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Abstract In this study, we investigate a new fractional-order mathematical model which con-
siders population dynamics among tumor cells-macrophage cells-active macrophage cells,
and host cells involving the Caputo fractional derivative. Firstly, the stability of the positive
steady state of the model is studied. Subsequently, the conditions for existence and unique-
ness of the solutions are examined. Then, the least squares curve fitting method (LSCFM)
which is one of the prominent methods for parameter estimation is used to fit the parameters
of the model. It is aimed to fit the relevant parameters with the help of the tumor tissue
samples which were collected from the patient with non-small cell lung cancer who had
chemotherapy-naive hospitalized at Kayseri Erciyes University hospital in Turkey. A total of
12 parameters in the model are estimated using the data of lung tumor cells of this patient
for 14 days. Moreover, the numerical simulations are given by considering the different frac-
tional orders and different parameters for the model. So, it is achieved how the change in α

affects the dynamic behavior of the system. In the sequel, to point out the advantages of the
fractional-order modeling, the memory trace and hereditary traits are taken into considera-
tion. Finally, the interpretations in terms of biological science are provided in conclusion.
We believe that this interdisciplinary study will open new doors for other similar studies and
will shed light on the studies to be developed on the use of real data in the mathematical
modeling of cancer.
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1 Introduction

Cancer is the deadliest and complicated disease of our time. This illness is caused by the
uncontrolled growth of abnormal or mutated cells in the body, and cancer cells are known
for their capability to grow rapidly, divide and proliferate uncontrollably [1,2]. The most
important cause of tumor progression is constant proliferation and metastatic potential [3].
Lung cancer, the most common malignancy in the world, is the number one cause of cancer-
related death worldwide and is responsible for approximately 228,820 new cases and 140,730
deaths in 2020 [4,5]. The 5-year relative survival rate is 6 percent for patients diagnosed
with advanced disease [6]. There are many causes why lung cancer is frequently diagnosed
at an advanced stage, including inadequate early detection biomarkers, disease following
methods and physical examination [7]. Lung cancers are conventionally classified as small
cell (SCLC) or non-small cell (NSCLC) [8,9]. While SCLCs are malignant tumors that can be
identified by neuroendocrine features, accounting for nearly 15 percent of lung cancers [9],
NSCLCs account for approximately 85 percent of all lung cancers [8,10]. This discrimination
reflects the different clinical recognition, disease course, and therapeutic alternatives of the
two subgroups [11]. Adenocarcinomas, accounting for 40 percent of lung cancers, are, for
unknown reason, the most common histological subtype seen in NSCLCs over the past 25
years, and NSCLCs include multiple cancer types such as squamous cell, large cell, and mixed
histotypes, apart from adenocarcinomas [12]. In addition to this, there is a growing body
of experimental and clinical proof bring heterogeneity into focus among NSCLC subtypes.
Discovering the molecular mechanism underlying cell proliferation and metastasis in NSCLC
could critically aid the development of new and more effective molecular-targeted therapeutic
procedures specific to subtypes [12,13].

Although much research has been done on lung cancer, the heterogeneity among its
subtypes and the complexity in the mechanism of the disease cause a great challenge in
clinical oncology. Because the diagnosis of lung cancer today confides in histopathological
analysis, molecular markers and imaging, and therefore early diagnosis is very difficult [14,
15]. Mathematical models can be adapted to try to estimate the complex dynamics of disease
and by developing models for this, simulate the kinds of treatments that are appropriate and
effective for patients in the context of personalized medicine [16–18]. Mathematical models
that are adaptable for processes important in cancer biology will shed light on unknown
points in the field of oncology.

In the world, lung cancer is leading cause of cancer deaths. Although there are several
successful treatment alternatives, it continues to exist as a highly dangerous disease that has
not been fully cured. The treatment techniques for this illness are still restricted some of
these techniques are radiotherapy, hormonal therapy, chemotherapy, gene therapy. Although
vaccination studies on cancer have been conducted for years, it still seems to need time to
achieve a remarkable result. Cells in cancer tumors also change and evolve like living things
in nature. Understanding how this process works will make it easier for us to beat cancer
from the very beginning.

Judging by the numbers, victory over cancer still seems far away. A person’s life-long
cancer risk in the USA is 42 percent in men and 38 percent in women. The Cancer Research
Foundation in England gives this rate as 54 and 48 percent, respectively.

As of 2015, the number of cancer patients in England reached 2.5 million. This is an
annual increase of 3 percent, in other words, 400,000 extra cancer patients observed in five
years.

In destroying cancer cells, immune cells play major role. The most important immune
system cells are T cells (such as CD4 + T cells, CD8 + T cells), B cells, macrophages and
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(NK) natural killer cells. Macrophages have an important role in innate and adaptive immune
response [19,20]. They are the most abundant cells in the tumor micro-environment. Research
shows that macrophages can break down malignant cells very effectively. Macrophages are
also very important as the target of innovative oncological treatments. As a therapeutic goal,
tumor shrinkage is achieved by closing macrophages with CSF1 receptors, antibodies and
small molecule drugs. However, the events occurring in the periphery of the tumor micro-
environment are highly complex and change rapidly. As a result, designing treatment methods
to cure or treat cancer is an extremely difficult task. Mathematical models contribute greatly
to understanding how immune cells and cancer cells interact, and to define tumor-immune
dynamics [21]. So, many researchers have benefited from mathematical models to understand
the course of cancer. For example, in [22], Banerjee and Sarkar have taken into account the
delay-induced tumor-immune system model and malignant tumor growth. In [23], the authors
study the mathematical model of tumor–macrophages cells interaction. In addition, based on
tumor radio-biologic mechanisms, the authors propose the tumor growth model considering
the radiotherapy effect in [24]. They investigate how the re-oxygenation of hypnotic cells
and the radio-sensitivity of radiotherapy influence the effect of tumor radiotherapy. In other
study [25], the qualitative analysis of tumor cell–immune cell interaction and chemotherapy
with (GWN) Gaussian white noises has been researched. Eftimie and Barelle [26] introduced
a model for interactions between lung cancer and macrophages with different phenotypes
(M1, M2, M1/M2) with an integer-order differential equation system. Sarmah et al. [27]
formulated a seven-dimensional mathematical model connecting p53, DNA damage, and
autophagy in lung cancer. They also performed both local and global sensitivity analyses
along with parameter recalibration analysis to understand the system dynamics. Feng et al.
[28] established a mathematical model for predicting malignancy of lung cancer complicated
with Talaromyces Marneffei infection and its chest imaging characteristics, and improve
clinicians’ understanding of the disease.

Fractional calculus has been used only by mathematicians, physicists and engineers for
the three centuries. However, in recent years, fractional operations with its applicability
have gained also great importance in unusual areas, such as finance [29,30], medicine [31],
physics [32], synchronization of chaotic systems [33], atmospheric ocean problems [34],
hydrology, signal processing [35], heat diffusion models [36], competing species [37], and
biology [38–46]. Among them, in [47], two integer order systems have been investigated with
fractional calculus, which explain the tumor-immune system dynamics. In [48], a fractional-
order model which propose the growth of tumor with drug application is studied. In [49],
a delay model with fractional order for tumor-immune system with treatments has been
proposed. A study on a mathematical model of immune response with cell mediated for
tumor phenotype heterogeneity has been presented in [50]. The authors of [51] presented
a model using fractional derivative, taking into account cell repair, re-population of the
cells and radiotherapy process. A numerical and analytical study of the HIV-1 infection of
CD4+ T cells constructed with conformable fractional mathematical model was examined
in [52]. Veeresha et al. applied the q-homotopy analysis transform method (q-HATM) to
the mathematical model of the cancer chemotherapy effect in the sense of Caputo derivative
in [53]. In addition, in [54], the authors analyzed the behavior of solution to the system
exemplifying model of tumor invasion and metastasis by the help of q-HATM.

