 0. Here, the value of u2 lies

between 0 and 1, where 0 indicates no response for COVID-19 medical treatment, while 1 indicates full response for COVID-19
medical treatment. Numerical simulation of the proposed COVID-19 model, collectively SEAPUDIRH, has been shown with only
u2 optimal control and without implementation of optimal control in Fig. 4. Implementation of only u2 optimal control decreases
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Fig. 5 The figure represents the
comparison of the corresponding
susceptible (S), exposed (E),
asymptomatic (A),
pre-symptomatic (P),
symptomatic undetected (U ),
clinically ill or symptomatic
detected (D), isolated or
hospitalized (I ), recovered (R)

and dead (H) classes without
intervention strategies, with the
implementation of intervention
strategies (combination of the two
controls u1 and u2). Optimal
treatment strategy (solid blue line)
demonstrates significant reduction
of the (D), (I ) and (H) classes
and significant increment of the
(R) class when compared with the
no controls (solid black curves).
The parameter values are given in
Table 1
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Fig. 6 Time profile of the optimal
controls u1(t) (left panel) and
u2(t) (right panel) for different
values of βa . Rest of the
parameters are defined in Table 1
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the symptomatic detected (D) cases, isolated or hospitalized (I ) cases, dead classes (H ) and increases the number of recovered (R)
population. More population become recovered, and less number of population become infected after the successful implementation
of only u2 optimal control. Here, also the number of death cases reduced after the implementation of only u2 optimal control.

Now, we implement both the optimal controls u1 and u2 simultaneously in our proposed SEAPUDIRH model. Numerical solution
of the proposed COVID-19 model, collectively SEAPUDIRH, is shown with both u1 and u2 optimal controls in Fig. 5. Significant
decrease in the clinically ill or symptomatic detected (D) cases, isolated or hospitalized (I ) individuals, dead classes (H ) is observed
and significantly increases the recovered (R) individuals. The number of clinically ill or symptomatic detected (D), isolated (I ), dead
(H ) classes becomes less, while the optimal controls u1 and u2 are applied simultaneously when compared to the implementation
of single optimal controls.
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Fig. 7 Time profile of the optimal
controls u1(t) (left panel) for
different values of ε1 and u2(t)
(right panel) for different values of
ε2
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Fig. 8 Time profile of the optimal
controls u1(t) (left panel) and
u2(t) (right panel) for different
values of γa
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5 Numerical simulations

In this section, we performed some numerical illustrations for the COVID-19 pandemic in India based on the SEAPUDIRH model
system (1). We estimated the SEAPUDIRH model parameters based on the daily observed COVID-19 cases, cumulative number
of COVID-19 cases and the dead cases due to SARS-CoV-2 virus infection, for the time period March 01, 2020, to August 15,
2020. The data were collected from the WHO situation report [2]. We estimated six parameter values, namely βp , βu , βa , ρ, γa and
γp among 13 system parameters. The estimated value of those six system parameters is listed in Table 1. Based on the estimated
model parameters and other parameters, we performed short-term prediction of the epidemic. We also performed some mathematical
analysis to get an idea about the basic reproduction number R0. We also showed that our system is asymptotically stable for R0 < 1.

5.1 Preliminary insight from COVID-19 observed data

First, we perform a simple mathematical analysis that can be endeavored to obtain some insight into the COVID-19 pandemic and to
generate iterative time-lag maps. The motivation is to build a relationship between some individuals at time (in days) n + k and the
same individuals at day n, corresponding to the time lag of k days. Thus, we have investigated the relation between the populations
of (t + n)th and t th days for the daily new COVID-19 infection cases and daily new deaths due to COVID-19 infection with a time
lag of t days. Now considering n = 1, we have graphically shown the t th days population along horizontal axis and (t + 1)th days
population along the vertical axis (see Fig. 9). Both the populations follow the power law

Xt+1 = aXt
b. (18)

The values of the parameters a and b are 1.192 and 0.9842, respectively, for the daily new COVID-19 cases (D) with coefficient
of determination (R2) = 0.9928. Also, we consider the values of the parameters a and b are 1.821 and 0.8954, respectively, for the
daily new deaths (H ) with coefficient of determination (R2) = 0.8950.

