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Abstract Global conservation laws require the fundamental interactions to be processes
which transfer information from one particle to another. Therefore, in order to show what
types of interactions may exist, we derive from the very first principles a set of the most fun-
damental information transfers and their basic properties. Within these information transfers,
we identify candidates for gravitational, electromagnetic and strong scattering, and also for
weak decay. We do it by taking the characteristic properties of each fundamental interaction,
such as confinement or parity violation, and by using them to rule out information transfers
without these properties. The found mapping then makes possible to study the information
transfers in order to get knowledge about the corresponding fundamental interactions.

1 Introduction

One of the unsolved problems in high-energy physics is the question whether all the four
known fundamental interactions can be unified into a single theory [1]. The first step toward
the answer was made in 1960s when electromagnetic and weak interaction were unified into
one electroweak theory [2–5]. The following attempts to make another step have not been
successful so far. There have been proposed several models unifying electroweak theory with
strong interaction [6–8]. Nevertheless, the viability of these models is substantially restricted
by their prediction of proton decay [9], which so far has not been observed [10]. There have
been also attempts to include gravity, and nowadays, the most promising models being able
to unify all the fundamental interactions are supergravity and superstring models [11,12]. All
these models, however, lack any experimental evidence as well. The supersymmetry models
lack the evidence of the existence of the superpartner particles [13–15], and the string models
manifest their properties primarily on the Planck scale, which is far from being testable in
today’s experiments [16]. The unification of the fundamental interactions, thus, still remains
unresolved, and it seems that in order to make progress, we need an entirely novel approach
[17,18].

The fundamental interactions transfer information between the interacting particles. It can
be seen from the fact that they satisfy various conservation laws. If the interactions did not
transfer any kind of information from one particle to another, then the changes on the inter-
acting particles would be mutually uncorrelated, and no global conservation law could ever
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be systematically satisfied. Consequently, the fundamental interactions do transfer informa-
tion, i.e., they are information transfers. In this sense, every theory unifying the fundamental
interactions must at its core be a theory of information transfers. Since information and its
transfers stem from computer science, we use computer science to derive the set of all possible
fundamental information transfers. Then, we derive their basic physical properties and look
for a relation between the individual information transfers and the individual fundamental
interactions. Namely, we take each fundamental interaction, and by ruling out transfers with
different properties, we find those transfers which can in principle represent that interaction.
The found mapping, then, makes possible to study the properties of the information trans-
fers and, in fact, to get knowledge about the properties of the corresponding fundamental
interactions.

Since this interdisciplinary study is intended for readers from the high-energy physics
community, the computer science’s part is reduced. Nonetheless, it is already clear that it
cannot be skipped entirely because computer science serves as the starting point of our model.

2 Universe versus computer system

Our Universe contains and processes information. Therefore, it satisfies the broadest defini-
tion of a computer system. In agreement with this observation, from now on we assume our
Universe is a computer system. The idea that our Universe is a giant computer was originally
suggested by Zuse already in 1967 [19], but in recent years the idea has attracted an increasing
amount of attention [20–30]. However, it has never been used to address all the fundamental
interactions. Note that in the following text we do not require the universal computer system
to be based on discrete bits in the way Wheeler’s It from bit would require [31].

2.1 Implementation

The universal computer system may be implemented in many ways. Nevertheless, all the
implementations, once they can produce the same outputs, are equivalent. Thus, it seems
that the knowledge of the implementation is of no importance. However, using a concrete
implementation and particularly its terminology may help build a firm analogy between the
Universe and the computer system. From all the possible implementations, we choose the
option that our Universe is implemented as an object-oriented computer system because the
object-oriented approach is very intuitive and it has well-established terminology.

Every object-oriented computer system is composed of objects. Each of these objects
contains data in the so-called attributes and performs actions by the so-called methods.1

These attributes and methods are fully determined by the class of the object. It means that all
the objects of the same class have the same attributes and the same methods [32]. At the level
of elementary particles, we witness the same thing. Namely, all the particles of the same type
have the same properties and under the same circumstances they behave in the same way
(they follow the same statistics). Thus, there is an analogy between the elementary particles
and the objects of the universal computer system. Concretely, each particle type is a class,
and each particle is an object in the system. Each particle, then, has several attributes and
several methods which completely describe its properties and behavior, most importantly its
interactions.

1 Note that methods can also contain data, but the existence of data within a method is limited to the time
period of the method performance.
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2.2 Reference to object

In object-oriented systems, objects can be linked to other objects. Each link is provided by
a reference to an object which has two important properties. Firstly, when object C has a
reference to object D, let us denote it by ε (C, D), for object C using the reference is usually
the fastest way to change data on object D, no matter in what part of memory the object
is. Secondly, the system containing objects C and D cannot be treated as a composition of
two mutually independent objects, because due to the existence of the reference ε (C, D),
object C can anytime directly influence object D, i.e., object D is somehow dependent on
objectC . Quantum physics uses a concept which has both these properties, it is entanglement.
When particlesC and D are entangled, the entanglement provides the fastest way to influence
the other particle, no matter how distant the other particle is. Furthermore, the system of two
entangled particlesC and D cannot be, by definition, decomposed into mutually independent
particles.

These properties allow us to assume that the term reference is equivalent to the term
irreducible one-way entanglement. It is irreducible because there is no such thing as part of
a reference. It is one-way because every reference has an orientation, i.e., ε (C, D) does not
imply ε (D,C). If we want to describe the system of entangled particles C and D where
a measurement of particle C or D influences particle D or C , respectively, then we need
two irreducible one-way entanglements, ε (C, D) and ε (D,C). In the rest of the article, we
talk only about irreducible one-way entanglements, and thus the two adjectives are usually
omitted.

2.3 Identity of objects

In object-oriented systems, each object has a unique identity. The immediate consequence is
that every particle has a unique identity. This seems to be in a direct contradiction with the
indistinguishability of particles, which roughly says that all the particles of the same type
are indistinguishable because we cannot attach to a particle, say to particle D, any mark
which would distinguish it from the other particles of the same type. However, entanglement
ε (C, D) is such a mark. It guarantees that whenever particle C uses the entanglement for
an action on the entangled particle, the action will be done just on particle D and not on
any other particle in the Universe. Without the unique identity of particle D this would be
impossible. Moreover, if the entanglement could be used repeatedly, particle D could be
distinguished from the other particles of the same type, at least in principle. We conclude
that the indistinguishability of particles, rather than being an intrinsic property of the system,
is an emergent property. It emerges when particles are not entangled or when particles are
entangled in the very same way. In total, before an application of the indistinguishability
of particles we always must take into consideration the fact whether and how particles are
entangled.

The unique identity of an object is in computer systems represented by a unique identifier.
Since every identifier is a piece of data, it can be stored. For example, the identifier of object D
stored in an attribute of object C is, in fact, entanglement ε (C, D), which allows object C
to do some actions on object D. For the creation of ε (C, D) is, therefore, necessary the
knowledge of the identifier of object D. The question is where its value comes from. The
value of the identifier of object D is determined at the moment of the creation of object D and
originally resides only in the object itself in what we call self-identifier. Thus, entanglement
ε (C, D) can be created only when the identifier of object D is through a series of actions
delivered from the self-identifier of object D to an attribute of object C . Note that the self-
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identifier of object D, which can be symbolically written as ε (D, D), is an implicit property
of the object with no way to change its value. The constancy of the value of the self-identifier
of object D then implies that all the entanglements that point to object D are usable during
the entire life span of object D.

2.4 Actions on objects

Objects can do various actions on objects they have access to. Namely, objectC with complete
access to particle D can access an attribute of object D to take away some data or to put
there some data; it can also read the self-identifier of object D to get to know its identity; it
can read an entanglement stored in object D, that is to get the identifier of object E if there
is ε (D, E); it can also rewrite the entanglement stored in object D to a new value, that is
to replace ε (D, E) with entanglement ε (D, F), provided object C knows the identifier of
object F . Finally, objectC can call a method on object D so object D may do some actions for
object C . Any of these actions can be done by object C on object D if the former object has
complete access to the latter object. There are three basic cases when it can happen. Firstly,
when C = D, that is object C has access to itself. Secondly, when object C has access to
object D via entanglement ε (C, D), and finally, a physically interesting case when objectsC
and D are co-local. These three basic ways of access to an object can, of course, be combined.

2.5 Optimal system

From the computer science’s point of view, it is important to ask the question whether a
computer system is optimal. When we talk about an optimal system, we usually mean that
at least one of the following metrics is minimal:

(a) time complexity, i.e., how many elementary operations the system must do in order to
accomplish every task,

(b) space complexity, i.e., how much of the memory the system needs to allocate in order to
accomplish every task.