There are only a few studies on fractional-order mathematical modeling of lung cancer in
the literature. For example, in [55], the authors proposed two modeling approaches to predict
lung tumor dynamics as an effect of radiotherapy. They used the real clinical information of
non-small cell lung cancer (NSCLC) patients undergoing stereotactic body radiation therapy
(SBRT) as the primary treatment method for numerical simulations. In another study, Ghita
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et al. [31] concluded that feature extraction from modeling a respiratory function through a
specific fractional order impedance model could be transposed to lung tumor dynamics.

Biological phenomena and diseases are one of the most common practice areas of
fractional-order mathematical models. Considering the studies until the last decade, while
constructing mathematical models, it has generally seen that the authors are used the differ-
ential equations of integer order. Mathematical model studies created with these equations
have proven to be very valuable in explaining the course of diseases. However, it has been
observed that the models made with fractional-order differential equations (FODEs) are more
compatible with the truth and provide more advantages when compared with integer-order
mathematical models. Because most of the biological systems continue to function using the
memory, after-affects and hereditary properties. These effects are neglected in integer-order
differential equations models; however, the fractional-order models explain these complex
phenomena better than these equations. Before presenting our model, we mention a few
mathematical models of tumor-immune systems: In [56], a study on tumor and macrophages
cells is modeled as follows:

dP

dt
= P(t)r1

(
1 − P(t)

k1

)
− bP(t)Q(t) − d1P(t) + ε1Q(t),

dQ

dt
= Q(t)(bP(t) − d2),

dR

dt
= R(t)r2

(
1 − R(t)

k2

)
− aR(t)Q(t) + c, (1)

where P(t), Q(t), R(t) are the concentrations of macrophages, activated macrophages and
tumor cells. r1 is the growth rate of macrophages cells and k1 is the carrying capacity. The
activation rate of macrophages cells is b. d1 and d1 are the natural death rates of P(t) and
Q(t), respectively. After active macrophages destroy tumor cells, they become passive at a
rate ε1. r2 is the growth rate of tumor cells and k2 is the carrying capacity. The conversion
rate of normal cells to malignant cells is c. When active macrophages cells destroy the tumor
cells, the loss rate of tumor cells is a.

Khajanchi et al. [57] have considered the following tumor-immune competitive system
originated from prey–predator model presented by Sarkar and Banerjee [58]:

dM

dt
= rM

(
1 − M

k1

)
− αMN ,

dN

dt
= β1N (t − λ)S(t − λ) − d1N ,

dS

dt
= sS

(
1 − S

k2

)
− β2N (t − λ)S(t − λ) − d2S. (2)

Here, M(t), N (t), S(t) denote the densities of tumor cells, CTLs and resting cells at time
t , respectively. The growth rate of M(t) is r and k1 is the carrying capacity. α is the rate at
which tumor cells are cleared by prey cells or CTLs. λ≥ 0, is the discrete time delay, β1 is
conversion rate of resting stage to hunting stage of CTLs population and the natural death
of CTLs is d1. s is the growth rate of the resting cells and k2 is the carrying capacity. β2 is
the conversion rate of resting cells to CTLs, and d2 is the natural death rate. Khajanchi et al.
[57] neglected that the term q in [58] is the conversion of normal cells to malignant cells as
they assumed that the tumor cells are malignant. Moreover, they consider the conversion of
resting cells to hunting cells, and the degradation of resting cells due to hunting cells both
must be different, not the same.
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In [20], Hu and Jang proposed the integer-order mathematical model of tumor–immune
cells interconnection to study the effect of CD4+T on tumor dynamics. Their conclusions
show that host cells and CD4+ T cells have great importance in fighting tumor cells and
slowing their growth. The ordinary differential equations model is described as follows:

x ′ = r1x(1 − b1x) − c1xz

a1 + x
+ δ1xz,

y′ = β1xz

α1 + x
− μ1y − δ2xy,

z′ = β2xy

α2 + x
− μ2z,

w′ = r2w(1 − b2w) − δ3xw, (3)

where t ≥ 0 and r1, b1, c1, a1, δ1, β1, α1, μ1, δ2, β2,α2, μ2, r2, b2, δ3 are the positive
constants. x(t), y(t), z(t) and w(t) are tumor cells, CD4+T cells, cytokines, and host cells,
respectively.

In study [59], the following model was reconstructed by replacing the integer-order deriva-
tives in model (1) with Caputo derivatives:

DαP(t) = P(t)r1

(
1 − P(t)

k1

)
− bP(t)Q(t) − d1P(t) + ε1Q(t),

DαQ(t) = Q(t)(bP(t) − d2),

DαR(t) = R(t)r2

(
1 − R(t)

k2

)
− aR(t)Q(t) + c, (4)

with positive initial conditions. Here, t ≥ 0, α (0 < α ≤ 1) and P(t), Q(t) and R(t) denote
the macrophages cells, activated macrophages cells and tumor cells, respectively. a, b, c, k1,
k2, r1, r2, d1, d2, ε1 are the positive constants. The biological meanings of these parameters
are the same as the meanings of the parameters in the system (1).

In the fractional systems, dimensional consistency is a very important tool, in which the
units of measurement from the left- and right-hand sides of the equations are coherent. This
consistent can be provided by modifying the parameters involved in the right-hand side of
the equations, e.g., raising them to power α. In this context, motivated by [20,59], we have
proposed the following the fractional-order system:

DαT (t) = r2
αT (t)

(
1 − T (t)

kα
2

)
− μαT (t)A(t) − δ1

αW (t)T (t),

DαA(t) = βα
1 M(t)A(t) − dα

2 A(t),

DαM(t) = rα
1 M(t)

(
1 − M(t)

kα
1

)
− βα

2 M(t)A(t) − dα
1 M(t),

DαW (t) = rα
3 W (t)

(
1 − W (t)

kα
3

)
− δα

2 W (t)T (t), (5)

with the initial conditions: T (0) = T0, A(0) = A0, M(0) = M0,W (0) = W0, where
α ∈ (0, 1) and k1, k2, k3, d1, d2, δ1, δ2, r1, r2, r3, β1, β2, μ are positive constants.
T (t), A(t), M(t), W (t) are the densities of tumor cells (TCs), active macrophages cells,
macrophages cells and host cells or normal tissue cells (NTCs), respectively. The biological
meaning of the parameters in model (5) is given in Table 1:

In this study, as in [57], it is assumed that the TCs are malignant. So, we neglected the
constant which is the rate of conversion of NTCs to malignant cells in Sarkar [58] and
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Table 1 Model parameters and their meanings

Parameters Description

k1 The carrying capacity of macrophages

k2 The carrying capacity of TCs

k3 The carrying capacity of NTCs

d1 The death rate of macrophages

d2 The death rate of active macrophages

δ1 The competition coefficient of NTCs on TCs

δ2 The competition coefficient of TCs on NTCs

r1 The growth rate of macrophages cells

r2 The growth rate of TCs

r3 The growth rate of NTCs

μ The rate of destruction of TCs due to attack of active macrophages

β1 The conversion rate of macrophages to active macrophages

β2 The degradation of macrophages cells due to active macrophages

Mukhopadhyay [56]. In addition, we consider that the conversion of macrophages cells to
active macrophages cells and the degradation of macrophages cells due to active macrophages
cells both must be different. Also, we removed the parameter ε1 (in [56]) is the rate of
active macrophages that revert back to passive state after attacking the tumor cells (this is
not biologically meaningful). It can be considered that these modifications would make the
model more realistic.

