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Abstract The presented study deals with the exploitation of the artificial intelligence knacks-
based stochastic paradigm for the numerical treatment of the nonlinear delay differential
system for dynamics of plant virus propagation with the impact of seasonality and delays
(PVP-SD) model by implementing neural networks backpropagation with Bayesian regu-
larization scheme (NNs-BBRS). The PVP-SD model is represented with five classes-based
ODEs systems for the interaction between insects and plants. The nonlinear PVP-SD model
governs with five populations: S(t) susceptible plants, I(t) infected plants, X(t) susceptible
insect vectors, Y (t) infected insect vectors and P(t) predators. Adams numerical procedure
is adopted to generate the reference solutions of the nonlinear PVP-SD model based on
the variety of cases by varying the plants bite rate due to vectors, vector bite rate due to
plants, plant’s recovery rate, predator contact rate with healthy insects, predator contact rate
with infected insects and death rate caused by insecticides. The approximate solutions of
the nonlinear PVP-SD model are determined by executing the designed NNs-BBRS through
different target and inputs arbitrary selected samples for the training and testing data. Valida-
tion of the consistent precision and convergence of the designed NNs-BBRS is efficaciously
substantiated through exhaustive simulations and analyses on mean square error-based merit
function, index of regression and error histogram illustrations.
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NNs Neural networks
NNs-BBRS Neural networks backpropagation with Bayesian regularization

scheme
AI Artificial intelligence
ANNs Artificial neural networks
COVID-19 Corona virus disease 2019
S, I , X , Y and P Susceptible, infected, exposed and recovered
S0, I0, X0, Y0 and P0 Initial values of S, I , X , Y and P
HIV Human immunodeficiency virus
TLCD Tobacco leaf curl disease
SIR Susceptible, infected and recovered
NDSolve Numerical solution of differential equations
MSE Mean square error
AEs Absolute errors
N Population of plant hosts
α Plants bite rate due to vectors
α1 Vector bite rate due to plants
γ Plant saturation constant due to vectors
γ1 Vector saturation constant due to plants
υ Plant’s natural death rate
k Vector’s natural death rate
β Plant’s recovery rate
� Vectors replenishing rate
c Infected plants death rate due to the disease
d1 Predator contact rate with healthy insects
d2 Rate of contact between predators and infected insects
η Rate of natural death of predators
δ Constant competition between predators
γ3 Predators’ saturation caused by insects
γ4 Predator conversion rate due to insects
cin Death rate caused by insecticides
�p Addition rate of predators

1 Introduction

Plants play a crucial role in maintaining our planet’s ecosystem. They are the source of food
both for humans and for many other species on earth. Plants have been used since long for
medical purposes. The fibers they produce are utilized for the clothing and paper, while the
wood is an indispensable for building material. In order to maintain a healthy environment,
plants need to be healthy as well. Unfortunately, plants also contact many diseases, some of
which are caused by insects, such as beetles, while others are caused by viruses.

Many African countries that lack economic development depend on cassava that is suscep-
tible to the cassava mosaic virus. There have been outbreaks of this plant virus in Southeast
Asia [1]. The tomato plant in India is another example of a plant with virus infection. Tomato
leaf curl disease is caused by these viruses. It results in a curled leaf and possibly sterility of
the plants [2]. Viral diseases damage the plants and often kill them, resulting in billions of dol-
lars in damages every year due to virus-caused diseases [3]. During the transmission process,
insects usually bite plants infected by the virus, become infected and bite susceptible plants,