Our Universe can do a vast amount of actions simultaneously. In such a parallelly working
system, time complexity is of no or a very low importance. To the universal computer system
can, therefore, be relevant only space complexity. The term space complexity, however, may
cause some confusion because it has nothing to do with space in the sense of the stage
for physical processes. For that reason, we rename it to memory complexity. There are two
kinds of optimal systems in the sense of memory complexity: actively optimal systems and
passively optimal systems. By the actively optimal system, we mean that the computer system
decreases the memory complexity whenever there is an opportunity to do that, and by the
passively optimal systemwe mean that the system chooses an optimal starting point of objects,
and since then it does not address the optimization. We choose the option that our Universe
is a passively optimal system.2 Thus, for the universal computer system we postulate:

Postulate 1 (Optimal system) The universal computer system is passively and locally opti-
mal in the sense of memory complexity.

The universal computer system is locally optimal when every of its objects is optimal. It means
that the minimal memory complexity is inbuilt in the attributes and methods of the objects.
The object attributes permanently occupy memory, and thus they always increase the memory

2 We are motivated by the (so far incomprehensible) fact that in passively optimal systems weak decays have
always three products and in actively optimal systems weak decays have only two products.
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complexity. The immediate consequence is that the usage of the attributes is minimized. Most
properties of every particle are, therefore, implicitly included in the methods of the object
rather than being explicitly stored in the attributes of that object. It implies an important
characteristic of the universal computer system. Namely, that our Universe prefers action
over data. A consequence is that if the system needs to use a value, then whenever possible, it
evaluates the present value rather than it uses a historical value stored in an attribute. This can
be rephrased in the way that whenever possible, there is no concrete value until it is needed.

3 Physical description of processes

Building a physical model requires a way to describe processes and their events. Hence, in
this section we define the stage for physical processes and specify the description of the state
of the physical system we will use.

3.1 Physical stage

From the physical point of view, it is important to have a stage for physical processes. It
means to have time and space which can be used to describe all possible processes and
their events. Here we are interested in time and space (hereafter called fundamental) within
which the universal computer operates. We have a simple but very strict criterion for the
fundamental time and space: fundamental time must provide a universally valid unique order
of all the events and fundamental space must provide universally valid unique relations
among the locations of all the events. This makes possible to describe each process (such as
a correlation via an entanglement) by a unique sequence of unique consecutive steps that the
universal computer performs. Moreover, as we will see, the uniqueness of the order of the
events makes possible a natural classification of processes, that is a natural classification of
the fundamental interactions.

Relative time and space cannot be the fundamental time and space. Firstly, it is because
relative time and space cannot be used to describe all possible events, namely they cannot
be used within the reference frame of a photon and within a reference frame inside a black
hole. Secondly, it is because two observers may within relative time disagree on the order
of distant events. That is, relativity of simultaneity ruins the uniqueness of the order of the
events. On the other hand, relative time and space are absolutely inevitable for describing
the local processes in terms of what we are going to measure. Consequently, we need two
notions of time and space. Since fundamental time and space are expected to be unique,
relative time and space should be derivable from the fundamental ones. The existence of
two notions of time and space may seem to be problematic [33]; however, it is not because
they do not mix in their roles. The fundamental time and space are not locally measurable,
and relative time and space do not serve as the operational base for the universal computer
system. Moreover, since the relative time and space are derivable from the fundamental ones,
in terms of superiority there is a clear relation between them.

Ruling out relative time and space indicates that in our search for the fundamental time
and space we should abandon local quantities. This leads us to the fact that an observation
of a distant event is not one and the same thing as the event itself. For example, we can say
that although we observe the explosion of a supernova here and now, it occurred at a large
distance several million years ago. Thus, besides the time and location of the observation of
the event, we can also think about the time and location of the occurrence of the event. Using
the time and location of the occurrence of events has a disadvantage that every result must
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be before a comparison with a local observation transformed to the observational time and
space. On the other hand, the main advantage is that the time order of the occurrence of all
the events can be unique. Since this is exactly what we need, we use time and location of the
occurrence of events as a synonym for the fundamental time and space.

Postulate 1 dictates to minimize the number of local parameters which completely describe
the geometry of the fundamental time and space. Therefore, the geometry of fundamental
time and space should be described by global parameters rather than local ones. It means
they should be location-independent, i.e., homogeneous, and direction-independent, i.e.,
isotropic. According to these properties, we choose that the fundamental time and space
are euclidean. Moreover, since we require unique ordering within fundamental time, time is
a one-dimensional oriented quantity. This leads us to the second postulate:

Postulate 2 (Time and space) There exists one-dimensional euclidean fundamental time
which flows only in one direction, and d-dimensional euclidean fundamental space.

The fundamental time and space are the time and space within which the universal com-
puter system operates. Nevertheless, in their definition still remain ambiguities in the scale of
space and the pace of time. Since these ambiguities can be resolved only in terms of constants
of Nature which we still do not have, we leave them unresolved and use the fundamental
time and space in this article anyway.

3.2 Perspective and retrospective description

There are two ways to describe the state of a physical system. The first one, a perspective
description, is what we usually mean by quantum description. The state of the system is there
described by potential values of the measurement outcomes and their amplitudes. Once we
know the initial state and the time evolution of the system, we can, in principle, calculate the
state of the system for any later time, provided no measurement has occurred. The advantage
of the perspective description is, therefore, that it allows us to make quantitative probability-
based predictions. Nevertheless, there is also a disadvantage. The perspective description
can in no way say the moment when a measurement will occur and what exact outcomes
the measurement will produce. There is a complementary way to describe the same system
which can do that. It is a retrospective description. In the retrospective description, the
state of the system is described by concrete values obtained by measurements at concrete
moments. In other words, the retrospective description can for a small number of moments
say the exact outcomes. On the other hand, the disadvantage is that a single retrospective
description cannot be used to make any quantitative predictions. Only a sufficiently large set
of retrospective descriptions may reveal the underlying probabilities and make possible to
create the perspective description.

None of these descriptions is superior to the other. Each of them can describe something the
other cannot, and thus each of them has its own usage and importance. In this article, we use
the retrospective description within which the value of information q contained in object C
at time t will be denoted by qC (t). We focus on lossless information q , or equivalently on
conserved quantities, because in a closed system the corresponding conservation laws may
enhance our knowledge of the state of the system from few discrete moments to continuous
time intervals.
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4 Information transfers

One of the most fundamental operations in the computer system is the transfer of information
from one object to another. In this article, we study only fundamental information transfers.
By a fundamental information transfer, we mean it satisfies the following definition:

Definition 1 (Fundamental information transfer) An information transfer between two dis-
tant objects A and B is called fundamental, if and only if

(a) Objects A and B and mediator M are the only participants in the information transfer.
(b) The information transfer is initiated by creating mediator M and handing control over

the transfer immediately to the mediator.
(c) During the entire information transfer, there are two point information changes on objects

A and B, namely one on object A and one on object B.
(d) Changes of information on mediator M correlate in time and value with the changes on

objects A and B.
(e) Mediator M annihilates itself at the end of the information transfer.
(f) There are no other events in the transfer.

Each of objects A and B is meant to be a single particle. On the other hand, for the reasons
that will be revealed later we do not require mediator M to be a structureless single particle.

4.1 Timing of information transfers

Timing is a key property of any process. Since due to postulate 2 time flows only in one
direction, we can talk about the beginning of the transfer and about the end of the transfer.
The time of the beginning of the transfer, i.e., the time when mediator M is created, will be
denoted by τ0. Similarly, the time of the end of the transfer, i.e., the time when the mediator
is annihilated, will be denoted by τE . Finally, since the changes on objects A and B are point
changes, we can assign to each of them a specific time. Let τA and τB be the times of the
change of information on object A and on object B, respectively.

A naïve picture of a transfer of conserved quantities from particle A to a distant particle
B requires

τ0 = τA < τB = τE . (1)

In that case, the mediator is created at the same time as the change of conserved quantities
on particle A occurs, and the mediator is annihilated at the same time as the change of
conserved quantities on particle B occurs. However, this is not the only way the conserved
quantities can be transferred from particle A to particle B. In computer science, the transferred
information is not necessarily attached to mediator M so tighly as in the case of the naïve
picture of the transfer. Firstly, information changes on objects A and B (made at time τA
and τB , respectively) must be made within the existence of the mediator, i.e., within [τ0, τE ].
Moreover, once we mark object A as the object from which the information goes, i.e., τA ≤ τB ,
there is no requirement for τA < τB . It leads to an inequality which becomes our third
postulate:

Postulate 3 (Timing) The timing in any transfer of information from object A to object B
satisfies

τ0 ≤ τA ≤ τB ≤ τE . (2)
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Time inequality (2) contains three symbols ≤, and each of them represents two options, =
and <. In other words, postulate 3 does not provide one timing, but eight possible timings of
information transfers.