Motivated by the above discussion, in this study, both fractional modeling has been taken
into account and real experimental data from patients have been used. In order to fit the
parameters and to minimize the mean absolute relative error between the plotted curve for
the tumor cells class and the real data provided by lung cancer patients, we have utilized
least-squares curve fitting technique (LSCFT). By doing so, we aim to predict the changing
of tumor cells and immune system cells over time by using more accurately generated param-
eters. Meanwhile, dimensional compatibility has been considered in order to better reveal the
effect of fractional-order in the proposed fractional-order lung-cancer system. In addition to
this, we have aimed to point out the advantages of the fractional-order modeling, taking into
consideration the memory trace and hereditary traits which are capable of integrating all past
activities and takes into account the long-term history of the system. In this context, it can
be seen that the memory trace dynamics are highly dependent on time. When the fractional-
order α is decreased from unit, the memory trace nonlinearly increases from 0. Hence, the
fractional-order system dynamics are quite different from the integer-order dynamics. Best of
our knowledge, it is thought that there is not a comprehensive study such this paper in the liter-
ature that makes the fractional-order model dimensionally consistent, performs the parameter
estimation with lung cancer patient data, and considers memory effect/hereditary properties.

The remaining part of this paper is prepared as follows. In Sect. 2, some definitions
of a fractional-order derivative (FOD) and some important theorems for FODs are given. In
Sect. 3, the existence and uniqueness conditions of the solutions are given. In Sect. 4, stability
theorems for the equilibrium points are examined. In Sect. 5, the parameter estimation method
to predict the parameters used in the proposed model has achieved. In Sect. 6, the numerical
scheme has been given. In Sect. 7, the effects of the memory trace on the behavior of the
system (5) are examined. In Sect. 8, to investigate the effects of different parameter values
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and different values of α on the dynamic behavior of the proposed model, the numerical
solutions have been carried out. In Sect. 9, measurement of memory trace for the proposed
fractional-order model is investigated. Finally, the general summary is given in Sect. 10.

2 Preliminaries and definitions

Definition 1 [60] The Riemann–Liouville form of fractional derivative of order α > 0 of a
function f : (0,∞) → R is given by

RL
0 D

α

t f (t) =
{ 1

Γ (n−α)

( d
dt

)n ∫ t
0

f (τ )

(t−τ)α−n+1 dτ, 0 ≤ n − 1 < α < n, n = [α],( d
dt

)n
f (t), α = n ∈ N .

(6)

Definition 2 [60] The Caputo fractional derivative of order α > 0 of the function that has
been given in Definition 1 is presented as:

C
0 D

α

t f (t) =
⎧⎨
⎩

1
Γ (n−α)

∫ t
0

(d/dτ)n f (τ )

(t−τ)α−n+1 dτ, 0 ≤ n − 1 < α < n, n = [α], n ∈ N ,

( d
dt

)n
f (t), α = n, n ∈ N .

(7)

For the convenience, we use the notation of D
α f (t) to represent the Caputo fractional integral

operator C
0 D

α

t f (t).

Theorem 1 [61,62]. Consider the following fractional-order system:

dαx

dtα
= f (x), x (0) = x0 (8)

with x ∈ Rn and α ∈ (0, 1). The equilibrium points of the system (8) are solutions to the
equation f (x) = 0. An equilibrium is locally asymptotically stable if all the eigenvalues λi
(i=1,2„…,n) of the Jacobian matrix J = ∂ f

∂x evaluated at the equilibrium satisfy

|arg (λi )| >
απ

2
. (9)

On the other hand, if |arg (λi )| < απ
2 , then the equilibrium point is unstable.

Theorem 2 [63] Consider the polynomial equation

P (λ) = λ2 + a1λ + a2

1. For n = 1, the condition for (9) is a1 > 0.

2. For n = 2, the conditions for (9) are either Routh–Hurwitz conditions [64] (a1 > 0, a2 >

0) or a1 < 0, 4a2 > a2
1 ,
∣∣tan−1(4a2 − a2

1)
∣∣ > απ

2 .

3 Existence and Uniqueness (E&U) of the solution

With the initial conditions T (0) = T0, A(0) = A0, M(0) = M0,W (0) = W0, we write (5)
as follows:{

DαX (t) = B1X (t) + T (t) B2X (t) + A (t) B3X (t) + M (t) B4X (t) + W (t) B5X (t)

X (0) = X0

(10)
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where

X (t) =

⎛
⎜⎜⎝

T (t)
A(t)
M(t)
W (t)

⎞
⎟⎟⎠ , X (0) =

⎡
⎢⎢⎣

T (0)

A(0)

M(0)

W (0)

⎤
⎥⎥⎦ , B1 =

⎛
⎜⎜⎜⎜⎝

rα
2 0 0 0

0 −dα
2 0 0

0 0 rα
1 − dα

1 0

0 0 0 rα
3

⎞
⎟⎟⎟⎟⎠ ,

B2 =

⎛
⎜⎜⎜⎝

− rα
2
kα

2
−μα 0 −δα

1

0 0 0 0
0 0 0 0
0 0 0 −δα

2

⎞
⎟⎟⎟⎠ ,

B3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 βα

1 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ B4 =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0

0 −βα
2 − rα

1
kα

1
0

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , B5 =

⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 − rα
3
kα

3

⎞
⎟⎟⎟⎠ .

The definitions required for E&U (existence and uniqueness) are given as follows:

Definition 3 [20,65] Let C∗[0, τ ] be the class of continuous column vector X (t). The com-
ponents of X (t) are T, A, M,W ∈ C∗[0, τ ] that are the class of continuous functions on
[0, τ ]. The norm of X ∈ C∗[0, τ ] is defined by

‖X‖ = supt

∣∣∣e−Nt T (t)
∣∣∣+ supt

∣∣∣e−Nt A (t)
∣∣∣+ supt

∣∣∣e−Nt M (t)
∣∣∣+ supt

∣∣∣e−NtW (t)
∣∣∣ .

If t > σ ≥ 0, one can write C∗
σ [0, �] and Cσ [0, �].

Definition 4 X ∈ C∗ [0, �] is a solution of the system (10), if

(i) (t, X (t)) ∈ D, t ∈ [ 0, �] where D=[ 0, �] × K,

K = {
(T, A, M,W ) ∈ R4+ : |T | ≤ p, |A| ≤ r, |M | ≤ s, |W | ≤ v

} ; p, r, s, v are con-
stants.

(ii) X (t) satisfies (10).

Theorem 3 [20,65] X∈ C∗ [0, �] is the unique solution of the system (10).