123



Eur. Phys. J. Plus         (2022) 137:144 Page 3 of 47   144 

thereby infecting them. Insects react differently according to the season. During the warm
months, they are very active, and in the cool months, they almost go dormant. Transport is
required by viruses in order to move from one plant to another. This is typically accomplished
by insect vectors. Approximately, 70 percent of plant viruses are transmitted by insects [4].
It must become infected by feeding on an infected plant acquiring the virus from it, and then
spread it to another healthy plant. Transmission of both TLCD and cassava mosaic virus
occurs through the same vector Bemisia tabaci. There have been numerous mathematical
models developed to provide a detailed exposition of how to describe, analyze and predict
agricultural epidemics of plant pathogens as a mean of developing and testing crop protection
tactics and control strategies [5–8]. There have been a number of epidemiological models
developed to analyze the population ecology of viral diseases, based on those used in human
or animal epidemiology [9–14]. Modeling of host, virus, and vector interactions and their use
to evaluate control strategies are discussed [15]. Xiaowei Jiang investigated the bifurcation as
well as chaos for delay differential system [16]. Haileyesus Tessema Alemneh formulated the
epidemic model to investigate the dynamical behavior of maize streak virus and developed
the control strategies [17]. A number of papers have discussed at least two species for delayed
or non-delayed predator–prey models [18–24]. It has been shown that the majority of epi-
demiological models can be represented as a system of differential equations, with time lags
frequently included [25, 26]. Theoretical studies of plant disease rarely use delay differential
equations. Numerous studies dealing with infections have used constant delays, representing
either the infectious phase following the removal of infected individuals or the latency phase
after the infection has passed [27]. Wang et al. presented the dynamics of a predator–prey
model including distributed delay with respect to time and mutual interference [28]. Zhang
et al. considered the model of vector-borne disease having two delays and involving reinfec-
tion and discussed the system equilibrium [29]. Darti et al. presented the numerical approach
for the SIR epidemic model with a saturated incidence rate by using the non-standard finite
difference method [30]. Zhang et al. considered a tobacco smoking model with delay and
studied the dynamics by taking the delay as a bifurcation factor based on the Hopf bifurcation
and local stability [31]. Alcaide et al. discussed hybridized viral infections, ecological and
evolutionary factors in plants diseases [32]. Benito Chen-Charpentier transformed the model
of plant virus transmission with delay and stated the model based on biochemical effects
which is most practical for small groups [33]. An analysis is presented for the mosaic disease
of Cassava transmitted by the whitefly vector [34, 35]. Pratiwi et al. presented the mosaic
disease mathematical model of Jatropha curcas and controlling strategies with nutritional
interference and insecticide [8]. Zhong et al. considered the modeling of the communication
system and analyzed the coordinated and non-coordinated impact of frequency control inside
the virtual power plants [36]. Waezizadeh et al. investigated the plant virus propagation model
and its dynamics with multiple delays [37]. Debasis Mukherjee presented the plant’s diseases
model caused by insects biting the plants as well as the natural opponents and also investigated
the model in terms of feasibility of equilibria, boundedness, uniform persistence, and local as
well as global stability concerns [38]. Fei et al. studied the epidemic model of vector-borne
disease based on the resistance, exposed period of disease and nonlinear incidence rate [39].
Based on a discrete plant virus disease model with drilling and replanting, Luo et al. showed
that the basic reproduction number acts as a threshold parameter in determining the global
dynamics of the model [40]. Using a mathematical model, a three-species food chain system
incorporating delay of toxicant uptake by prey populations has been analyzed [41]. There
has been extensive research on epidemics models for plant diseases (see [42–46]). Recent
research conducted by Benito M. Chen-Charpentier and Mark Jackson examined indirect and
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Fig. 1 Interaction between the plants, insects and predators of the nonlinear PVP-SD model

direct optimal control methods to propagate plant viruses over a seasonal period and delays
[47].

The existing literature contains many intriguing techniques, all of which have their own
merits, advantages and disadvantages, but it is imperative to exploit the AI-based stochas-
tic paradigm for solving epidemic models of plant virus transmission. Different stochastic
numerical techniques have been used to solve linear and nonlinear mathematical systems
[48–55]. A number of recent and advanced applications of stochastic numerical techniques
based on AI include analysis of Williamson nanofluid [56], pantograph differential equa-
tions including delay [57], autoregressive nonlinear systems [58], nano-fluidic nonlinear
systems [59], system of power plant [60], magneto-hydrodynamic [61], financial model [62],
Thomas–Fermi nonlinear singular system [63], bistatic systems of radar [64], plasma [65],
solar energy [66], HIV infectious model [67], nonlinear eye model [68], heartbeat model
[69], COVID-19 nonlinear models [70, 71] and model of mosquito [72]. Moreover, these
stochastic numerical methods are widely utilized for dealing with complex fractional-order
systems [73–76]. These factors are instigation for authors to investigate, interpret, and study
stochastic numerical techniques for solving nonlinear PVP-SD model. The present study
utilizes a neural networks backpropagated with the Bayesian regularization to investigate
the dynamical behavior of the nonlinear PVP-SD model. According to the authors literature
review, the numerical solution to the nonlinear PVP-SD model by using artificial intelligence
(AI) knacks via neural networks backpropagation with Bayesian regularization scheme (NNs-
BBRS) looks promising alternative to be implemented. Following are the innovative aspects
of the presented research work in terms of salient features:

• A novel design AI knacks-based stochastic numerical technique is presented using
Bayesian regularization networks to efficaciously investigate the dynamics of the non-
linear plant virus propagation with the impact of seasonality and delays (PVP-SD) model.