4.2 Role distribution in information transfers

The participants of an information transfer play various roles. We can talk about the initiator
of the transfer, that is the object which creates mediator M and immediately hands control
over the transfer to the mediator. It will be denoted by R. We can also talk about the location
of the mediator at the beginning of the transfer and its location at the end of the transfer. Let
objects S and T be the objects where the mediator starts and terminates, respectively.

A naïve picture of a transfer of conserved quantities from particle A to particle B requires

R = A, S = A, T = B, (3)

while computer science is less restrictive and requires:

Postulate 4 (Role distribution) The role distribution in any transfer of information from
object A to object B satisfies

R ∈ {A, B}, S ∈ {A, B}, T ∈ {A, B}. (4)

Each of objects R, S, and T can be either object A or object B. It means that postulate 4
allows eight possible role distributions.

4.3 List of information transfers

The timings and role distributions can be combined to produce the list of information transfers.
Since they are mutually independent, there are 64 different ways to transfer information from
one object to another. The naming convention of the information transfers and their mediators
is as follows 3: Let i ∈ Z64 be expressed in base-2 numeral system as

(i)10 = (l s r o a b)2, (5)

where l, s, r , o, a, and b are binary digits. If for an object X ∈ {A, B}, we define X̄ as the
complementary object to object X within set {A, B}, that is

X̄ = {A, B} \ X, (6)

then Mi represents the mediator of information transfer Ii that satisfies:

(a) T = S̄ when l = 0, while T = S when l = 1 (note that l stands for loop),
(b) S = A when s = 0, while S = B when s = 1,
(c) R = A when r = 0, while R = B when r = 1,
(d) τ0 = τA when o = 0, while τ0 < τA when o = 1,
(e) τA = τB when a = 0, while τA < τB when a = 1,
(f) τB = τE when b = 0, while τB < τE when b = 1.

For example, since (21)10 = (010101)2, information transfer I21 satisfies T = A, S = B,
R = A, and finally τ0 < τA = τB < τE .

3 Those who attended our lectures in 2017 and 2018 will notice that we no longer use the original naming
convention of the information transfers based on how we gradually developed the model. For the first time,
we use a naming convention based on its practicality.
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4.4 Scope of study

In this article, we do not study all the fundamental information transfers. We focus on those
transfers which take a non-zero time,

τ0 < τE , (7)

and do not contain any loop,

T = S̄. (8)

Postulate 3 allows eight distinct timings of information transfers. Nevertheless, scope con-
dition (7) dictates the exclusion of the transfers with τ0 = τA = τB = τE . Thus, here we
study only seven timings of information transfers. Similarly, postulate 4 allows eight possi-
ble role distributions. However, we study only those transfers, whose particle T is determined
by equation (8). It means we study only four ways of role distributions. In total, we study
28 types of non-instantaneous information transfers without any loop. The set of their indexes
is as follows:

F = Z32 \ {0, 8, 16, 24}. (9)

Although the number of the studied transfers is still quite large, the grouping of transfers with
similar properties will significantly simplify the overall picture of the information transfers.

5 Lossless information

All the information transfers require splitting information into two pieces and combining
two pieces of information into one. The conservation law of lossless information q for both
operations can be expressed by a single symbolic operator ⊕q . If t1 < t2, then

qC (t1) = qD (t2) ⊕q qE (t2) (10)

describes the splitting of information q in processC → D + E . If t1 > t2, then equation (10)
describes the combining of informationq in process D + E → C . The operator ⊕q is a binary
operator over the set of all possible values of q , dom(q). If dom(q) contains a neutral element,
then it is denoted by q0. The subscript q in ⊕q indicates that different types of information
may use different operators for the summation. Whenever the subscript is obvious from the
information present in the summation, it is omitted.

Equation (10) does not describe all possible processes and should be generalized. The
generalization is straightforward and the conservation law of q in process C1 + . . . +Cn →
D1 + . . . + Dm can be written as

n⊕

i=1

qCi (t1) =
m⊕

j=1

qDj (t2) , (11)

where t1 < t2. The problem is that we do not know whether the operation ⊕ is commutative
and/or associative. It means that we do not know the order in which we must sum the
individual values of q . In the case of commutative and associative operation ⊕, the order of
the summation is irrelevant, we always get the same result.
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5.1 Visualization of information transfers

Each information transfer can be visually presented in a diagram which clearly shows the
changes of conserved quantities. Such a diagram will be called q-diagram, where q in the
name stands for any transferable conserved quantity. In a q-diagram time flows either from
the bottom of the diagram to the top, or from the left side of the diagram to the right side.
We use the former option. Particles A and B are presented by a solid line and mediator M
is presented by a dashed line. Whenever the lines of two participants touch each other, we
interpret it in the way that the participants are co-local. On the other hand, if the lines do
not touch each other, we interpret it in the way that the participants are not co-local, or at
least they behave as if they were not co-local (i.e., they ignore each other). A full dot in a
q-diagram indicates the event of the initiation of the information transfer on particle R at
time τ0. No or a smooth continuous change of direction of a particle (or a mediator) means
no change of information q on the particle (or the mediator). If possible, we use no change of
direction in that case. On the other hand, a sharp instant change of the direction of a particle
(or a mediator) means a change of information q on the particle (or the mediator), or at least
the possibility of such a change. Definition 1 guarantees only one change of information on
object A made at time τA, and only one change of information on object B made at time τB .
The conservation law of q , which is satisfied at every moment, guarantees that a change of
information on one object made at some time is accompanied by a corresponding change of
information on another object made at the same time. Since in each transfer there are no other
participants than A, B and M , changes of information on mediator M can only be made at
times τA and τB . The q-diagrams of information transfers I0 to I31 are presented in Table 1
and in Table 2.

5.2 Information content

In the information transfers, we are interested in the information that is contained in its
participants. All the events of each transfer are at times τ0, τA, τB and τE , and thus we will
need to work with time phases bounded by these times. Let us use the following convention:
time τX− stands for any time satisfying τX− < τX where X ∈ {0, A, B, E}, and time τX+
stands for any time satisfying τX+ > τX where X ∈ {0, A, B, E}. Finally, τXY stands for
any time satisfying τX < τXY < τY where X, Y ∈ {0, A, B, E} and X �= Y .

Let us start by looking for the information that is contained in mediator M . The only
information change on particle A occurs at time τA and the only information change on
particle B occurs at time τB . It can be rephrased: The transferred information, hereafter
denoted by �q , leaves particle A at time τA and arrives onto particle B at time τB . It means
that mediator M contains �q only in time interval (τA, τB), that is

qM (τAB) = �q. (12)

For the information transfers with τA = τB , it means that information �q is not stored in the
mediator and is transferred from particle A directly to particle B.

At time τ0 mediator M is created on particle S in the process S → S + M . For the
information transfers with τ0 < τA, the conservation law of q in the creation process requires

qS (τ0−) = qS (τ0A) ⊕ qM (τ0A) , or (13a)

qS (τ0−) = qM (τ0A) ⊕ qS (τ0A) . (13b)
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Since there is no change of information q on particle S between times τ0− and τ0A, it is
qS (τ0−) = qS (τ0A). By using it in equations (13a) and (13b), we get that the value qM (τ0A)

plays the role of a right or left neutral element of dom(q), that is

qM (τ0A) = q0. (14)

Similarly, at time τE mediator M is anihilated on particle T in the process T + M → T . For
the information transfers with τB < τE , the conservation law of q in the anihilation process
requires

qT (τBE ) ⊕ qM (τBE ) = qT (τE+) , or (15a)

qM (τBE ) ⊕ qT (τBE ) = qT (τE+) . (15b)

Since there is no change of information q on particle T between times τBE and τE+, it
is qT (τBE ) = qT (τE+). By using it in equations (15a) and (15b), we get that the value
qM (τBE ) plays the role of a right or left neutral element of dom(q), that is

qM (τBE ) = q0. (16)

Equations (14) and (16) imply that mediator M does not necessarily contain �q during its
entire existence. Thus, we must distinguish the information q contained in the mediator at a
specific time from the information �q transferred by the mediator.

The remaining task is to find out what information is contained in particles A and B. Let
us start with the transfers satisfying τA < τB . Since we do not know whether operation ⊕q

is commutative, there are two ways to express the relation between qA (τ0−) entering the
information transfer and qA (τE+) leaving the transfer,

qA (τ0−) = qA (τE+) ⊕ �q, or (17a)

qA (τ0−) = �q ⊕ qA (τE+) . (17b)

Similarly, there are two ways to express the relation between entering qB (τ0−) and leaving
qB (τE+),

qB (τE+) = �q ⊕ qB (τ0−) , or (18a)

qB (τE+) = qB (τ0−) ⊕ �q. (18b)

An example of the information content of the participants of an information transfer with
τA < τB is in Fig. 1.