Proof Using the properties of fractional calculus, we write the system (10) as follows:

I 1−α d

dt
X (t) = B1X (t) + T (t) B2X (t) + A (t) B3X (t) + M (t) B4X (t) + W (t) B5X (t)

operating with I α we have

X (t) = X (0) + Iα(B1X (t) + T (t) B2X (t) + A (t) B3X (t)

+M (t) B4X (t) + W (t) B5X (t)) (11)

Then, let F: C∗ [0, �] → C∗ [0, �] be given by

FX (t) = X (0) + Iα(B1X (t) + T (t) B2X (t) + A (t) B3X (t)

+M (t) B4X (t) + W (t) B5X (t)) (12)

Then,
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e−Nt (FX − FY ) = e−Nt Iα(B1 (X (t) − Y (t)) + T (t) B2 (X (t) − Y (t))

+A (t) B3 (X (t) − Y (t)))

+e−Nt Iα(M (t) B4 (X (t) − Y (t)) + W (t) B5 (X (t) − Y (t)))

≤ 1

(α)

∫ t

0
(t − s)α−1e−N (t−s)(X (s) − Y (s))e−Ns

(B1 + pB2 + r B3 + sB4 + vB5)ds

≤ (B1 + pB2 + r B3 + sB4 + vB5)

Nα
‖X − Y‖

∫ t

0

sα−1

(α)
ds. (13)

This gives us that ‖FX − FY‖ ≤ (B1+pB2+r B3+sB4+vB5)
Nα ‖X − Y‖.

If we choose N such that Nα > B1+pB2+r B3+sB4+vB5, then we have ‖FX − FY‖ <

‖X − Y‖ . So, the operator F given by (12) has a unique fixed point. That is, (11) has a unique
solution X∈ C∗ [0, �] . From (11), we have

X (t) = X (0) + tα

Γ (α + 1)

(
B1X (0) + T (0)B2X (0) + A(t)B3X (0)

+M(0)B4X (0) + W (0)B5X (0)
)

+I
α+1

(
B1X

′
(t) + T

′
(t)B2X (t) + T B2X

′
(t) + A

′
(t)B3X (t)

+A(t)B3X
′
(t) + M

′
(t)B4X (t)

+M(t)B4X
′
(t) + W

′
(t)B5X (t) + W (t)B5X

′
(t) (14)

and

dX (t)

dt
= tα−1

(α)

(
B1X (0) + T (0) B2X (0) + A (t) B3X (0) + M (0) B4X (0) + W (0) B5X (0)

)

+I
α
(
B1X

′(t) + T ′(t)B2X (t) + T (t) B2X
′(t) + A′(t)B3X (t) + A (t) B3X

′(t)

+M ′ (t) B4X (t) + M (t) B4X
′ (t) + W ′(t)B5X (t) + W (t)B5X

′(t)
)

(15)

e−Nt X ′(t) = e−Nt
[ tα−1

(α)
(B1X (0) + T (0)B2X (0) + A(t)B3X (0) + M(0)B4X (0) + W (0)B5X (0))

+I
α(B1X

′(t) + T ′(t)B2X (t) + T (t)B2X
′(t) + A′(t)B3X (t) + A(t)B3X

′(t)

+M ′(t)B4X (t) + M(t)B4X
′(t) + W ′(t)B5X (t) + W (t)B5X

′(t))
]

(16)

from which we can deduce that X ′ ∈ C∗
σ [0, �]. Now, from (11), we get

dX (t)

dt
= d

dt
Iα(B1X (t) + T (t) B2X (t) + A (t) B3X (t)

+M (t) B4X (t) + W (t) B5X (t))

I 1−α dX (t)

dt
= I 1−α d

dt
Iα(B1X (t) + T (t) B2X (t)

+A (t) B3X (t) + M (t) B4X (t) + W (t) B5X (t))

DαX (t) = B1X (t) + T (t) B2X (t) + A (t) B3X (t)

+M (t) B4X (t) + W (t) B5X (t) , (17)

and
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X (0) = X0 + Iα(B1X (t) + T (t) B2X (t)

+A (t) B3X (t) + M (t) B4X (t) + W (t) B5X (t)) = X0. (18)

Therefore, (11) is equivalent to the system (10). 
�

4 Equilibrium points

To find the equilibrium points of system (5), we write

DαT (t) = DαA (t) = DαM (t) = DαW (t) = 0,

that is,

rα2 T (t)

(
1−T (t)

kα
2

)
−μαT (t) A (t)−δα

1 W (T) T (t) = 0, βα
1 M (t) A (t)−dα

2 A (t) = 0

rα1 M (t)

(
1−M (t)

kα
1

)
−βα

2 M (t) A (t)−dα
1 M (t)= 0, W (t) rα3

(
1−W (t)

kα
3

)
−δα

2 W (T) T (t) = 0.

Therefore, we have the following equilibrium points:

(i) E0 = (0, 0, 0, 0),

(ii) E1 = (0,− kα
1 βα

1 (dα
1 −rα1 )+dα

2 rα1
kα

1 βα
1 βα

2
,
dα

2
βα

1
, 0),

(iii) E2 = (0,− kα
1 βα

1 (dα
1 −rα1 )+dα

2 rα1
kα

1 βα
1 βα

2
,
dα

2
βα

1
, kα

3 ),

(iv) E3 = (
kα

2 rα3 (kα
3 δα

1 −rα2 )
kα

2 kα
3 δα

1 δα
2 −rα2 rα3

, 0, 0,
kα

3 rα2 (rα2 −kα
2 δα

2 )
kα

2 kα
3 δα

1 δα
2 −rα2 rα3

),

(v) E4 = (0, 0,
kα

1 (rα1 −dα
1 )

rα1
, 0),

(vi) E5 = (
kα

2 rα3 (kα
3 δα

1 −rα2 )
kα

2 kα
3 δα

1 δα
2 −rα2 rα3

, 0,
kα

1 (rα1 −dα
1 )

rα1
,
kα

3 rα2 (rα2 −kα
2 δα

2 )
kα

2 kα
3 δα

1 δα
2 −rα2 rα3

),

(vii) E6 = (0, 0,
kα

1 (rα1 −dα
1 )

rα1
, kα

3 ),

(viii) E7 = (kα
2 , 0, 0, 0),

(ix) E8 = (kα
2 , 0,

kα
1 (rα1 −dα

1 )
rα1

, 0),

(x) E9 = (kα
2 + μαkα

2 (kα
1 βα

1 (dα
1 −rα1 )+dα

2 rα1 )
kα

1 rα2 βα
1 βα

2
,− kα

1 βα
1 (dα

1 −rα1 )+dα
2 rα1

kα
1 βα

1 βα
2

,
dα

2
βα

1
, 0),

(xi) E10 = (0, 0, 0, kα
3 ),

(xii) E11 = (T, A, M, W),

where

T = μαkα
2 rα3

(
dα

2 rα1 − kα
1 βα

1

(
rα1 − dα

1

))− kα
1 kα

2 rα3 βα
1 βα

2

(
kα

3 δα
1 − rα2

)
kα

1 βα
1 βα

2

(
rα2 rα3 − kα

2 kα
3 δα

1 δα
2

) ,

A = −kα
1 βα

1

(
dα

1 − rα1
)+ dα

2 rα1
kα

1 βα
1 βα

2
,

M = dα
2

βα
1

,

W = μαδα
2 kα

2 kα
3

(
kα

1 βα
1

(
rα1 − dα

1

)− dα
2 rα1

)+ kα
1 rα2 βα

1 βα
2 kα

3

(
rα3 − δα

2 kα
2

)
kα

1 βα
1 βα

2

(
rα2 rα3 − kα

2 kα
3 δα

1 δα
2

) .
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Now, using Theorems 1 and 2, we obtain the stability conditions of these equilibrium points.
But, our aim is to examine the conditions under which the patient can survive [20]. So, we
only examine the stability of the equilibrium point E11. The stability conditions of other
equilibrium points have been omitted.