123



Eur. Phys. J. Plus         (2022) 137:129 Page 15 of 22   129 

Fig. 9 The figure represents the
recurrence plots for the daily new
COVID-19 cases and the daily
new deaths due to COVID-19
infection. The best fit of the power
law of the kind (18) is shown by
solid blue curve. The coefficient of
determination (R2) for the daily
new COVID-19 cases is 0.9928,
and the coefficient of
determination (R2) for the daily
new deaths is 0.8950. The best fit
curves of the power law are
increasing for both the populations 0 0.5 1 1.5 2
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5.2 Model calibration

We have calibrated our proposed COVID-19 model system (1) with the daily observed COVID-19 infection cases, cumulative
number of COVID-19 cases as well as the number of daily deaths due to COVID-19 infection. The data of daily new COVID-19
infection cases, cumulative number of COVID-19 infection cases, daily deaths and cumulative number of deaths due to COVID-19
infection in India were obtained from the situation report of World Health Organization (https://www.who.int) [2]. First COVID-
19 cases have been observed in India on January 30, 2020, but March 01, 2020, onward, the daily new COVID-19 infection
cases were reported continuously. Hence, we have collected the COVID-19 data from March 01, 2020, to August 15, 2020.
Model simulation depends on both the system parameter values and the initial population sizes. As the population in India is
13.5 × 108 and the 3 persons were infected by COVID-19 as on March 01, 2020, we have considered the initial population sizes as[
S(0), E(0), A(0), P(0), U (0), D(0), I (0), R(0), H(0)

]
=

[
13.5 × 108, 9700, 3200, 50, 10, 03, 0, 0, 0

]
and varied the

system parameter values to fit with the observed data. The model simulations were fitted with the observed daily new COVID-19
cases, cumulative number of COVID-19 cases as well as daily deaths due to COVID-19 infection, using the least square method
by minimizing the sum of errors. Six model parameters, namely βa , βp , βu , ρ, γa and γp , have been estimated by this least square
method out of the thirteen system parameters [50]. The value of the estimated parameters is listed in Table 1, and the best fitted
curves are shown in Fig. 10. The daily new COVID-19 infection cases, cumulative number of COVID-19 cases and cumulative
number of deaths have shown in first, second and third row, respectively. Filled red circles are the observed cases, and the blue curves
are best fitted model simulation. Our SEAPUDIRH model system (1) nicely captured the increasing trend in all the populations.
To compute the accuracy of model simulation, we have computed the root-mean-square error (ERMSE ) and mean absolute Error
(EMAE ), which can be defined as follows:

ERMSE =
√

Σn
i=1(R(i) − M(i))2

n
,

EMAE = Σn
i=1|R(i) − M(i)|

n
,

where R(i) represents the observed COVID-19 infection cases, M(i) represents the model simulation on the i th day, and n = 168
is the sample size of the observed COVID-19 data. The values of ERMSE and EMAE are 3266.6 and 2204.0, respectively.
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Fig. 10 The figure shows the
model simulations fitted with the
observed daily new COVID-19
cases, cumulative confirmed
COVID-19 cases and cumulative
deaths due to COVID-19 infection
in India. Observed cases are
shown by the solid red circle, and
the best fitting curve for the
SEAPUDIRH Model system (1) is
shown by blue curve. The first row
represents the daily new
COVID-19 cases, the second row
represents the cumulative number
of confirmed COVID-19 cases,
and the third row represents the
cumulative number of deaths due
to COVID-19 infection. The initial
values are used to solve the system
of ordinary differential equations[
S(0), E(0), A(0), P(0), U (0),

D(0), I (0), R(0), H(0)
]

=[
13.5 ×

108, 9700, 3200, 50, 10, 03, 0, 0, 0
]
.

The estimated parameter values
are listed in Table 1
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5.3 Impact of basic reproduction number R0

An important identifier for the transmissibility of infectious diseases such as SARS-CoV-2 virus is the basic reproduction number
R0, which can be defined as the average number of secondary infections created by a single infected person, in a population whose
all members are uninfected or susceptible. The numeric value of the basic reproduction number, R0, is computed using the estimated
system parameter values, and the system parameter values are listed in Table 1, and for our proposed SEAPUDIRH model, we
obtained R0 = 1.4376, which shows the substantial outbreak of COVID-19 in India.