• The PVP-SD model dynamics is portrayed mathematically by five classes-based ODEs
systems for the interaction between insects and plants in terms of their populations for
susceptible and infected items as well as for predators.
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Table 1 Parameters with description and values [47]

Parameters Definition Value

N Population of plant hosts 63
α Plants bite rate due to vectors 0.01
α1 Vector bite rate due to plants 0.01
γ Plant saturation constant due to vectors 0.2
γ1 Saturation constant of vector due to plants 0.1
υ Plant’s death rate naturally 0.01
k Vector’s natural death rate 0.2974
β Plant’s recovery rate 0.01
� Vectors replenishing rate 10
c Infected plants death rate due to the disease 0.2
d1 Predator rate of contact with healthy insects 0.05
d2 Rate of contact between predators and the infected insects 0.05
η Death rate of predators naturally 0.05
δ Constant competition between the predators 0.01
γ3 Predators’ saturation caused by insects 0.01
γ4 Predator conversion rate due to insects 0.01
cin Death rate caused by insecticides 0–0.9
�p Addition rate of predators 0–10
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Fig. 2 Neural networks procedure for proposed NNs-BBRS

• Efficacy of Adams numerical procedure is adopted to generate the reference solutions
of the nonlinear PVP-SD model for different scenarios by varying the plants bite rate
due to vectors, vector bite rate due to plants, plant’s recovery rate, predator contact rate
with healthy insects, predator contact rate with infected insects and death rate caused by
insecticides.

• Validation of the consistent precision and convergence of the designed NNs-BBRS is
practicality substantiated through exhaustive simulation studies and analyses on mean
square error-based merit function, index of regression and error histogram illustrations.

The organization of the rest portion of the article is as follows. The second section of the
article consists of the mathematical description of the nonlinear PVP-SD model. The third
section consists of the proposed methodology of the nonlinear PVP-SD model. The fourth
section comprises the dynamics-based analysis of the nonlinear PVP-SD model through a
distinct scenario. The fifth section contains conclusion on the basis of comprehensive analysis.
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Table 2 Setting up scenarios for a nonlinear PVP-SD model

Scenarios with no seasonality (l � 0)

Scenario 1 for plants bite rate due to vectors and vector
bite rate due to plants

Case-1 α � 0.03 α1 � 0.03

Case-2 α � 0.06 α1 � 0.06

Case-3 α � 0.09 α1 � 0.09

Scenario 2 for plant’s recovery rate

Case-1 β � 0.05

Case-2 β � 0.5

Case-3 β � 3.5

Scenario 3 for predator contact rate with healthy insects
and predator contact rate with infected insects

Case-1 d1 � 0.01 d2 � 0.01

Case-2 d1 � 0.09 d2 � 0.09

Case-3 d1 � 1.5 d2 � 1.5

Scenario 4 for death rate caused by insecticides

Case-1 cin � 0.5

Case-2 cin � 0.01

Case-3 cin � 0.9

Scenarios including seasonality (l � 0.5)

Scenario 1 for plants bite rate due to vectors and vector
bite rate due to plants

Case-1 α � 0.03 α1 � 0.03

Case-2 α � 0.06 α1 � 0.06

Case-3 α � 0.09 α1 � 0.09

Scenario 2 for plant’s recovery rate

Case-1 β � 0.05

Case-2 β � 0.5

Case-3 β � 3.5

Scenario 3 for predator contact rate with healthy insects
and predator contact rate with infected insects

Case-1 d1 � 0.01 d2 � 0.01

Case-2 d1 � 0.09 d2 � 0.09

Case-3 d1 � 1.5 d2 � 1.5

Scenario 4 for death rate caused by insecticides

Case-1 cin � 0.5

Case-2 cin � 0.01

Case-3 cin � 0.9
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Fig. 3 Flowchart of the proposed NNs-BBRS of nonlinear PVP-SD model

2 Mathematical model of plant virus propagation

Plant virus propagation can be modeled using the mathematical models described in [76–79],
which has the structure of an epidemiological model based on vectors. It consists of six pop-
ulations: S(t) susceptible plants, I(t) infected plants, R(t) recovered plants, X(t) susceptible
insect vectors, Y (t) infected insect vectors and P(t) predators. Each variable specifies the
population value at time t. The susceptible plants do not possess the disease themselves, but
they might contact it from an infected vector. Viruses can be transmitted indirectly to suscep-
tible plants by infected plants. A plant infected with a disease may either die or recover from
it due to a defensive mechanism. Due to the viral infection, these plants may also die more
often than susceptible plants. We also presume that when a plant dies either naturally or due
to infection, it is instantly exchanged with new susceptible plant by the farm worker. By this
supposition, the population as a whole remains constant and denoted by N . Its advantage is
that we may use N � S+ I +R in the system of equations to exclude the recovered population
as well as its conservation equation. Susceptible insects are not infected with the virus but
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Fig. 4 Training states of NNs-BBRS for the nonlinear PVP-SD model of scenario 1

can become infected by biting an infected plant. Viruses can be transmitted to susceptible
plants by biting insects that are infected. It is assumed that the virus cannot spread verti-
cally between plants or vectors. Additionally, the virus is assumed not to harm the vector,
so it does not need to protect the virus against itself and retains the virus throughout its’
life. Consequently, infected and susceptible vectors both die at the same rate, regardless of
whether they are killed by insecticides or predators. The virus does not infect it while eating
an infected vector, and also it does not spread the virus. There are two delays included in the
model according to the time it takes the virus in order to spread within a plant or vector. There
is also a seasonal variation in insect and plant contact rates, with warmer months having a
higher rate than cooler months. Therefore, the contact rate is assumed to be yearly. The same
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Fig. 5 Training states of NNs-BBRS for the nonlinear PVP-SD model of scenario 3

applies to growth rates of a vector. In addition, predators compete for insects afterward. There
is a constraint of the predator–prey Holling type-2 in the interactions between vectors and
plants, as well as between predators and vectors.
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Fig. 6 Fitness plots and error analysis of the nonlinear PVP-SD model