In the transfers with τA = τB once we fix the order of summation for τ0−, we can only
write

qA (τ0−) ⊕ qB (τ0−) = qA (τE+) ⊕ qB (τE+) , or (19a)

qA (τ0−) ⊕ qB (τ0−) = qB (τE+) ⊕ qA (τE+) , (19b)

because there is no participant which would hold �q for a non-zero time and could appear
in the conservation law of q . Nevertheless, we will still talk about taking �q from particle
A and putting �q to particle B in this case.

5.3 Time of determination of �q

The determination of �q influences the behavior of mediators. Let us examine the time of
that event. In each information transfer, there are two moments when information is changed,
one at time τA and the other at time τB . Due to the conservation law of q , the same value �q
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Fig. 1 Information content of the participants of transfer I7, a transfer satisfying τ0 < τA < τB < τE , and
thus having all the possible time phases. It is assumed equations (17a) and (18a) are satisfied

is used within both changes. Consequently, the changes must be causally connected. Since
time can flow only in one direction, postulate 2 dictates that �q must be known at the first
moment the value is used. Since τA ≤ τB , the value of �q must be determined at time τA or
earlier. If �q were determined earlier than at time τA, then the value should be remembered,
i.e., stored in the system until τA when it is used for the first time. On the other hand, if �q
is determined just at time τA, it can be immediately used and no extra storage of the value is
needed. The minimum memory complexity in postulate 1 prefers the latter way, that is �q
is always determined at time τA.

5.4 Quantum measurement?

The value of information �q , which will be transferred within a transfer, may be unknown
at the beginning of that transfer. Namely, if a transfer satisfies τ0 < τA, then the value of
�q is not determined at the beginning of the transfer at τ0, and is determined later at time
τA. This is what we expect in quantum systems: at the beginning of the transfer, a system
is described by a general state vector usually not being an eigenvector of operator q̂ , and
thus �q has no any specific value. Then, sometime later occurs a quantum measurement,
where the state vector becomes an eigenvector of q̂, and �q gets a single value equal to
the corresponding eigenvalue. The determination of �q could be, therefore, interpreted as
a quantum measurement. However, since we are the level of a single performance of an
information transfer, that is at a substantially lower level than the level where any quantum
measurement is expected to operate, we call it submeasurement. The future research should
tell us what relation between a submeasurement of �q and a quantum measurement of �q
is.4

There are three moments when the submeasurement of the value �q can with respect to the
lifetime of a transfer occur. In the transfers with τ0 < τA = τE , the submeasurement of �q
occurs at the end of each transfer. In the transfers with τ0 < τA < τE , the submeasurement
of �q occurs at a moment in between the beginning and the end of each transfer. Finally, in
the transfers with τ0 = τA the submeasurement of �q occurs right at the beginning of each
transfer. Moreover, since due to the conservation law ofq the value of �q is not changed at any
later time, the transfers with τ0 = τA have the value of �q fixed during their entire lifetime.

4 We expect something like the following: A measurement is a process which causes that all the submeasure-
ments have in some sense the same outcome.
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They behave in a very classical way. Besides that, since the submeasurement of �q occurs
right at the beginning of a transfer which itself is initiated spontaneously, it seems that there is
no way to force that submeasurement, i.e., the submeasurement of �q is done automatically.
This leads us to the fact that we should distinguish two types of submeasurement of �q:
outer submeasurement and inner submeasurement. By the outer submeasurement, we mean
that an intervention forced the universal computer system to determine a concrete value of
a physical quantity, and without that intervention no value would be determined. Note that
the intervention is what common measurement devices do. On the other hand, by the inner
submeasurement we mean the system determines a value of the physical quantity by itself.
No intervention is needed for an inner submeasurement, and more strictly, no intervention
can cause an inner submeasurement. The transfers with τ0 = τA definitely perform an inner
submeasurement of �q .

5.5 Measurability of information content

We distinguish two types of mediators depending on their information content qM . If at some
moment t mediator M contains information q0, i.e., qM (t) = q0, we call it virtual. On the
other hand, if the mediator contains information �q , i.e., qM (t) = �q , we call it real. Let
us ask whether we can measure the information content of a real mediator, that is to measure
�q . Information q on particle A is at time τA changed by value �q . Similarly, information q
in particle B is at time τB also changed by value �q . Therefore, in principle, we can measure
any of these changes to get �q which is the information content of the real mediator.

Now, let us ask whether we can measure the information content of a virtual mediator.
Measuring the information content of virtual mediator M directly by particle C /∈ {A, B} is
not possible because definition 1 guarantees that in the transfer there are no participants other
than A, B, and M . Therefore, the only way to measure the information content of the mediator
is on particle A and/or on particle B via the changes of their information content. There are
four possible moments when we can do it, at time τ0, τA, τB and at time τE . Measuring the
change of information q on particle A at time τA and measuring the change of information
q on particle B at time τB are not helpful. This is because information q on particles A
and B are changed by value �q , which does not say anything about the information content
of the mediator, which is q0. The remaining moments are τ0 and τE . In the transfers with
τ0 < τA the information q on particle S is at time τ0 changed by value q0. However, q0 is
a neutral element. It means that qS is not changed at all. Therefore, from the experimental
point of view, we cannot distinguish the situation where mediator M left particle S from a
situation where no information transfer was initiated. In both cases, qS is not changed. The
argumentation is valid also for measuring the change of q on particle T at time τE within the
transfers with τB < τE . We conclude that the information content of virtual mediators is not
measurable.

6 Entanglements

Information can be transferred in a contact way or in a non-contact way. For example, in
information transfer I2 information �q is at time τA instantly transferred from particle A
to co-local mediator M2, that is �q is transferred in a contact way. On the other hand, in
information transfer I7 (see Fig. 1) �q must at time τA be instantly transferred from particle
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A to a distant mediator M7. Such a non-local 5 correlation of conserved quantity q cannot be
performed in any contact way. The only known solution is that �q is sent via an entanglement
between A and M7. Here we conclude that some information transfers require entanglements
in order to work.

Every irreducible entanglement is a piece of data stored in the memory of the universal
computer system. Therefore, it should be the subject of postulate 1. The minimum memory
complexity of the system can only be reached when every elementary object C has at every
moment maximally one self-identifier and maximally Nmax

ε outgoing entanglements, Nmax
ε

being a relatively small number. In terms of information transfers, the minimum memory
complexity can be reached only when the number of distinct irreducible one-way entangle-
ments used in each information transfer is minimal. Therefore, in this section we look within
each information transfer for the minimum set of entanglements which allows the transfer
to do all its actions. Namely, to do the four following actions: particle R at time τ0 creates
mediator M on particle S, mediator M at time τA takes �q from particle A, mediator M at
time τB puts �q into particle B, and mediator M at time τE hits particle T . However, before
we start to do the entanglement analysis, we need some preparation.

6.1 Knowledge of target particle T

In most information transfers, the identity of target particle T is known before mediator M
hits particle T at time τE . It is caused by the definition 1 which requires particles A and B
and mediator M to be the only participants of the transfer and the fact that particles A and
B play in the transfer various roles at various times. Namely, if each of particles A and B
plays some role before the end of the transfer, then we can use equation (8) to determine the
identity of target particle T from the knowledge of what transfer Ii we are studying.

The role of particle R and particle S are being played at time τ0. Therefore, in the transfers
with τ0 < τE if {R, S} = {A, B}, then the identity of particle T can be determined from
equation (8) at time τ0, that is before the mediator hits the particle. The condition is satisfied
when R �= S. Similarly, the role of particle A is being played at time τA. Thus, for the transfers
with τA < τE , if {R, S, A} = {A, B}, then we can determine the identity of particle T at time
τA. The condition is satisfied if R = B or S = B. Finally, the role of particle B is being
played at time τB . Consequently, in the transfers with τB < τE , if {R, S, A, B} = {A, B},
then the identity of particle T is known at time τB . This condition is satisfied always. The
three results can be summarized as follows: Information transfers I2, I4, I6 and I28 are the
only transfers in which the identity of target particle T can be unknown until time τE , the
time when mediator M hits the particle. On the other hand, within the other information
transfers mediator M looks for the specific particle T to hit it and finish the transfer.

6.2 Two entanglements are sufficient

All the information transfers can work with only two entanglements. Let us assume there
exist entanglements ε

(
R, R̄

)
and ε (M, R). The initiator of the transfer, particle R, does only

one thing: it creates mediator M on particle S. If R = S, then particle R does not need any
entanglement to do that because it creates the mediator on itself. On the other hand, if R �= S,
then particle R in order to create mediator M on non-local particle S uses entanglement
ε
(
R, R̄

)
, or equivalently ε (R, S). Once the mediator is created, it fully controls the transfer

until its end at time τE . Whenever mediator M needs to access particle R, it uses ε (M, R),

5 We use the term non-local in the sense of non-contact or distant. Note that some authors use this term in a
different sense.
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and whenever it needs to access particle R̄, it uses a chain of entanglements ε (M, R) plus
ε
(
R, R̄

)
. In total, entanglements ε

(
R, R̄

)
and ε (M, R) are sufficient for any transfer, that

is no information transfer requires more than two entanglements in order to work.