4.1 Local stability of the endemic equilibrium

We now examine the local stability of the endemic equilibrium pointE11=(T, A, M, W). The
Jacobian matrix of model (5) calculated at equilibrium point E11=(T, A, M, W) is given by

J(E11) =

⎛
⎜⎜⎜⎜⎜⎜⎝

rα2 − 2rα2 T
k2

− μα A − δα
1 W −μαT 0

0 βα
1 M − dα

2 βα
1 A

0 −βα
2 M rα1 − 2rα1 M

kα
1

− βα
2 A − d

α

1

−δα
2 W 0 0

−δα
1 T

0
0

rα3 − 2rα3 W
kα

3
− δα

2 T

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We obtain the characteristic equation such as: P (λ) = (
λ2 + a1λ + a2

) (
λ2 + a3λ + a4

)
where

a1 = −
(

rα3 − 2rα3 W

kα
3

− δα
3 T + rα2 − 2rα2 T

kα
2

− A − δα
1 W

)

a2 =
(

rα2 − 2r2α T

kα
2

− μαA − δα
1 W

)(
rα3 − 2rα3 W

kα
3

− δα
2 T

)
− δα

1 δα
2 WT

a3 = −
(

rα1 − 2rα1 M

kα
1

− βα
2 A − dα

1 + βα
1 M − dα

2

)

a4 = (
βα

1 M − dα
2

) (
rα1 − 2rα1 M

kα
1

− βα
2 A − dα

1

)
+ βα

1 βα
2 MA.

By Theorems 1 and 2, one can deduce the following conclusions.

Theorem 4 The equilibrium point E11 is locally asymptotically stable if one of the following
conditions holds.

1. Routh–Hurwitz conditions (a1 > 0, a2 > 0, a3 > 0, a4 > 0).
2. a1 < 0, a2

1 − 4a2 < 0,
∣∣tan−1(4a2 − a2

1)/a1
∣∣ > απ

2 and a3 > 0, a4 > 0.
3. a1 < 0, a2

1 − 4a2 < 0,
∣∣tan−1(4a2 − a2

1)/a1
∣∣ > απ

2 and a3 < 0, a2
3 − 4a4 < 0,∣∣tan−1(4a4 − a2

3)/a3
∣∣ > απ

2 .
4. a3 < 0, a2

3 − 4a4 < 0,
∣∣tan−1(4a4 − a2

3)/a3
∣∣ > απ

2 and a1 > 0, a2 > 0.

5 Parameter estimation

Parameter estimation (PE) is a very important issue in the identification and validation of
many cancer models. By performing PE, the parameters of the proposed model are determined
within appropriate bounds using real data and thus, it is tried to ensure that the model is
the most appropriate model expressing cancer. The most important advantage of parameter
estimation is to produce parameter values specific to the model created, instead of using the
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Fig. 1 Real data of lung cancer patient from Erciyes University Hospital, Turkey from September 15 to
September 28, 2021, and the best fitted curve for the proposed model

same parameter values obtained for different types of cancer models that exist in the literature
related to the model.

In this section, it has been aimed to fit the relevant parameters with the help of the data
of a lung cancer patient who was treated at Kayseri Erciyes University hospital using the
least-squares curve fitting method. A total of 12 parameters in the model have been fit-
ted with the aid of least-square curve fitting method using the data of lung tumor cells of
the patient for 14 days from 15 September–28 September. The average absolute relative
error between tumor cells real data belonging to lung cancer patient and the solution of
model’s for the tumor class is tried to be decreased, and the best fitted parameter values
have been obtained. In Fig. 1, the red solid circles show the real tumor values, while the
best fitted curve of the model is indicated by the blue solid line. The biological parameters
in the model along with the best predicted values obtained through LSCFM are given in
Table 2.

5.1 Providing real data (sample collection and cell culture)

Tumor tissue samples were collected from the patient with non-small cell lung cancer who had
chemotherapy-naive. The diagnosis was verified on routine H&E(hematoxylin and eosin)-
stained slides by a histopathologist. Informed written consent was obtained from the patient
before the sample collection. Ethics committee approval for study was obtained from Erciyes
University Clinical Research Ethics Committee with the protocol code number 2015/372,
dated 26/08/2015. Tumor cell cultures were established from tumor tissues obtained after
surgery of the patient with lung adenocarcinoma. Tumor cells were grown in Dulbecco’s
Modified Eagle medium (DMEM; Gibco, Grand Island, NY, USA, Cat. No. 41966029)
containing 1 % penicillin–streptomycin (Thermo Fisher Scientific Waltham, Massachusetts,
USA, Cat. No. 15070063), 1 % amphotericin b (Thermo Fisher Scientific Waltham, Mas-
sachusetts, USA, Cat. No. 15290026) and 1 % L-Glutamine (STEMCELL Technologies Inc.,
Vancouver, Canada, Cat. No. 7100). To evaluate cell proliferation, cells were seeded in six-
well plate at 5 × 104 cells per well and cultured for 13 days. All cells were grown at 37 ◦C
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Table 2 The biological meanings of parameters and the fitted values

Parameter Unit Value Reference

k1 Cells 5.0785e + 07 Fitted

k2 Cells 2.7785e + 05 Fitted

k3 Cells 5.4621e + 06 Fitted

d1 Day−1 4.3884e − 14 Fitted

d2 Day−1 0.8809 Fitted

δ1 (Cell Day)−1 4.3930e-14 Fitted

δ2 (Cell Day)−1 0.7609 Fitted

r1 Day−1 0.9 Fitted

r2 Day−1 0.5045 Fitted

r3 Day−1 0.6169 Fitted

μ (Cell Day)−1 0.014 Estimated

β1 (Cell Day)−1 0.0937 Fitted

β2 (Cell Day)−1 0.0122 Fitted

in a humidified atmosphere with 5 % CO2 and observed daily using an inverted microscope
under ×10 magnification. After obtaining a confluent monolayer, cells were harvested with
0.25 % trypsin/EDTA (Thermo Fisher Scientific Waltham, Massachusetts, USA, Cat. No.
25200056). The cell count was done daily for 14 days using trypan blue count assay (see
Table 3).