The mathematical model is expressed by the following delay differential system [47]:

dS
dt � υ(N − S) + cI − α(t)Y (t−ξ1)

1+γY (t−ξ1)
S(t − ξ1) S(0) � S0

dI
dt � α(t)Y (t−ξ1)

1+γY (t−ξ1)
S(t) − (c + υ + β)I I (0) � I0

dX
dt � � − α1(t)I (t−ξ2)

1+γ1Y (t−ξ2)
X(t − ξ2) − d1X

1+γ3X
P(t) − kX − cin X X(0) � X0

dY
dt � α1(t)I (t−ξ2)

1+γ1Y (t−ξ2)
X(t − ξ2) − d2Y

1+γ3Y
P(t) − kY − cinY Y (0) � Y0

dP
dt � �p + γ4d1X

1+γ3X
P(t) + γ4d2Y

1+γ3Y
P(t) − ηP(t) − δP2(t) P(0) � P0

(1)
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Fig. 7 Regression curves of the nonlinear PVP-SD model for scenario 1

where

α(t) � α

(
1 + l cos

(
2π t

365

))

α1(t) � α1

(
1 + l cos

(
2π t

365

))

In the absence of seasonality, we use l � 0, and l � 0.5 when seasonality including. In
Fig. 1, plants, insects and predators are shown interacting with each other. Inflows of the
given population are indicated by solid arrows toward a state. The outflow of a population is
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Fig. 8 Regression curves of the nonlinear PVP-SD model for scenario 3

shown by a solid arrow away from it. The transmission of the virus is shown as a dotted line
from one population to another. The settings of parameters for nonlinear PVP-SD model is
shown in Table 1 used for every case of this study as per [47]. After using numerical values
for one of the case, the obtained mathematical form of system (1) is given as [47]:

S′(t) � 100 − 0.000942S(t)I (t) + 0.03R(t − η3) − 0.011S(t),

E ′(t) � 0.000942S(t)I (t) − 0.04E(t − η1) − 0.01E(t),

I ′(t) � 0.04E(t − η1) − 0.01I (t) − 0.025I (t − η2),

R′(t) � 0.025(t − η2) + 0.001S(t) − 0.01R(t) − 0.03R(t − η3), (2)
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Fig. 9 Error histogram of the nonlinear PVP-SD model for scenario 1 and scenario 3
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Fig. 10 Performance of MSE for the nonlinear PVP-SD model

along with initial conditions

S(0) � 750, E(0) � 2100, I (0) � 2900, R(0) � 4400 (3)

Further, similar mathematical models for other cases can be formulated for the nonlinear
PVP-SD model.
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Fig. 11 Numerical results for S

3 Proposed methodology

The following section provides a mathematical model together with execution matrices for
the proposed technique. Mathematical modeling involves three phases: An initial dataset
used as a reference solution are created by the knack of Adams numerical solver in phase
one, formulation of two-layer framework of NNs-BBRS in phase two, NNs is trained through
Bayesian regularization to calculate the approximate solution in phase three.
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Fig. 12 Error analysis for S

3.1 Adams method

The following section presents the Adams predictor corrector technique [80, 81] for the
system (1). In order to enhance the accuracy level of the results, we have utilized the Adams
technique. The accuracy was initially determined by using predictor solutions, and then
numerical corrections are carried out using yardsticks obtained by the predictor solutions.
The predictor corrector technique based on system (1) can be expressed in the following
manner:

dS

dt
� f (t, S, Y, I ), S(t0) � S0

dI

dt
� g(t, I, S, Y ), I (t0) � I0

dX

dt
� g(t, X, P, I ), X(t0) � X0

dY

dt
� g(t, Y, P, X, I ), Y (t0) � Y0

dP

dt
� g(t, P, Y, X), P(t0) � P0 (4)
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Fig. 13 Numerical results for I

The following relationship can be used to calculate a two-step predictor formula for first
equation in system (4):

Sn � Sn−1 +
3

2
hg(tn−1, Sn−1) − 1

2
hg(tn−2, Sn−2).

Similarly, one may deduce the following two-step corrector relationship formula for first
equation in system (4) as follows:

Sn � Sn−1 +
1

2
hg(tn, Sn) + g(tn−1, Sn−1).