6.3 Information transfers with R �= S

In the information transfers with R �= S particle R requires ε
(
R, R̄

)
in order to create

mediator M on particle S. The mediator, then, does the remaining actions. If there were
ε
(
M, R̄

)
, the mediator would have access to particle R̄, but it would in no way have access

to particle R. This would prevent the mediator from recognizing target particle T = R and
finishing its own existence when it is co-local with T . Entanglement ε

(
M, R̄

)
is, therefore,

ruled out. Consequently, the transfers with R �= S can work only with entanglements ε
(
R, R̄

)

and ε (M, R). Here we talk about 14 information transfers: I9 to I15, and I17 to I23.

6.4 Information transfers I26, I27, I30 and I31

Information transfers I26, I27, I30 and I31 satisfy R = S = B and τ0 ≤ τA < τB ≤ τE . In
these transfers mediator M is co-local with particle A only at time τE , and is co-local with
particle B only at time τ0. Since τA < τE , mediator M is at time τA not co-local with particle
A. It means that �q is taken from particle A non-locally. Similarly, since τB > τ0, mediator
M is not co-local with particle B at time τB . Thus, �q is put to particle B also non-locally.
In total, the mediator requires non-local access to both particles A and B. It is clear that one
entanglement cannot link three participants, and therefore two entanglements are needed.

There are two pairs of entanglements which allow mediator M to access both particles A
and B: ε (M, A) plus ε (A, B), and ε (M, B) plus ε (B, A). The problem with the first pair
is that there is no entanglement ε (B, A), and thus particle B does not know the identity of
particle A. It means that particle B at time τ0 cannot create mediator M with entanglement
ε (M, A). The pair ε (M, A) plus ε (A, B) is, therefore, ruled out. The other pair of entangle-
ments, ε (M, B) plus ε (B, A), does not face the problem. When particle B creates mediator
M , it gives to the mediator the self-identifier, that is mediator M is created with ε (M, B). We
see that ε (M, R) plus ε

(
R, R̄

)
are the minimum set of entanglements which makes transfers

I26, I27, I30, and I31 work.

6.5 Information transfers I1 and I3

Information transfers I1 and I3 satisfy R = S = A and τ0 = τA ≤ τB < τE . At time τ0 they
do everything related to particle A: initiator A creates mediator M on itself, and the mediator
takes �q from co-local particle A. The remaining actions are related only to particle B.
Mediator M is co-local with particle B only at time τE . Since τB < τE , the mediator is
not co-local with particle B at time τB when it puts �q to the particle. In other words, the
mediator requires non-local access to particle B. It can only be provided by the initiator of
the transfer, that is ε (A, B) is required. In that case, particle A, besides knowing its own
identity, also knows the identity of particle B. Therefore, particle A can create the mediator
either with ε (M, A) or with ε (M, B). In the former case, whenever mediator M wants to
access particle B to do any of the remaining actions, it uses a chain of entanglements ε (M, A)

plus ε (A, B), whereas in the latter case it uses only ε (M, B). Both variants, therefore, allow
information transfers I1 and I3 to work.
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6.6 Information transfers I5 and I7

Information transfers I5 and I7 satisfy R = S = A and τ0 < τA ≤ τB < τE . In these transfers
mediator M is co-local with particle A only at time τ0 and is co-local with particle B only
at time τE . Since τ0 < τA, mediator M is not co-local with particle A at time τA, and thus
�q must be taken from particle A non-locally. Similarly, since τB < τE , the mediator is not
co-local with particle B at time τB , and thus �q must be put to particle B non-locally. In
total, mediator M requires non-local access to both particles A and B. One entanglement
cannot link three participants, and thus two entanglements are needed.

There are two pairs of entanglements which allow mediator M to access both particles
A and B: ε (M, B) plus ε (B, A), and ε (M, A) plus ε (A, B). In the first case, there is
no entanglement ε (A, B), and thus particle A does not know the identity of particle B.
Consequently, particle A cannot create mediator M with entanglement ε (M, B). The pair of
entanglements ε (M, B)plus ε (B, A) is, therefore, ruled out. The other pair of entanglements,
ε (M, A) plus ε (A, B), does not face this problem. When particle A creates mediator M ,
it gives to the mediator the self-identifier, that is M is created with ε (M, A). We see that
ε (M, R) plus ε

(
R, R̄

)
are the minimum set of entanglements which makes transfers I5 and

I7 work.

6.7 Information transfers I2, I4 and I6

Information transfers I2, I4 and I6 satisfy R = S = A and τ0 ≤ τA ≤ τB = τE . In these
transfers mediator M is co-local with particle A only at time τ0 and is co-local with particle B
only at time τE . Since τB = τE , the mediator is at time τB co-local with particle B. Therefore,
it puts �q to particle B locally and no entanglement is required for this action. Moreover,
the identity of particle T = B may be unknown until the mediator hits the particle at time
τE . If it is really unknown, then the mediator does not search in the last phase of its lifetime
for the specific particle B. Thus, mediator M does not require any entanglement for actions
related to particle B. In information transfers I4 and I6 with τ0 < τA mediator M is not
co-local with particle A at time τA, and thus �q must be taken from particle A non-locally.
This is not true about transfer I2 with τ0 = τA where mediator M takes �q from particle A
locally. In total, information transfer I2 can work without any entanglement, and transfers I4
and I6 can work with single entanglement ε (M, A) which is created by initiator A at time
τ0 together with mediator M .

6.8 Information transfers I25, I28 and I29

Information transfer I25 satisfies R = S = B, T = A, and τ0 = τA = τB < τE . The transfer
can be obtained from transfer I1 (satisfies R = S = A, T = B, and τ0 = τA = τB < τE )
by the exchange of A ↔ B in the role distribution and in the timing. Therefore, when we
exchange A and B (i.e., (from) particle A ↔ (to) particle B, τA ↔ τB ) in the argumentation
why transfer I1 requires either ε

(
R, R̄

)
plus ε (M, R) or ε

(
R, R̄

)
plus ε

(
M, R̄

)
, we get an

argumentation why transfer I25 also requires either ε
(
R, R̄

)
plus ε (M, R) or ε

(
R, R̄

)
plus

ε
(
M, R̄

)
.

The very same procedure can also be applied to transfers I28 and I29. This is because I28

and I29 can be obtained by the exchange of A ↔ B from transfers I4 and I5, respectively. In
total, we get that in order to work transfer I28 requires only ε (M, R), and that transfer I29

requires two entanglements, namely ε
(
R, R̄

)
and ε (M, R).
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6.9 Summary of entanglements

Here we summarize several important facts about entanglements. Firstly, the requirements
of information transfers for entanglements, as derived in the preceding text, are as follows:

(a) Information transfer I2 does not require any entanglement in order to work.
(b) Information transfers I4, I6 and I28 require one entanglement in order to work, namely

ε (M, R).
(c) Information transfers I1, I3 and I25 can work in two ways. They require either ε

(
R, R̄

)

and ε (M, R), or ε
(
R, R̄

)
and ε

(
M, R̄

)
,

(d) The remaining 21 information transfers, i.e., Ii with i ∈ F\{1, 2, 3, 4, 6, 25, 28}, require
two entanglements in order to work, namely ε

(
R, R̄

)
and ε (M, R).

Each information transfer, in order to satisfy the minimum number of entanglements, works
in the way that it always uses only the required entanglements. In other words, even if other
entanglements existed, such as ε

(
R̄, R

)
, they would be ignored by the transfer. The minimum

number of entanglements also dictates that there are no duplicities of entanglements. It
means that there is maximally one entanglement from a given particle to another given
particle. It suggests that a single entanglement between two particles can serve as ε

(
R, R̄

)

for various information transfers. It means that several transfers are interrelated. Finally, in
every transfer, except I2, one entanglement is created. Since it is either ε (M, R) or ε

(
M, R̄

)
,

the created entanglement is only temporary. It is destroyed no later than at the end of the
transfer when mediator M is destroyed. None of the transfers in order to work require for
any of its participant to have more than one outgoing entanglement. It seems that Nmax

ε = 1.
However, we hesitate to conclude this fact because so far we have not ruled out composite
mediators with internal entanglements.