In the literature, cell lines and animal data are also widely used as experimental data.
Cell lines are important resources for identifying predictors of unrestricted growth, eligibil-
ity for high-throughput screening, response to therapy, and resistance [66,67]. They are also
cheaper, easier to use, and experiments on them are more reproducible. However, currently
available cancer cell lines have some limitations. Cell lines are selected from tumor subsets
grown under in vitro culture conditions [68]. However, it is often unclear from which can-
cer subtype these cells originate and to what extent they resemble the tissue of origin [69].
This produces cancer cell lines that do not represent the diversity of human tumors [67,68].
Moreover, cell lines grown only in monolayer cultures lack the heterogeneity observed in
cells derived from patient tumors [67,70]. Although the development of patient-derived
xenograft cancer models provides some improvement over cancer cell line models, it has
some limitations. Vaccination and drug validation time in mice often take a long time, and
this time delay limits its applicability to patient therapy. In addition, these models are suit-
able for a limited number of drug combinations and are not amenable to genetic manip-
ulation such as the introduction of transgenes or knockout studies [68]. In primary cell
cultures, cells are isolated directly from the tumor site, and detailed pathology information
is also available, allowing the characteristics of the culture to be compared with those of
the original tumor. In addition, primary cell culture provides a more accurate prediction of
patients’ responses to chemotherapy treatments [71]. In this study, in order to represent the
origin of tumor profile in cancer patients population, cancer cells were isolated from NSCLC
patients.
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Table 3 Real data of lung cancer
patient for 14 days from Erciyes
University Hospital, Turkey

Time (Days) Tumor cells (T(t))

1 50000

2 80000

3 80000

4 80000

5 100000

6 140000

7 140000

8 200000

9 200000

10 240000

11 240000

12 200000

13 180000

14 180000

6 Numerical scheme for the provided tumor-immune system model in the Caputo
derivative sense

To investigate the dynamics of the proposed fractional-order model (2), we implement the
Caputo fractional operator. To provide the numerical simulation of the suggested nonlinear
fractional-order system, the Adams type estimator-corrector method [72–75] is used. The
following Cauchy-type ODE is taken into account w.r.t. the Caputo operator of order α:

C
0 Dα

t �(t) = φ (t,� (t)) , �(b) (0) = �b
0, 0 < α ≤ 1, 0 < t ≤ τ, (19)

where b = 0, 1, ..., n−1, and n = α� . Equation (19) can be turned to the Volterra equation:

�(t) =
n−1∑
b=0

�
(b)
0

tb

b! + 1

Γ (α)

∫ t

0
(t − s)α−1 �(s,� (s)) ds. (20)

By considering this proposed predictor-corrector scheme associated with the Adam-
Bashforth-Moulton algorithm [73] to have the numerical solutions of the proposed model,
we can take h = τ/N , tz = zh, and z = 0, 1, ..., N ∈ Z+, by letting �z ≈ �(tz) , it can
be discretized as follows, i.e., the corresponding corrector formula [76]

Tq+1 =
q−1∑
z=0

T (z)
0

t zq+1

z! + hα

Γ (α + 2)

q∑
z=0

(
pz,q+1

) (
rα

2 Tz(1 − Tz
kα

2
) − μαTz Az − δα

1 WzTz

)

+ hα

Γ (α+2)

q∑
z=0

(
pq+1,q+1

) (
rα

2 T
PF
q+1(1− T PF

q+1

kα
2

)−μαT PF
q+1A

PF
q+1−δα

1 W
PF
q+1T

PF
q+1

)
,

Aq+1 =
q−1∑
z=0

A(z)
0

t zq+1

z! + hα

Γ (α+2)

q∑
z=0

(
pz,q+1

) (
βα

1 Mz Az−dα
2 Az

)

+ hα

Γ (α + 2)

q∑
z=0

(
pq+1,q+1

) (
βα

1 M
PF
q+1A

PF
q+1 − dα

2 APF
q+1

)
,
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Mq+1 =
q−1∑
z=0

M (z)
0

t zq+1

z! + hα

Γ (α + 2)

q∑
z=0

(
pz,q+1

) (
rα

1 Mz(1 − Mz

kα
1

) − βα
2 Mz Az − dα

1 Mz

)

+ hα

Γ (α+2)

q∑
z=0

(
pq+1,q+1

) (
rα

1 M
PF
q+1(1− MPF

q+1

kα
1

)−βα
2 M

PF
q+1A

PF
q+1−dα

1 M
PF
q+1

)
,

Wq+1 =
q−1∑
z=0

W (z)
0

t zq+1

z! + hα

Γ (α + 2)

q∑
z=0

(
pz,q+1

) (
rα

3 Wz(1 − Wz

kα
3

) − δα
2 WzTz

)

+ hα

Γ (α + 2)

q∑
z=0

(
pq+1,q+1

) (
rα

3 Wz(1 − WPF
q+1

kα
3

) − δα
2 W

PF
q+1T

PF
q+1

)
,

(21)

where

pz,q+1 =

⎧⎪⎨
⎪⎩
qα+1 − (q − α) (q + 1)α , if z = 0,

(q − z + 2)α+1 + (q − z)α+1 − 2 (q − z + 1)α+1 , if 1 ≤ z ≤ q,

1, if z = q + 1.

(22)

Subsequently, the following step is to construct the coincident predictor formula �PF
q+1.

One can compute the proposed predictor formula as:

T PF
q+1 =

q−1∑
z=0

T (z)
0

t zq+1

z! + hα

Γ (α + 1)

q∑
z=0

(
jz,q+1

) (
rα

2 Tz(1 − Tz
kα

2
) − μαTz Az − δα

1 WzTz

)
,

APF
q+1 =

q−1∑
z=0

A(z)
0

t zq+1

z! + hα

Γ (α + 1)

q∑
z=0

(
jz,q+1

) (
βα

1 Mz Az − dα
2 Az

)
,

MPF
q+1 =

q−1∑
z=0

M (z)
0

t zq+1

z! + hα

Γ (α + 1)

q∑
z=0

(
jz,q+1

) (
rα

1 Mz(1 − Mz

kα
1

) − βα
2 Mz Az − dα

1 Mz

)
,

WPF
q+1 =

q−1∑
z=0

W (z)
0

t zq+1

z! + hα

Γ (α + 1)

q∑
z=0

(
jz,q+1

) (
rα

3 Wz(1 − Wz

kα
3

) − δα
2 WzTz

)
,

(23)

where

jz,q+1 = (q + 1 − z)α − (q − z)α .

7 Memory trace and hereditary traits

To examine the behavior of the tumor-immune-host cells model (2), we use the Caputo
operator defined in (2). For α, 0 < α ≤ 1 derivative, let the fractional derivative of variable
�(t) be [77,78]

C
0 Dα

t �(t) = φ (� (t) , t) . (24)
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Utilizing the one of most common numerical methods, the L1 scheme [78–81], the numerical
approximation of the FOD of � (t) is

C
0 Dα

t �(t) ≈ (dt)−α

Γ (2 − α)

⎡
⎣T−1∑

�=0

[
�
(
t�+1

)− �
(
t�
)] [

(T − �)1−α − (T − 1 − �)1−α
]
⎤
⎦ .