We follow the same procedure for the remaining equations in system (4) to develop the
Adam’s predictor and corrector formulas. Adams method is used to generate the reference
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Fig. 14 Error Analysis for infected plants I

dataset for the nonlinear PVP-SD model for the set of inputs 0 to 10 using 0.01 step size for
each case using NDSolve routine in Mathematica software. Moreover, the reference dataset
are produced by applying the variation in plants bite rate due to vectors, vector bite rate due to
plants, plant’s recovery rate, predator contact rate with healthy insects, predator contact rate
with infected insects and death rate caused by insecticides. MATLAB’s “nftool” command
is used to implement the proposed NNs-BBRS, while the Bayesian regularization is used for
training of weights. The description of the step-by-step procedure of the neural networks is
shown in Fig. 2. In addition, the mathematical model is executed for eight sundry scenarios
consisting of twenty-four cases of the nonlinear PVP-SD model as provided in Table 2 with
and without seasonality.

4 Analysis and discussion

In this section, numerical simulations and detailed interpretation of the results are presented
for eight sundry scenarios, each based on three cases of system (1) representing the nonlinear
PVP-SD model by applying the proposed NNs-BBRs. The flowchart of the detailed procedure
of the designed NNs-BBRS is shown in Fig. 3. The neural networks toolbox “nftool” is used
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Fig. 15 Numerical results for X

in the MATLAB software package for the NNs-BBRS implementation, while the Bayesian
regularization scheme is used for the training of weights. The designed NNs-BBRS are
conducted for eight sundry scenarios where first four scenarios are constructed in the absence
of seasonality while other four scenarios including seasonality through the variation in the
plant’s bite rate due to vectors, vector bite rate due to plants, plant’s recovery rate, predator
contact rate with healthy insects, predator contact rate with infected insects and death rate
caused by insecticides as provided in Table 2.

A dataset is generated for S(t), I(t), X(t), Y (t) and P(t) classes using the Adams method
for all the 24 cases of eight scenarios of the nonlinear PVP-SD model for 10 days with step
size 0.01. The NDSolve environment in Mathematica software is used for generating the
reference dataset for S(t), I(t), X(t), Y (t) and P(t) classes through the variation in the plant’s
bite rate due to vectors, vector bite rate due to plants, plant’s recovery rate, predator contact
rate with healthy insects, predator contact rate with infected insects and death rate caused

123



Eur. Phys. J. Plus         (2022) 137:144 Page 21 of 47   144 

Fig. 16 Error analysis for X

by insecticides of the nonlinear PVP-SD model. A dataset of 1001 input values classified
arbitrarily as 70%, 15% and 15% for train, validation and test samples. The neural networks
backpropagation with the Bayesian regularization scheme with 80 hidden layers are used to
find the results of the S(t), I(t), X(t), Y (t) and P(t) classes for the nonlinear PVP-SD model
as shown in Fig. 2.

4.1 Case study-I

Case study-I constitutes the four scenarios which are constructed through the variety of cases
by variation in plants bite rate due to vectors, vector bite rate due to plants, plant’s recovery
rate, predator contact rate with healthy insects, predator contact rate with infected insects
and death rate caused by insecticides as given in Table 2 to investigate the nonlinear PVP-
SD model dynamics. The default values with their description used for other parameters for
system (1) for all cases are listed in Table 1. Furthermore, the PVP-SD model has no delay,
ξ1 � 0 and ξ2 � 0, and no seasonal impact that is both α(t) and α1(t) are constant (l � 0).

The results of NNs-BBRS for the nonlinear PVP-SD model based on the training states are
graphically shows in Figs. 4 and 5, and the performance of fitness solution is shown in Fig. 6,
while the regression curves are shown in Figs. 7 and 8 for scenarios 1 and 3, respectively, and
the error histogram plots are shown in Fig. 9. Moreover, the results of mean squared error
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Fig. 17 Numerical results for Y

in terms of training, validation, testing, and performance, backpropagation indices, overall
epochs and time for execution are provided in Table 3 for all cases of scenarios (1–4) of the
nonlinear PVP-SD model by applying NNs-BBRS. By reviewing the time mentioned against
each case, one can see the complexity of this scheme.

The values of backpropagation indices Mu step size and gradient are [500, 5000, 500,
5000, 500, and 50] and [2.8642 × 10−07,1.4863 × 10−06, 9.9812 × 10−08, 1.3579 × 10−09,
9.9566 × 10−08 and 5.0089 × 10−09] as provided in Figs. 4a–c and 5a–c for all cases of
scenarios 1 and 3, respectively.