6.10 Local information transfer

Information transfers can be fully local only when they do not require any entanglement in
order to work. According to the entanglements that each information transfer requires, there
is only one information transfer with such a property, namely transfer I2. In other words,
transfer I2 is the only information transfer which can be fully local. No requirement for
entanglements makes I2 be the least restrictive transfer from all the information transfers, at
least as far as entanglements are concerned. Therefore, we expect transfer I2 to represent a
very common process, perhaps a very common fundamental interaction.

6.11 Interaction of every particle with each other

Some information transfers can represent interactions where every particle interacts with each
other. Let particles interact only by an information transfer which in order to work requires
entanglement ε (A, B) or ε (B, A). Such a transfer works only between A and B, the particles
determined by the required entanglement. Definition 1 guarantees that the transfer ignores
all the other particles in the Universe. It means that in a group of n particles, every particle
can interact with each other only when every two particles of the group are entangled, i.e.,
when there are at least n(n − 1)/2 entanglements. However, there are maximally n · Nmax

ε

outgoing entanglements in the group of n particles. In a group of n ≤ 2Nmax
ε + 1 particles, it

is n · Nmax
ε ≥ n(n − 1)/2, and thus there can exist an entanglement configuration such that

every particle of the group can interact with each other. On the other hand, for a group with
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n > 2Nmax
ε + 1 particles, it is

n · Nmax
ε <

n · (n − 1)

2
, (20)

and consequently there are too few entanglements to make possible an interaction of every
particle with each other. The statement is true for every transfer which in order to work
requires ε (A, B) or ε (B, A). Information transfers I2, I4, I6, and I28 are the only transfers
which do not need entanglements ε (A, B) and ε (B, A). Thus, they are the only transfers
which can provide interaction of every particle with each other in a particle group of any
size.

6.12 Example of information transfer

In this section, we choose one information transfer and show in detail how it works and what
entanglements it requires. We show it on transfer I14 which satisfies R = T = B, S = A and
τ0 < τA < τB = τE .

The initiator of information transfer I14, particle B, at time τ0 needs to create immediately
mediator M14 on particle A. Since particle A and particle B are generally not co-local, particle
B can do it only via an entanglement, namely that it needs ε (B, A). It means the existence of
the entanglement ε (B, A) is a necessary condition for the information transfer I14 to work,
and without the entanglement the transfer could not even start. Thus, at time τ0 particle B
uses its only entanglement ε (B, A), creates mediator M14 on particle A, and immediately
hands control over the information transfer to the mediator.

When particle B at time τ0 uses entanglement ε (B, A) to create mediator M14, all the
participants of the information transfer in the sense of definition 1 are determined. Firstly,
the identity of particle A is known, the particle from which the information �q will be
taken at time τA. Secondly, the identity of particle B is also known, that is the particle to
which the information �q will be transferred and where the mediator will finish its own
existence. Mediator M14, therefore, needs to know these identities in order to interact with
the right particles during its lifetime. One way to know the identities is to create two new
entanglements, ε (M14, A) and ε (M14, B). There is, however, another way to know both
identities, namely to create only one new entanglement ε (M14, B). The latter way creates
fewer entanglements, and thus is preferred by postulate 1. In that case, mediator M14 has
access to particle B via entanglement ε (M14, B), and has access to particle A via a chain of
entanglements ε (M14, B) plus ε (B, A).

Then the mediator starts to propagate through space. Later at time τA, mediator M14 is
generally not co-local with particle A, and thus uses entanglements ε (M14, B) and ε (B, A)

in order to transfer �q from particle A to itself. Time τA is the last moment when particle A
participates in the transfer.

Then, mediator M14 starts to look for the target particle T = B. The mediator performs it in
the way that whenever it becomes co-local with a particle, it reads its self-identifier and com-
pares it with ε (M14, B), that is it compares it with the identifier of particle B stored in itself.
If the identifiers are not the same, then in order to do another check the mediator waits until
another particle becomes co-local with the mediator. On the other hand, if the identifiers are
the same, then mediator M14 has finally found particle B. Now, it is time τB = τE . The medi-
ator immediately transfers �q from itself to co-local particle B and finishes its own existence.
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7 Basics of dynamics

The most important characteristic of each interaction is how it influences particles involved
in the interaction. We dedicate this section to answering the spatial part of this question for
each information transfer within three-dimensional space, that is in postulate 2 we apply
d = 3. The principal goal of this paper is to try to map the fundamental interactions onto
the fundamental information transfers as fast as possible. Therefore, we do not try to build
dynamics which would work in all circumstances, and we focus only on some special cases.
Firstly, in order to emphasize the underlying asymmetry between particle A and particle
B, we examine only the transfers of information �q from particle A to particle B and not
vice versa. Secondly, we assume that some particles are point-like. Namely, particle S is
point-like at time τ0, particles A and B are point-like at time τA, and particle T is point-like
at time τE . Thirdly, we assume that the speed of mediators (and their parts) is during time
interval (τ0, τA) constant. Fourthly, for each transfer with τ0 < τA that does not finish at
time τA by hitting particle T , that is for each transfer that satisfies τ0 < τA < τE , we assume
τA − τ0 is constant. Fifthly, for each transfer with τA < τB that does not finish at time τB by
hitting particle T , that is for each transfer that satisfies τA < τB < τE , we assume τB − τA
is constant. Finally, if no speed of participants appears automatically, we usually examine
only a static situation.

7.1 Movement and momentum of mediators

The movement of mediator M depends on its momentum pM . However, if the movement of
the mediator had always the same direction as the momentum of the mediator, then all contact
forces would be only repulsive. Therefore,6 we suppose that the movement of a mediator (or
the movement of its part) depends on the momentum of the mediator (or on the momentum
of the corresponding part), except for the sign of its direction. That is, the velocity of the
mediator (or of its part) is either parallel or antiparallel to the corresponding momentum and
the specific choice of the sign is a characteristic quantity for each process.

7.2 Internal structure of mediators

We have assumed particles A and B are structureless, however, we have not done that for the
mediators. Here we show why. In the transfers with τ0 < τA mediator M during time interval
(τ0, τA) satisfies equation (14), that is pM (τ0A) = 0. Similarly, in the transfers with τB < τE
the mediator during (τB , τE ) satisfies equation (16), that is pM (τBE ) = 0. In each of these
cases, if the mediator has no internal structure, then it is not moving, and consequently it is
not transferring information anywhere. The only way to make it move through space toward
distant particle T is to assume that the mediator has an internal structure, that is it is composed
of several parts (hereafter called mediatorinos). The minimalistic postulate 1 dictates to
express the mediator as a sum of two mediatorinos, symbolically written as M = m1 + m2.
In that case, at every time t ∈ (τ0, τA) ∪ (τB , τE ) there must be

qM (t) = qm1 (t) ⊕ qm2 (t) = q0. (21)

Since q can be any transferable conserved quantity, m1 and m2 must have the mutually
opposite quantum numbers, such as electric charge, baryon number, lepton number, and so
on. If mediatorino m1 represents a particle, then mediatorino m2 must be its antiparticle, i.e.,

6 Here we are motivated by the (so far not proved) fact that attractive gravity is a contact force.
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M = m1 + m̄1. Quantity q can also be momentum p. Then, regardless of whether in the
process the velocities of m1 and m2 are both parallel or both antiparallel to the momentum
of m1 and m2, respectively, mediatorinos m1 and m2 must go in the mutually opposite
directions. Although using m1 and m2 works mathematically, we should be careful in its
interpretation: in mediator M mediatorinos m1 and m2 are created simultaneously, behave
in the complementary way, and maybe in some cases are even annihilated simultaneously.
Therefore, we never should think of one mediatorino without taking into consideration the
other mediatorino. In the transfers with τA < τB mediator M during time interval (τA, τB)

satisfies equation (12), i.e., pM (τAB) = �p. This allows the mediator to move through space
and transfer information even if it has no internal structure. That is, even if the mediator is
composed of a single mediatorino, symbolically written as M = m.

Postulate 1 dictates to minimize the number of parts of a mediator passively. It means
that the number of mediatorinos increases only when it is necessary and never proactively
decreases (except for the very end of the transfer). Therefore, in the transfers with τ0 < τA
mediator M is composed of two mediatorinos in every of its time phases. In the transfers with
τ0 = τA < τB mediator M is during (τA, τB) composed of one mediatorino, nevertheless,
if the transfers also satisfy τB < τE , the mediator is during (τB , τE ) composed of two
mediatorinos. Finally, in the transfers with τ0 = τA = τB < τE the mediator is composed
of two mediatorinos. In total, while for transfers Ii with i ∈ {2, 3, 10, 11, 18, 19, 26, 27} the
number of mediatorinos ni,m within τAB satisfies

ni,m (τAB) = 1, (22)

for the remaining times (i.e., for t = τ0A or t = τBE ) or for the remaining transfers (i.e.,
with i ∈ F \ {2, 3, 10, 11, 18, 19, 26, 27}) the number of mediatorinos satisfies

ni,m (t) = 2. (23)

Whenever mediator M is composed of two mediatorinos, the mediator, besides ε (M, R), may
contain maximally two internal entanglements, namely ε (m1,m2) and ε (m2,m1). Moreover,
no matter whether ε (M, R) is implemented as ε (m1, R) and ε (m2, R) or only one of them
(which is preferred by postulate 1), we can conclude that Nmax

ε ≤ 2.