Figure 11a represents the basic reproduction number (R0) of the SEAPUDIRH system (1) with respect to βa (contact rate between
susceptible and asymptomatic) and βp (contact between susceptible and pre-symptomatic). The value of R0 increases if any one of
the parameters βa or βp increases. The disease-free equilibrium point of the model system (1) is asymptotically stable for R0 < 1,
and for lower values of βa or βp , the reproduction number R0 is less than unity. Thus, the coronavirus outbreak in India can be
controlled by reducing contact rate between the individuals, which can be done by maintaining social distancing and contact tracing.
Figure 11c shows that if both βa and βp increase, then the value of R0 will also increase significantly.

Figure 11b represents the basic reproduction number (R0) of the SEAPUDIRH system (1) with respect to γp (the rate at which
pre-symptomatic infected person becomes symptomatic detected) and γa (the rate at which asymptomatic infected individuals
become recovered). For larger value of γp , the value of R0 becomes less than 1 if γa increases; that is, if the rate of conversion of
pre-symptomatic infected individuals (P) to symptomatic detected (D) is higher, then higher rate of recovery makes the disease-free
steady-state stable. But for a lower value of γp , if γa increases, then the value of R0 remains greater than unity, that is, for lower
rate of conversion from pre-symptomatic infected individuals (P) to symptomatic detected (D) will not ensure the stability of the
disease-free equilibrium even if the rate of recovery is high enough. This suggests that, to make the system disease free, identification
of pre-symptomatic infected individuals (P) is utmost important which can be done by increasing the number of COVID-19 test.
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Fig. 11 The figure shows the basic reproduction number R0 of the system (1) in terms of a βa and βp , b γp and γa , c βa and d γp . In the figures (c) and (d),
green shading region indicates R0 < 1 and red shading region indicates R0 > 1. Parameters value are βp = 0.3649, βa = 0.2788, βu = 0.369, γe = 0.15,
ρ = 0.67, γa = 0.1428, γp = 0.93575, ξp = 0.01425, ηp = 0.0112, γu = 0.428, γd = 0.736, γi = 0.008 and ξi = 0.000037. The black dashed contours
in the figures (a) and (b) are the contours for R0 = 1

Figure 11d represents that for higher value of γa the value of R0 becomes less than one if γp increases and the disease-free steady
state becomes stable. Thus, to mitigate the coronavirus disease from the system, the value of γa need to increase, which can be done
by increasing the number of COVID-19 test.

The time evolution of the proposed mathematical model system (1) is shown in Fig. 12. The system parameters are chosen in
such a way that R0 < 1 for the first column, R0 = 1 for the second column and R0 > 1 for the third column of Fig. 12. The
time series solution in the first column of Fig. 12 shows that the disease-free equilibrium point of the system (1) is stable when
R0 < 1. The third column in Fig. 12 shows that the endemic equilibrium point of the system (1) is stable when R0 > 1. The second
column shows the time evolution of the system (1) for R0 = 1, which indicates that there is no exponential growth of the number of
active cases with time. However, it can still be growing at a slower than exponential rate, for example, linearly or logarithmically.
Thus, we observed from our numerical simulation that the model system (1) is locally asymptotically stable around the disease-free
equilibrium if R0 < 1 and the endemic equilibrium point is stable if R0 > 1.

Sensitivity analysis of basic reproduction number R0 shows that the system parameters βa , γa and ρ are most sensitive with
reference to R0. The time evolution of the system (1) is shown in Fig. 13 for different values of the system parameters βa and
γa . Other system parameters for the numerical simulation are same as in Table 1. Here, R0 = 1.3259 for βa = 0.25, γa = 0.14;
R0 = 1.2462 for βa = 0.25, γa = 0.15; R0 = 1.5652 for βa = 0.30, γa = 0.14; R0 = 1.4695 for βa = 0.30, γa = 0.15. Thus, the
number of infected cases is more for βa = 0.25 (or βa = 0.30) but lower value of γa = 0.14. Therefore, if the disease transmission
rate (βa) (contact between susceptible and asymptomatic individuals) remains constant but the rate (γa) at which asymptomatic
infected individuals become recovered is decreased, then the number of infected cases will increase with time.