The results endorsed the convergence and precision of the proposed scheme for every case
of the nonlinear PVP-SD model. The performance of fitness solutions along with respective
errors based on the training and testing samples is portrayed for every case of scenarios 1
and 3 for the nonlinear PVP-SD model in Fig. 6a–l. The competency of the proposed scheme
can be observed by the overlapping of the NNs-BBRS solutions with Adams method results
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Fig. 18 Error analysis for Y

along with negligible errors. The regression analysis is measured by using co-relation studies,
and plots are shown in Figs. 7a–c and 8a–c for every case of scenarios 1 and 3, respectively.
The value of regression, R � 1, represents the rigorous linear relation between targets and
outputs which endorsed the accurate working of proposed NNs-BBRS for training and testing
samples.

The dynamics of error are additionally evaluated by histograms error for all inputs, and
results are plotted in Fig. 9a–f, respectively, of the nonlinear PVP-SD model. The error bars
bounded to the “0” error line have the accuracy level around −8.5 × 10−08, −1.9 × 10−06,
−9.8×10−07, 1.81×10−08, 2.05×10−07 and 1.91×10−06 indicating the best performance
of the proposed NNs-BBRS. The convergence of the nonlinear PVP-SD model is further
accessed in terms of MSE for the train and test samples and respective results are portrayed
graphically in Fig. 10a–f for scenarios 1 and 3.

The results of NNs-BBRS are showing the best performance at epochs 1000, 1000, 988,
972, 553 and 466 with MSE around 10−13, 10−11, 10−11, 10−14, 10−13 and 10−12 for every
case of scenarios 1 and 3, respectively.

The approximate results for the S(t) susceptible class, I(t) infected class, X(t) susceptible
insect vectors, Y (t) infected insect vectors and P(t) predators are determined by applying the
NNs-BBRS for the variety of cases in the plant’s bite rate due to vectors, vector bite rate due
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Fig. 19 Numerical results for P

to plants, plant’s recovery rate, predator contact rate with healthy insects, predator contact
rate with infected insects and death rate caused by insecticides to describe the dynamics
corresponding to 10 days for the nonlinear PVP-SD model. The performance of NNs-BBRS
generated results are analyzed with Adams method reference results for every case of all the
scenarios for the nonlinear PVP-SD model and results graphically shown in Figs. 11, 13,
15, 17 and 19. It is clearly seen from these subfigures the curves overlap each other which
approves the accuracy of results for inputs 0 to 10 with step size 0.01.

Therefore, the precision gauges of the designed NNs-BBRS are further accessed by cal-
culating the absolute errors (AEs). The graphical representation of the results of AEs for all
the five classes S(t), I(t), X(t), Y (t) and P(t) of the nonlinear PVP-SD model are portrayed,
respectively, in Figs. 12, 14, 16, 18 and 20. The values of AEs for class S lie between 10−4

and 10−8, 10−4 and 10−10 for cases 1–3 of scenario 1 and 2, respectively, and 10−5 and 10−9

for cases 1–3 of scenario 3 and 4 as shown in Fig. 12a–d. The values of AEs for class I lie
between 10−4 and 10−8, 10−4 and 10−10 for cases 1–3 of scenario 1 and 2, respectively, and
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Fig. 20 Error analysis for P

10−5 and 10−9, 10−5 and 10−10 for cases 1–3 of scenario 3 and 4, respectively, as presented
in Fig. 14a–d. The values of AEs for class X lie between 10−4 and 10−8 for cases 1–3 of
scenario 1 and 2, and 10−5 and 10−9, 10−5 and 10−8 for cases 1–3 of scenario 3 and 4,
respectively, as portrayed in Fig. 16a–d. The values of AEs for class Y lie between 10−4 and
10−10 for cases 1–3 of scenario 1 and 2, and 10−4 and 10−12, 10−4 and 10−10 for cases 1–3
of scenario 3 and 4, respectively, as presented in Fig. 18a–d. The values of AEs for class P lie
between 10−5 and 10−9 for cases 1–3 of scenario 1 and 3, and 10−5 and 10−10 for cases 1–3
of scenario 2 and 4 as presented in Fig. 19a–d. The competency of the results obtained by
proposed NNs-BBRS can be notarized by overlapping the plots in all cases of the nonlinear
PVP-SD model (Figs. 13, 14, 15, 16, 17, 18, 19, and 20).

4.2 Case study-II

Case study-II consists of the four scenarios which are constructed through the variety of cases
by varying the plants bite rate due to vectors, vector bite rate due to plants, plant’s recovery
rate, predator contact rate with healthy insects, predator contact rate with infected insects
and death rate caused by insecticides as listed in Table 2 to examine the dynamics of the
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Fig. 21 Training states of NNs-BBRS for the nonlinear PVP-SD model of scenario 2

nonlinear PVP-SD model. The description and values of default parameters used for system
(1) for all cases are tabulated in Table 1. Furthermore, the PVP-SD model has delays, ξ1 � 1
and ξ2 � 24, and seasonal impacts (l � 0.5).