7.3 Determination of vectorial �q

Conserved quantity can be vectorial or pseudovectorial. In such a case, it is important to know
how the direction of �q is determined. Let us assume it is determined by the location of the
participants of the transfer. Since the minimum memory complexity does not allow storing
historical data, such as locations, �qmust be determined by the location the participants have
just at the time of the determination of �q, that is at time τA. Mediator M takes �q from
particle A, and thus we may naturally assume that �q depends on the location of particle
A and the location of mediatorino(s) within the mediator. This supports also the fact that
incorporating the location of particle B, xB (τA), into the determination of �q would require
an extra entanglement at least for transfers I2 and I6. This would go against the minimum
memory complexity. Therefore, we assume that the location of particle B does not participate
in the determination of �q, that is �q is based on xA (τA) and xm (τA). We have the following
dynamic law:

Law 1 (Determination of �q) In the volume of mediatorino m and in the volume of particle
A are at time τA chosen points xcm(τA) and xcA(τA), respectively. If mediatorino m is co-local
with particle A or B, then xcm(τA) is chosen within the volume of that co-local particle. The
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value of �q is, then, determined in the way that it has a constant size �q, and its direction
is determined in the following way:

(a) If xcm(τA) = xcA(τA), then the direction of �q is chosen randomly and all the possible
directions have the same probability of being chosen.

(b) If xcm(τA) �= xcA(τA), then the direction of �q is chosen along the line

l = xcm (τA) − xcA (τA) , (24)

created from points xcm (τA) and xcA (τA).

The dynamic law can be implemented in the following way: At time τA mediatorino m
chooses in its volume a point, xcm(τA), and provides its location to particle A while asking it
for �q. Then particle A chooses in its volume a point, xcA(τA), which for point-like particle
A satisfies xcA(τA) = xA(τA). Particle A, then, evaluates the law, takes �q from that part of
itself which is located at point xcA(τA), and still at time τA gives it to the mediatorino while
returning control over the transfer. This is what we mean by saying that mediator M takes
�q from particle A.

The direction of �q is for xcm(τA) �= xcA(τA) defined uniquely, except for its sign. Since
vm (τAB) is either parallel or antiparallel to momentum �p (which is a special case of �q),
the direction of vm (τAB) is also defined uniquely, except for its sign. The role of velocity
vm (τAB) is to propagate mediatorinom during time interval (τA, τB) through space. Since the
mediatorino is at time τA at point xcm (τA) and since vm (τAB) is either parallel or antiparallel
to line l connecting xcm (τA) and xcA (τA), the mediatorino moves during time interval [τA, τB ]
only on line l. Its location can be expressed as

xm (t) = xcm (τA) + vm (τAB) · (t − τA) , (25)

where t ∈ [τA, τB ].
7.4 Probabilistic description

Mediatorino m can be at time τA in many places. It means that the direction of �q can be
various. Moreover, there can be a lot of determinations of �q at the same time. It suggests
developing a probabilistic quantity. Moreover, using probabilistic quantities as the base for
dynamics should guarantee that the model will never be divergent. Let us quantify how
probable it is within a single performance of transfer Ii for a particle at point x that the
change of quantity q is a specific vector q. We introduce Qi (x,q) ≥ 0, a distribution of
changes of quantity q, such that dPi in equation

dPi (x,q) = Qi (x,q) dq dΩ (26)

represents that probability. The infinitesimal solid angle dΩ is created by infinitesimal varia-
tions of the end point of vectorq, keeping the size of the vector constant and keeping the origin
point of q fixed at point x. A field composed of Qi (x,q) should be called q-distribution field
(or simply distribution field) because for every point x in space it expresses a distribution of
changes of quantity q for every possible vector q.

7.5 Directional distribution of quantity

Quantity Qi (x,q) is suitable for general fields. However, in this article we deal with transfers
where due to law 1 the size of �q is constant. In that case, for a fixed unit directional vector
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ê we can write

Qi
(
x, q · ê) = δ (q − �q) · Ki

(
x, ê
)
, (27)

where Ki is a function of only position x and direction ê. Then, it is convenient to integrate
over the sizes of quantity q in order to reduce the number of parameters from six to five.
Since

∞∫

0

Qi
(
x, q · ê) dq = Ki

(
x, ê
)
, (28)

we can express probability dPi
(
x, ê
)

that the change of quantity q has a specific direction ê
as

dPi
(
x, ê
) =

⎛

⎝
∞∫

0

Qi
(
x, q · ê) dq

⎞

⎠ dΩ = Ki
(
x, ê
)
dΩ. (29)

Quantity Ki
(
x, ê
)

is, therefore, called directional distribution of a change of quantity q.
Since not every �q taken from a given particle A arrives to a given particle B in every

transfer, we need two distributions: Ki,A
(
xA, ê

)
, the directional distribution of a change of

q on particle A, and Ki,B
(
xB , ê

)
, the directional distribution of a change of q on particle

B which originated from particle A. Within a complete single performance of information
transfer Ii with

�q = �q · �q̂, (30)

informationq on particle A is at time τA changed by−�q because�q is taken from particle A.
That is, in Ki,A

(
xA, ê

)
it is ê = −�q̂. On the other hand,q on particle B is at time τB changed

by �q because �q is put to particle B. That is, in Ki,B
(
xB , ê

)
there is ê = �q̂. Thus, a

transfer of �q from particle A to particle B interrelates Ki,A
(
xA,−�q̂

)
with Ki,B

(
xB ,�q̂

)
.

This is true for every possible direction �q̂.
Let us refine parameters of Ki,A and Ki,B . Firstly, it is convenient to replace locations

xA and xB by some characteristic distance r . Interestingly, for Ki,A and Ki,B are sometimes
suitable different characteristic distances, hereafter represented by vector rS and rT . When-
ever required, these vectors will be explicitly defined. Thus, now we have Ki,A

(
rS, ê

)
and

Ki,B
(
rT , ê

)
. Directional vector ê can be in 3-dimensional euclidean space expressed by two

spherical angles ϑ ∈ [0, π ] and ϕ ∈ [0, 2π ] in the way that

ê = ê (ϑ, ϕ) = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). (31)

Thus, we sometimes write Ki,A (rS, ϑ, ϕ) and Ki,B (rT , ϑ, ϕ).
For an initiated transfer Ii we can express Pi,A, the probability that �q is taken from

particle A, and Pi,B , the probability that �q is delivered to particle B. Both these probabilities
are given by the integration of Ki over the full solid angle Ω (i.e., over all the possible
directions ê),

Pi,A =
∫

dPi,A =
∮

Ω

Ki,A dΩ ∈ [0, 1], (32a)

Pi,B =
∫

dPi,B =
∮

Ω

Ki,B dΩ ∈ [0, 1]. (32b)
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For the integration over the full solid angle, we usually use spherical coordinates where
dΩ = sin ϑ dϑ dϕ. Then, we symbolically write

Pi,A =
∮

ϑ,ϕ

Ki,A (rS, ϑ, ϕ) sin ϑ dϑ dϕ, (33a)

Pi,B =
∮

ϑ,ϕ

Ki,B (rT , ϑ, ϕ) sin ϑ dϑ dϕ. (33b)

In the transfers with τ0 = τA the value of �q is taken from particle A immediately at the
beginning of the transfer, and thus the probability Pi,A satisfies Pi,A = 1. Similarly, in the
transfers with τ0 < τA < τE the value of �q is taken from particle A always after a constant
time τA − τ0, i.e., Pi,A = 1. In total, for transfers Ii with i ∈ F \ {4, 12, 20, 28},

Pi,A = 1. (34)

In other words, the transfers with τ0 < τA = τE are the only transfers where Pi,A may satisfy
Pi,A < 1. This is caused by the fact that mediatorino m must first hit particle T in order to
take �q from particle A, and hitting particle T is obviously not guaranteed. The probability
Pi,B satisfies Pi,B = 1 only for those transfers which satisfy equation (34) and where every
�q taken from particle A is eventually put to particle B.