Again the time evolution of the model system (1) is shown in Fig. 14 for different values of the system parameters βa and ρ. Other
system parameters for the numerical simulation are same as in Table 1. Here, R0 = 1.1395 for βa = 0.25, γa = 0.55; R0 = 1.4111
for βa = 0.25, γa = 0.75; R0 = 1.3320 for βa = 0.30, γa = 0.55; R0 = 1.6737 for βa = 0.30, γa = 0.75. Here, the number of
infected cases become more for βa = 0.25 (or βa = 0.30) and for the higher value of ρ = 0.75. Thus, if the disease transmission
rate (βa) (contact between susceptible and asymptomatic individuals) remains constant but fraction of asymptomatic carriers (ρ) is
increased, then the number of infected cases will also increase. In this scenario, we noticed that the most effective parameter of the
system (1) is the disease transmission rate (βa) and has an impact in controlling the basic reproduction number R0.
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Fig. 12 The figure represents the
numerical simulation of the
system (1) for R0 < 1 (first
column), R0 = 1 (second column)
and R0 > 1 (third column).
Parameter values are specified in
Table 1
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Fig. 13 Time profile of the
populations of the system (1) for
different values of βa and γa .
Other parameters are same as in
Table 1
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Fig. 14 Time profile of the
populations of the system (1) for
different values of βa and ρ. Other
parameters are same as in Table 1
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5.4 Short-term prediction

As on August 15, 2020, the total number of COVID-19 infected cases is 25,26,192 and 49,036 people died due to COVID-19 infection.
To control the transmission of the COVID-19 disease, Govt. of India has implemented nationwide four phases of lockdown and
two phases of unlock. Due to the absence of licensed vaccine, antivirals and any therapeutics, Govt. is taking lockdown and unlock
policies to control the community level transmission. Infection disease mathematical modeling provides an efficient prediction of the
COVID-19 outbreak for short time duration. But, due to an inaccurate of data, the prediction based on the estimated data and model
assumptions may not always be true. This predictions are essential to take necessary administrative strategies by the government
and some other non-governmental agencies. The second phase of unlock starts from July 01, 2020, and the second phase unlock
will continue up to July 31, 2020. In this study, we have considered COVID-19 data from March 01, 2020, to August 15, 2020,
and our model provides short-term prediction for 21 days from August 16, 2020, to September 05, 2020 (see Fig. 15 for short-term
prediction). The black dashed curve in Fig. 15 is the predicted cases, first row predicts the daily new COVID-19 cases, second row
predicts the cumulative number of confirmed COVID-19 cases, and third row predicts the total deaths due to COVID-19 infection
in India. Our model predicts 138,744 daily new cases, 4,676,105 cumulative cases and total 103,729 deaths on September 05, 2020.
This prediction gives us an estimation of the COVID-19 outbreak in India. This prediction highly depends on the system parameter
values and the initial population sizes. If the administrative strategies changed or effective vaccine or therapeutics introduced, the
prediction may differ from the actual cases.

6 Conclusion

In this article, we have analyzed the COVID-19 pandemic data in India made available to the researchers by the WHO situation report
[2] and referring to the time period March 01, 2020, to August 15, 2020. Everyday the total number of daily confirmed cases rises
with more than 2,500 reported from several states and union territories in India. This is a worrying situation as with a second most
populated country in the world, and within few days, India will enter in community-wide transmission of COVID-19 epidemic. Due
to the absence of any effective treatment, antivirals or licensed vaccine and with an incomplete understanding of epidemiological
traits, predictive compartmental mathematical models can aid in understanding of both the disease spread and its control [13,17].

In our present study, we have formulated and analyzed a compartmental epidemiological model of SARS-CoV-2 viruses to control
and forecast the pandemic. We have computed the basic reproduction number R0 to get an idea under what condition the disease will
be die out or spread into the population. We also showed that whenever R0 < 1, the disease-free steady state will be asymptotically
stable. In our proposed model, we have considered the transmission variability between asymptomatic and pre-symptomatic infected
persons to better understand the dynamics of the COVID-19 epidemic [18]. Also, we have investigated the sensitivity indices of the
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Fig. 15 The figure represents the
short-term prediction (21 days
from July 01, 2020, to July 23,
2020) of the model (1) for the
daily new COVID-19 cases (first
row), the cumulative number of
COVID-19 cases (second row) and
the cumulative number of deaths
due to COVID-19 infection (third
row) in India. Our model predicts
increasing trends for all the classes
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threshold quantity R0 and obtained that the disease transmission rate is the most sensitive system parameter, which has a positive
influenced on the basic reproduction number R0.