The results of NNs-BBRS for the nonlinear PVP-SD model in terms of training state are
graphically presented in Figs. 21 and 22, and the performance of fitness solution is described
in Fig. 23, while the regression curves are shown in Figs. 24 and 25, and plots of error
histogram are shown in Fig. 26. In addition, the results of mean squared error in terms of
training, validation, testing, and performance, backpropagation indices, overall epochs and
time for execution are tabulated in Table 4 for all cases of scenarios (1–4) of the nonlinear PVP-
SD model by applying NNs-BBRS. The intricacy of the proposed scheme can be observed
by the time mentioned against each case for all the scenarios of the nonlinear PVP-SD model.
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Fig. 22 Training states of NNs-BBRS for the nonlinear PVP-SD model of scenario 4

The values of backpropagation indices Mu step size and gradient are [500, 50,000, 500,
500, 500 and 50] and [6.2345 × 10−07,6.7348 × 10−08, 8.5943 × 10−08, 7.8924 × 10−08,
1.2923 × 10−06 and 1.8196 × 10−06] as provided in Figs. 21a–c and 22a–c for all cases
of scenarios 2 and 4, respectively. The results endorsed the convergence and precision of
the proposed scheme for every case of the nonlinear PVP-SD model. The performance of
fitness solutions and respective error dynamics based on the training and testing samples is
portrayed for every case of scenarios 2 and 4 for the nonlinear PVP-SD model in Fig. 23a–l.
It is envisioned from these subfigures that the NNs-BBRS generated outcomes, and the
referenced Adams results overlap each other with small amount of errors which proves the
accuracy of the results.
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Fig. 23 Fitness plots and error dynamics of the nonlinear PVP-SD model

Co-relation studies are consumed for regression analysis, and the corresponding results
are portrayed graphically in Figs. 24a–c and 25a–c for each case of scenarios 2 and 4 of the
nonlinear PVP-SD model. The rigorous linear relation between targets and output values can
be found for the value of regression, R � 1, in these subfigures which verified the accurate
working of training and testing samples of the proposed NNs-BBRS for the nonlinear PVP-
SD model.

The dynamics of error are further determined by histogram error for all input points and
corresponding results are portrayed graphically in Fig. 26a–f for each case of scenario 2
and 4 of the nonlinear PVP-SD model, respectively. The best performance of the proposed
NNs-BBRS is indicated by the boundedness of error bars to the “0” error line as shown in
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Fig. 24 Regression curves of the nonlinear PVP-SD model for scenario 2

subfigures, and the level of accuracy lies in −1.5 × 10−07, 9.73 × 10−07, −4.4 × 10−06,
−7.4×10−06, −6.98×10−08 and 2.85×10−06 for cases 1–3 of scenarios 2 and 4, respectively.
The results of MSE for the train and test samples are calculated to approve the convergence
of the nonlinear PVP-SD model, and plots of respective results are provided in Fig. 27a–f for
scenarios 2 and 4. The best performance of NNs-BBRS is obtained at epochs 464, 42, 173,
356, 821, and 413 with MSE around 10−11 for every case of scenarios 2 and 4, respectively,
for the nonlinear PVP-SD model.

The performance of the proposed NNs-BBRS generated results is examined with Adam’s
method reference results for every case of all the scenarios of the nonlinear PVP-SD model,
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Fig. 25 Regression curves of the nonlinear PVP-SD model for scenario 4

and graphical representation is presented in Figs. 28, 30, 32, 34 and 36. The curves overlap
each other which approves the accuracy of results for inputs 0 to 10 with step size 0.01.

Therefore, the approximate results are determined by applying the NNs-BBRS for the S(t)
susceptible class, I(t) infected class, R(t) recovered class, X(t) susceptible insect vectors,
Y (t) infected insect vectors and P(t) predators for the variety of cases in the plant’s bite
rate due to vectors, vector bite rate due to plants, plant’s recovery rate, predator contact rate
with healthy insects, predator contact rate with infected insects and death rate caused by
insecticides to describe the dynamics corresponding to 10 days of the nonlinear PVP-SD
model. The comparison of the approximate results of NNs-BBRS and reference results of
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Fig. 26 Error histogram of the nonlinear PVP-SD model for scenario 2 and 4

123



  144 Page 32 of 47 Eur. Phys. J. Plus         (2022) 137:144 

Table 4 Results of NNs-BBRS for the nonlinear PVP-SD model

Scenarios Cases MSE Performance Gradient Mu Epoch Time (s)