(25)

One of the most powerful numerical methods for discretizing the Caputo-FOD in time is L1
scheme. The purpose of implementing the L1 scheme to this research study is its memory term
and convergence rate. Memory term is also explicitly present in other numerical methods,
but this memory integration term is more clearly defined in the L1 scheme. Considering (24)
and (25) together, the numerical solution of (24) is as follows:

�(tT ) ≈ C
0 Dα

t Γ (2 − α) H (� (t) , t) + �(tT−1)

−
⎡
⎣T−2∑

�=0

[
�
(
t�+1

)− �
(
t�
)] [

(T − �)1−α − (T − 1 − �)1−α
]
⎤
⎦ . (26)

Therefore, the solution of the FOD (fractional-order derivative) can be defined as the dif-
ference between the Markov term and the memory trace. The Markov term weighted by the
Gamma function is as follows:

Markov term = C
0 Dα

t Γ (2 − α) H (� (t) , t) + �(tT−1) . (27)

The memory trace (�-memory trace since it is related to variable � (t)) is

Memory trace =
T−2∑
�=0

[
�
(
t�+1

)− �
(
t�
)] [

(T − �)1−α − (T − 1 − �)1−α
]
. (28)

The memory trace is capable of integrating all past activities and takes into account the long-
term history of the system. For α = 1, the memory trace is 0 for any time t. Memory trace
dynamics is highly dependent on time. When the fractional-order α is decreased from unit,
the memory trace nonlinearly increases from 0. Hence, the fractional-order system dynamics
are quite different from the integer-order dynamics.

8 Numerical simulations and discussion

For the system (5), the numerical solutions are achieved using the Adams-Bashforth-Moulton
Predictor-Corrector method for the parameters in Table 2. With the aid of numerical simu-
lations, the effects of different parameter values and different values of α on the dynamic
behavior of the model (5) can be identified. The fitted parameter values used for numerical
simulations are given in Table 2.

In this part of the study, the variation of each sub-population over time has been simulated
for differing values of the fractional parameter α by using the fitted parameter values given in
Table 2. In addition, considering the parameters that significantly change the behavior of the
cells, graphics have been obtained for different values of these parameters. The dynamical
behavior of each state of the proposed tumor-immune system model has shown in Figs. 2, 3,
4, 5, 6, 7, 8, 9 for varying values of the fractional-order parameter α and different parameter
values. Figure 2 presents the tumor cells for different α values to point out the effect of the
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Fig. 2 Change of the tumor cells over time for the varying fractional-order derivative
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Fig. 3 Change of the tumor cells over time for the varying fractional-order derivative and μ = 0.11, r2 = 0.8.

fractional case. Figure 2 shows decreasing attitude of the tumor cells for increasing values
of α.

Moreover, in Fig. 2, it has been seen that the total number of tumor cells is more in the
case of α = 0.7 than in the case of α = 1. Therefore, the fractional order predicts more
tumor cells than the prediction obtained in the integer-order case. In addition, when α = 0.7,

123



   40 Page 18 of 28 Eur. Phys. J. Plus          (2022) 137:40 

0 10 20 30 40 50 60 70 80 90 100
Time (Days)

0

50

100

150

200

250

300

350

400

450

500

A
(t)

=1
=0.9
=0.8
=0.7

Fig. 4 Change of the active macrophages cells over time for the varying fractional-order derivative
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Fig. 5 Change of the macrophages cells over time for the varying fractional-order derivative

it is seen that even around 100 days, tumor cells are still seen in the body. However, it is seen
that they disappear from the second day in order of integer-order case. This effect of α = 0.7
indicates that the fractional derivatives are in good agreement with the spread of tumor cells.

In Fig. 3, we have changed μ, r2 and keep the other parameters fixed as in Table 2. One
of the main reasons for using FODEs is that fractional differential equations have a wider
stability region than integer-order equations, that is, fractional-order equations are at least as
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Fig. 6 Change of the host cells over time for the varying fractional-order derivative

0 10 20 30 40 50 60 70 80 90 100
Time (Days)

0

1

2

3

4

5

6

7

Tu
m

or
 c

el
ls

 = 0.01359381229937 (baseline value)
 = 0.02
 = 0.04
 = 0.06

5                            10                          15

0.1

0.2

0.3

0.4

0.5

Fig. 7 Change of the tumor cells over time for the different μ values and α = 0.9
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Fig. 8 Change of the tumor cells over time for the different δ1 values and α = 0.9
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Fig. 9 Change of the tumor cells over time for the different r2 values and α = 0.9

stable as integer-order equations. Moreover, solutions in fractional-order equations depend
on all previous cases [49,59]. It is concluded that Fig. 3 verifies this theoretical result, that
is, the stability region of the proposed model has increased as the α decreases from unit.
In Fig. 4, the change in the active macrophages cells with respect to time is examined. One
can see from this figure that as the fractional-order α reduces from unit, the memory effect
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of the active macrophages cells increases. Therefore, these cells take longer to be stable for
the non-integer cases. In addition, while the active macrophages cells exhibit an unstable
behavior when α is unit, the long-term stability of the system when α is not an integer reveals
one of the important properties of the fractional-order derivatives.

In Fig. 5, similar behavior like the active macrophages cells has been seen. It has observed
that as the α decreases from unit, the memory effect of the macrophages cells increases,
which means that the peak of the macrophages cells decreases and the macrophages cells
reach the stability after a certain time for the fractional cases.

It can be observed from Fig. 6 that as α reduces from the unit, the host cells take longer
time to reach the maximum value due to memory effect. In addition, it is seen that they reach
the equilibrium point in a longer time in the fractional-order state. In Fig. 7 for increasing
values of μ (the destruction rate of tumor cells due to active macrophages cells), the tumor
cells decrease under fractional-order case α = 0.9. In Fig. 8, δ1 appears to have a significant
impact on the regression of the tumor cells. It is seen that the number of cancer cells decreases
as δ1 increases. It is seen that the observed changes in Figs. 2, 3, 4, 5, 6, 7, 8 are compatible
with the expected phenomena related to a real cancer patient.

Cancer patients have different tendencies during tumor growth which is difficult to capture
by integer order derivative as in seen Fig. 2. In Fig. 3, we have observed that the fractional-
order derivative damps the oscillation behavior about the positive equilibrium point. The
existence of periodic solutions is associated with cancer models. It implies that the tumor
levels may oscillate around an equilibrium point even in absence of any treatment. Such a
phenomenon which is known as “Jeff’s Phenomenon” has been observed clinically [82] and
has arose in many cancer models [58,59]. It is seen that in Fig. 7, as μ increases, the number
of tumor cells decreases. From the biological point of view, the rate of destruction of TCs
due to attack of active macrophages (μ) can be increased by the macrophage-based therapy.
The macrophage-based therapy is more effective at reducing tumor cell proliferation than
standard therapies such as radiotherapy and chemotherapy [83].

It is known that tumor cells and normal tissue cells compete for resources and space [84]. In
addition, the signaling interactions between the stromal and neoplastic tissues are important
in driving tumor cell proliferation [2]. A certain period of time after the tumor begins to
invade the area and source of normal tissues, the normal tissues go on the defensive to protect
themselves [2,84]. It takes a certain amount of time for the host cells to take action to attack.
In Fig. 6, it is seen that while host cells are not active until the about 20th day, they start to
compete with the tumor cells after the about 20th day. In addition, it is seen that in Fig. 10,
the memory trace is zero until around the 20th day and it has started to increase after that day.
The memory effect seen in Fig. 6 is supported by Fig. 10. The obtained results from Figs. 6
and 10 are consistent with real biological phenomena. Figure 6 shows that fractional-order
differential equations play the role of time lag or delay term in ordinary differential model and
they are naturally related to systems with memory which exists in tumor–immune interactions
[59,85]. In Figs. 10 and 11, we have depicted the memory trace effects on populations for
different values of fractional order α. As can be seen from Figs. 10 and 11, when α = 1,
it is seen that the memory effect is zero for all populations. As α decreases from 1 to 0.7,
the effect of the fractional order and the corresponding memory effect appear. Since the
memory effect has a significant importance in the tumor-immune interconnection, it is very
important to include the memory effect in the system in order to make the most realistic
modeling. It can be seen that the memory effect has a great effect on each compartment
in the model we are considering. Considering the values before and after the peak values
of the populations, it is seen that there is an important relationship between them and the
memory trace. When Figs. 2, 3, 4, 5, 6, 7, 8, 9 and Figs. 10 and 11 are examined together, it
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Fig. 10 The effect of memory trace on the tumor cells (left) and the host cells (right) for different values
of α
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Fig. 11 The effect of memory trace on the macrophages cells (left) and the active macrophages cells (right)
for different values of α

is noteworthy that memory trace is negative when populations decrease, and memory trace
is positive when populations increase. Observing such behaviors clearly demonstrates the
importance of including memory trace in the system when modeling cancer. These are the
results that have not been addressed in any previous study, revealing the biological reality of
our model.