We have calibrated our proposed mathematical model to fit the daily confirmed new COVID-19 cases, cumulative number of
confirmed COVID-19 cases and the cases of daily new deaths due to COVID-19 infection of India. Six model parameters are
estimated from the best curve fitting of our SEAPUDIRH model. Using the estimated system parameter values, we then obtain the
basic reproduction number R0 = 1.4376, which shows the substantial outbreak of COVID-19 pandemic in India. The policymakers
and health care agencies should focus on the successful implementation of control mechanisms to mitigate the burden of the COVID-
19 diseases. From the contour plot (see Fig. 11), it can be concluded that to mitigate the disease transmission must maintain the
social distancing and contact tracing by implementation of nationwide lockdown, closing of educational institutions, etc.

The calibrated model is then used for short-term prediction of India for the time period August 16, 2020, to September 05, 2020
(see Fig. 15). However, the increasing pattern of daily newly COVID-19 cases, cumulative number of COVID-19 cases and the
deaths cases of COVID-19 is well captured by our model for India. From the short-term prediction, we can conclude that 138,744
daily new confirmed cases, 4,676,105 cumulative number of confirmed cases and the total 103,729 deaths on September 05, 2020.
It is worthy to mention that here we can predict the nature of the SARS-CoV-2 for the short-term period as the Govt. strategy can
be changed in time to time resulting in the interrelated changes in the associated system parameters of our SEAPUDIRH model.

Moreover, we have modified our SEAPUDIRH model system by implementation of the theory of optimal control. Implemen-
tation of intervention strategies helps to mitigate the novel coronavirus burden. To study the impact of non-pharmaceutical and
pharmaceutical intervention strategies and to reduce/stop the community transmission of the novel coronavirus, we implemented
two different control measures, namely u1(t) and u2(t). Analytically, we investigated the existence of the optimal control functions.
Furthermore, to mitigate the clinically ill populations and to give the better treatments for isolated or hospitalized individuals and
to minimize the cost of the control functions, an objective functional J (u1(t), u2(t)) has been formulated and interpreted with the
aid of Pontryagin’s maximum principle.
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The behavioral changes in the susceptible population alter with time, and to prevent or limit the rate of interaction between
susceptible (S) and isolated (J ) individuals, we put the external effort as an intervention strategy. Also, the clinically ill or infected
individuals become aware about the coronavirus disease fatality and consult with medical officers or admit to the hospitals or
nursing home if the symptom occurs and thus we use the control u1(t) that alters the fraction of infected cases. Again, we apply the
controlling effort u2(t) that taking into account the cost regarding medical treatments, use of test kits and life-saving medicines is
provided to the hospitalized or isolated individuals. Thus, we considered all these two control policies in our proposed model.

Finally, through an extensive numerical illustrations, we conclude certain observations. Numerical solutions are demonstrated
in Fig. 3 that the control strategy represents clinically ill or infected cases u1(t) efforts with its intensity for quite a long period
of time and then it reduces. Later on, the control indicates better treatment strategy for isolated individuals u2(t) efforts with
high magnitude nearly about 300 days following a reduction at a later stage, though this magnitude is higher than the magnitude
of without control strategy. From the extensive numerical simulations (see Fig. 5), we can conclude that the implementation of
intervention strategy has an important effect in controlling the spread of novel coronavirus pandemic. Also, we can conclude that
the combination of two controls is more effective when compared with the implementation of the single control as well as without
control. Thus, introducing the combination of two control strategies may help to reduce the spread of novel coronavirus disease at this
present pandemic scenario. We plan to expand our COVID-19 modeling by introducing vaccination and the effect of environmental
contamination. Most probably, this COVID-19 epidemic will remain in the human population for many years, so the changes we
see in public health services and in human habits have to go on over time.
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