Training Validation Testing

1 1 1.88E–11 0.00E+00 6.17E–11 1.88E–11 9.96E–08 50 492 < 493

2 2.76E–11 0.00E+00 7.17E–11 2.76E–11 3.38E–06 500 682 < 707

3 3.30E–11 0.00E+00 9.65E–11 3.30E–11 9.40E–07 50 199 < 346

2 1 3.62E–11 0.00E+00 5.55E–11 3.62E–11 6.23E–07 500 464 < 74

2 3.33E–11 0.00E+00 1.50E–11 3.33E–11 6.73E–08 50,000 42 < 42

3 7.04E–11 0.00E+00 1.44E–10 7.04E–11 8.59E–08 500 173 < 122

3 1 2.70E–11 0.00E+00 8.42E–11 2.70E–11 1.15E–06 500 1000 < 361

2 3.40E–11 0.00E+00 2.92E–11 3.40E–11 9.58E–08 500 42 < 26

3 2.07E–11 0.00E+00 5.18E–11 2.07E–11 7.25E–07 5 287 < 313

4 1 2.18E–11 0.00E+00 8.27E–11 2.18E–11 7.89E–08 500 356 < 427

2 4.82E–11 0.00E+00 9.33E–11 4.82E–11 1.29E–06 500 821 < 626

3 1.58E–11 0.00E+00 3.83E–11 1.58E–11 1.82E–06 50 413 < 308

Adams method are graphically portrayed in Figs. 28, 30, 32, 34 and 36. The convergence of
the proposed NNs-BBRS can be noticed through the overlapping of the plots for each case
of all the scenarios of the nonlinear PVP-SD model.

Therefore, the AEs of the designed NNs-BBRS generated outcomes are also calculated in
order to validate the precision gauges. The graphical representation of the results of AEs for
all the five classes S(t), I(t), X(t), Y (t) and P(t) of the nonlinear PVP-SD model is portrayed,
respectively in Figs. 29, 31, 33, 35 and 37. The values of AEs for class S lie between 10−4

and 10−10 for cases 1–3 of scenarios 1, 2 and 4, and 10−4 and 10−8 for cases 1–3 of scenarios
3 as shown in Fig. 29a–d. The values of AEs for class I lie between 10−4 and 10−8 for cases
1–3 of scenarios 1 and 4, and 10−2 and 10−10, 10−4 and 10−10 for cases 1–3 of scenarios
2 and 3, respectively as presented in Fig. 31a–d. The values of AEs for class X lie between
10−4 and 10−10 for cases 1–3 of scenarios 1 and 4, and 10−2 and 10−10, 10−2 to 10−8 for
cases 1–3 of scenarios 2 and 3, respectively, as portrayed in Fig. 33a–d. The values of AEs
for class Y lie between 10−5 and 10−10 for cases 1–3 of scenario 1, and 10−4 and 10−10 for
cases 1–3 of scenarios 2, 3 and 4 as presented in Fig. 35a–d. The values of AEs for class P lie
between 10−5 and 10−9 for cases 1–3 of scenarios 1 and 3, and 10−5 and 10−10 for cases 1–3
of scenario 2 and 4 as presented in Fig. 37a–d. The competency of the results obtained by
proposed NNs-BBRS can be notarized by overlapping the plots in all cases of the nonlinear
PVP-SD model (Figs. 30, 31, 32, 33, 34, 35, 36, and 37).
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Fig. 27 Performance of MSE for the nonlinear PVP-SD model

5 Conclusion

A stochastic paradigm based on an artificial intelligence is introduced by employing the
knacks of neural networks as well as backpropagation of Bayesian regularization scheme for
solving the mathematical model for plant virus propagation with the impact of seasonality
and delays representing the dynamical behavior of plants bite rate due to vectors, vector bite
rate due to plants, plant’s recovery rate, predator contact rate with healthy insects, predator
contact rate with infected insects and death rate caused by insecticides. The reference dataset
are generated with the help of Adams method for all five classes of the nonlinear PVP-SD
model. The dataset for the nonlinear PVP-SD model is arbitrarily used as 75%, 5% and 10%
for the training, validation and testing samples for the NNs-BBRS, respectively. Following
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Fig. 28 Numerical results for S

are the remarkable ascertainments of the mathematical model for PVP-SD model based on
the foregoing numerical simulation and analysis.

• The design stochastic paradigm NNs-BBRS is used effectively to find the approximate
solution of the governing ODEs system representing the nonlinear PVP-SD model.

•
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Fig. 29 Error analysis for S

The precision and convergence of the proposed NNs-BBRS are effectively examined by
comparative studies of the referenced numerical solutions procured by the Adams method
and the results of MSE lie approximately in 10−12 to 10−14 and 10−11 for the variety of
cases of different scenarios for case study-I and case study-II, respectively, that illustrate
the best performance of testing, training as well as validation samples.

•
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Fig. 30 Numerical results for I

The designed NNs-BBRS is robust, efficient and stable computing platform as investigated
by the illustrations of histogram errors, regression matrices and MSE learning curves by
the execution of exhaustive simulations.
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Fig. 31 Error analysis for I
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Fig. 32 Numerical results for X
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Fig. 33 Error analysis for X
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Fig. 34 Numerical results for Y
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Fig. 35 Error analysis for Y
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Fig. 36 Numerical results for P
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Fig. 37 Error analysis for P

In future, one exploit such AI-based heuristic computing architectures to broad field of
applied science and technology [82–93].
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