9 Measurement of memory trace for the proposed fractional-order model

As given in detail in Sect. 7, we have numerically integrated the fractional derivatives using the
L1 scheme and the solutions of the FODEs for T (t) , A (t) , M (t) ,W (t) , have described
as the similar way as in (25). Thus, the numerical approximation of the fractional-order
derivative of A (t) is

C
0 Dα

t A (t) ≈ (dt)−α

Γ (2 − α)

⎡
⎣T−1∑

�=0

[
A
(
t�+1

)− A
(
t�
)] [

(T − �)1−α − (T − 1 − �)1−α
]⎤⎦ . (29)
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By combining (29) and the first equation of system (2), the numerical solution of active
macrophages cells A (t) is given by

A (tT ) ≈ Markov term of A (t) - Memory trace of A (t) , (30)

where

Markov term = C
0 Dα

t Γ (2 − α) H (A (t) , t) + A (tT−1) , (31)

and

Memory trace =
T−2∑
�=0

[
A
(
t�+1

)− A
(
t�
)] [

(T − �)1−α − (T − 1 − �)1−α
]
. (32)

By following the same steps, the numerical approximations of the fractional-order derivative
of T (t), M (t), W (t) have been achieved. By considering the corresponding results above,
numerical analyses have been provided to visually see the effect of memory trace on each
sub-population of system (5).

Figure 10 and 11 show the effects of memory trace on the dynamics of populations for
varied values of fractional order α. As can be seen from Figs. 10 and 11, when α = 1, there
is no memory effect in the system. As α decreases from 1 to 0.7, the impacts of the fractional
order and the existence of a memory effect become clear. Actual results and estimates of
the tumor–immune system interaction can be obtained in the presence of a memory effect.
Therefore, the presence of a memory effect is very important for the biological models. When
Figs. 2, 3, 4, 5, 6, 7, 8, 9 and Figs. 10 and 11 are examined together, it is seen that there is
a significant relationship between the memory effect and the peak values of the behavior of
the system. For example in Figs. 2 and 10, it is seen that the memory trace starts to become
negative where tumor cells for different values of α begin to decrease after the peak value.

In biological events, when the immune system first encounters with the tumor cells, the
memory response occurs and it is effective during a certain period of time [86]. When Figs. 10
and 11 are examined, it is observed that the memory effect approaches zero after a certain
time. That is, these results are expected in real cancer phenomena. It can be understood from
the results obtained from the graphs that the FODEs reveal the memory effect of the system
quite successfully without the need for any other factors.

10 Conclusions

In this study, a new fractional-order differential equation model for tumor–immune system
interaction related to lung cancer has been studied by taking into account the models given by
[20], and [59]. We have constructed a new model clarifying the interactions between tumor
cells, macrophages cells, active macrophages cells and normal tissue cells to evaluate the role
of macrophages and normal cells on tumor growth and regression. We have also taken into
consideration the Caputo type fractional derivative instead of the integer-order derivative. By
doing so, we have guaranteed that the fractional-order system (5) is dimensionally consistent:
The units of measurement from the left- and right-hand sides of the equations agree. It has
been achieved by modifying the parameters involved in the right-hand side of the equations,
e.g., raising them to power α.

We have showed that the compartmental system has a solution by benefiting from the
fixed-point theorem, and we have provided the equilibrium points of the system. We have
also investigated the local stability of the endemic equilibrium point. By using the real data
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of a lung cancer patient from Erciyes University hospital in Turkey, sum of the squares of the
difference between the numerical solution to the tumor cells and real data has been minimized
and the best fitted curve has been obtained (see Fig. 1). In addition, we have performed math-
ematical investigation along with parameter recalibration analysis to understand the system
dynamics and the best fitted parameter values have been obtained, accordingly. In order to
achieve numerical simulations of model (5), population dynamics of tumor-immune system
have been visualized with the help of different fractional orders and the fitted parameters using
Adams-Bashforth-Moulton method. Numerical simulations have been used to investigate the
effects of the parameters on the growth and regression of the tumor cells.

Although there have been many studies that discuss the tumor–immune interaction in the
literature, our model differs from them both biologically and mathematically in terms of
investigating the relationship between tumor, macrophages, active macrophages and normal
tissue cells. Normal tissue cells (NTCs) and macrophages cells play an significant role in
the prevention of tumor growth along with the production mechanism of macrophage cells.
According to the results, if the host cells are more competitive, then the tumor cells undergo
a considerable loss. In addition, if tumor growth rate (r2) is small, then cancer cells can be
eradicated in a shorter time. When the simulation results have been examined, it has been
observed that as α changes, the patient’s immune system cells and the number of tumor cells
also changes significantly. Moreover, it is seen that the oscillations increase as the fractional-
order changes from zero to one. Cancer has a different mode of progression when the tumor
starts to appear in the body. With the help of fractional-order equations, as can be seen from
the obtained results, this different structure of cancer can be better explained.

It is a very useful method to use experimental data to test the accuracy of the established
mathematical models. But, finding the required data is often difficult. Among the studies on
the mathematical model of lung cancer, there are studies that benefit from experimental data.
These data are mostly cell lines and animal data. However, it is seen that there are not enough
studies in the literature on fractional modeling using experimental data on lung cancer. In
this context, both fractional modeling has been taken into account and real experimental data
from patients have been used in this study. In order to fit the parameters and to minimize the
mean absolute relative error between the plotted curve for the tumor cells class and the real
data provided by lung cancer patients, we have utilized least squares curve fitting technique.
By doing so, we aim to predict the changing of tumor cells and immune system cells over
time by using more accurately generated parameters. In addition to this, we aim to point out
the advantages of the fractional order modeling, taking into consideration the memory trace
and hereditary traits.

If cancer specialists can change the parameters of the cancer-immune system relationship
by applying different treatment methods (such as macrophage-based therapy, BMT therapy,
hormone therapy, and immunotherapy) according to the results obtained from the mathemat-
ical models, it may be possible to stabilize the tumor cells at a certain value or to terminate
the cancer. Therefore, such examinations provide other scientists as well as cancer special-
ists studying the tumor progression with insight into the control of the cancer and may help
develop further treatment strategies. In this context, this study will shed light on future studies.

In future works, one can consider that cancer stem cells can be incorporated into the model
in which will be developed.
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