7.6 Symmetry of directional distribution

Directional distribution Ki,A is fully determined by the geometry of transfer Ii at time τA. In
transfers I1, I2, I3, I9, I10, and I11 with τ0 = τA and S = A, and in transfers I20 and I28 with
τ0 < τA = τE , T = A, mediatorino m is at time τA on particle A. Therefore, the direction
of �q is always determined by law 1-(a). It means that Ki,A is spherically symmetric. For
these transfers we will define z-axis as

z = xB (τB) − xA (τA) . (35)

In that case, the z-axis is the axis of symmetry of Ki,B . This definition of z-axis will be used
also for I4 and I12 with τ0 < τA = τE and S = A, where both Ki,A and Ki,B become
axis-symmetric with respect to the z-axis.

For the rest of the information transfers, �q is always determined by law 1-(b). Since the
distribution of possible xcm(τA) is at time τA spherically symmetric with respect to xS (τ0),
and since particle A is at time τA a point-like particle located at xA (τA), defining z-axis as

z = xS (τ0) − xA (τA) , (36)

makes Ki,A be axis-symmetric with respect to that z-axis. According to both equations (35)
and (36), particle A is at time τA always on z-axis, and thus whenever convenient, we may,
without loss of generality, choose xA (τA) = [0, 0, 0].
7.7 Average behavior of information transfers

Directional distribution Ki , though being exact, may not be suitable to get a fast impression
of what is going on in information transfer Ii . Therefore, we use Ki to express some familiar
approximative quantities, provided operator ⊕ of the summation of (pseudo)vectorial quan-
tity q is the standard vector addition. For each information transfer Ii and every n ∈ N ∪ {0}
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let us define n-rank tensor

Γ
j1 j2... jn
i (r) =

∮

Ω

Ki
(
r, ê
)
e j1e j2 · . . . · e jn dΩ, (37)

where js ∈ {1, 2, 3} for every s ∈ {1, . . . , n}, and where e js is the js-th component of
(dimensionless) unit vector ê in equation (31). For n = 0, we get a scalar quantity which,
as we can see in equations (32a) and (32b), expresses either the probability that �q is taken
from particle A or the probability that �q arrives onto particle B. For n = 1, we get a vector
quantity

Γ
j
i (r) =

∮

Ω

Ki
(
r, ê
)
e j dΩ, (38)

which is related to the mean force vector

〈Fi (r)〉 = (〈F1
i (r)〉, 〈F2

i (r)〉, 〈F3
i (r)〉)T . (39)

If q is linear momentum (i.e., q = p, �q = �p), then the mean of the j-th component of
the force is

〈F j
i (r)〉 = fi · Γ

j
i (r) , (40)

with fi > 0 being a shorthand (with the dimension of force) for

fi = ni,F · �p · 〈νi 〉, (41)

where ni,F ∈ {1, 2} represents the number of mediatorinos that contribute to the force. If all
the mediatorinos contribute to the force, then ni,F = ni,m , however, if only one mediatorino
contributes, then ni,F = 1. The value �p in equation (41) is the �q quantity from law 1.
The value of 〈νi 〉 has three variants. While 〈νi,A〉 is the mean frequency of taking �p from
particle A, 〈νi,B〉 is the mean frequency of putting �p onto particle B. Besides 〈νi,A〉 and
〈νi,B〉, we also define 〈νi,0〉 as the mean frequency of the initiation of transfer Ii . The value

fi,0 = ni,F · �p · 〈νi,0〉, (42)

then, represents an important (maximal) characteristic of transfer Ii .7 Similarly, for n = 2
we get a 2-rank tensor quantity

Γ kl
i (r) =

∮

Ω

Ki
(
r, ê
)
ek el dΩ, (43)

which can be used to define

〈Dkl
i (r)〉 = fi

Sk
· Γ kl

i (r) . (44)

If fi is again defined by equation (41) and if Sk is a unit area perpendicular to k-th axis,
then 〈Dkl

i (r)〉 is a quantity very similar to stress tensor. It differs from stress tensor in the
following: while stress tensor may express push, pull, and their combinations, 〈Dkl

i (r)〉
expresses only one of them. In agreement with Ki ≥ 0 we interpret 〈Dkl

i (r)〉 in the way that
it expresses pull. A pull in various directions may cause dispersion, and thus 〈Dkl

i (r)〉 will
be called mean dispersion tensor. Although equation (37) can be used to express any-rank
tensor quantity, we do not examine n ≥ 3.

7 It raises the question of naturalness, that is whether for all i, j ∈ F it is satisfied fi,0 = f j,0.
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Directional distribution Ki,A is either spherically symmetric, i.e., Ki,A = Ki,A (rS), or axis
symmetric with respect to z-axis, i.e., Ki,A = Ki,A (rS, ϑ). In both cases, Ki,A is independent
of ϕ. For all i ∈ F it immediately leads to

Γ 1
i,A (rS) = 0, (45)

Γ 2
i,A (rS) = 0. (46)

It means that the mean force 〈Fi,A〉 is either a zero vector or it is parallel to ±z-axis. The
independence of Ki,A on angle ϕ simplifies also the 2-rank tensor Γ kl

i,A. Firstly, we decompose
the integration over the full solid angle Ω into the integration over ϑ and the integration over
ϕ. Since Ki,A is independent of ϕ, it can be factored out of the integration over ϕ and the
integration can, then, be evaluated. The result is that Γ kl

i,A can be written as

Γ kl
i,A =

⎛

⎝
Γ 11
i,A 0 0
0 Γ 22

i,A 0
0 0 Γ 33

i,A

⎞

⎠ , (47)

that is only diagonal elements of Γ kl
i,A can be non-zero. The diagonal elements and the trace

of the tensor are

Γ 11
i,A = Γ 22

i,A = π

π∫

0

Ki,A (rS, ϑ) sin3 ϑ dϑ, (48)

Γ 33
i,A = 2π

π∫

0

Ki,A (rS, ϑ) sin ϑ cos2 ϑ dϑ, (49)

tr
(
Γ kl
i,A

)
= Γ 11

i,A + Γ 22
i,A + Γ 33

i,A =
∮

Ω

Ki,A dΩ. (50)

The last equation represents the contraction of 2-rank tensor Γ kl
i,A to 0-rank tensor Γi,A. In

the transfers with τB < τE and in the transfers with τ0 < τA = τE all �q taken from particle
A is eventually put to particle B, and thus these transfers work without any loss. It can be
expressed in the way that Ki,B

(
r, ê
) = Ki,A

(
r,−ê

)
. For these transfers,

Γ 1
i,B (rT ) = 0, (51)

Γ 2
i,B (rT ) = 0, (52)

Γ kl
i,B (rT ) = 0 for k �= l. (53)

Thus, in the following text we will calculate for most information transfers only Γ 3
i,A, Γ 3

i,B

and diagonal components of Γ kl
i,A (rS) and Γ kl

i,B (rT ).

7.8 Variants of Ki

Directional distribution Ki depends on the specific quantity q. It may also depend on velocity
vm (τAB) because during time interval (τA, τB) mediatorino m holds information �q. Law 1
tells us the direction of �q, except for its sign. Similarly, the velocity of mediatorino vm (τAB)

is either parallel or antiparallel to �q, and thus is defined, except for its sign, as well. These
ambiguities produce several variants of Ki , and each of them will be labeled by a combination
of signs in its superscript, e.g., K+−

i,B . All the quantities that are derived from a specific Ki ,
such as Γi , will inherit its signs.
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The orientation of �q at time τA is represented by quantity sq satisfying

sq ∈ {−1,+1}. (54)

Its sign will be the first sign in the superscript of Ki . Since we expect sq to be a characteristic
of a process, we need some universal definition. We choose that the orientation of �q will
be related to particle A which plays an important role at the moment of the determination of
�q. The meaning of the sign is as follows: the sign + expresses that �q points away from
particle A, while the sign − expresses that �q points toward particle A. In other words, in
the case of law 1-(b), the signs + and − express that �q is parallel and antiparallel to vector
l from equation (24), respectively. In the case of law 1-(a), the situation with �q pointing
away from point-like particle A is at time τA indistinguishable from �q pointing toward
point-like particle A. Therefore, in that case, if τA < τB , we define sq as the orientation of
�q at time τA + dt when mediatorino m leaves particle A. If τA = τB , then there is no good
definition of the orientation of �q, which is, in fact, a consequence of the symmetry with
respect to the change of the sign of �q. Whatever value of sq we use in that case, it does not
say anything about the direction of �q.

The orientation of vm (τAB), as determined at time τA, is represented by quantity sv
satisfying

sv ∈ {−1,+1}. (55)

Its sign will be the second sign in the superscript of Ki . Similar to the orientation of �q,
signs + and − specify that vm (τAB) points away from or toward particle A, respectively.
For τA = τB there is no τAB , and thus there is no good definition for sv = +1, neither it is
for sv = −1. The transfers are, therefore, symmetric with respect to the change of the sign
of sv . In the case of law 1-(b), if τA < τB , then the signs + and − express that vm (τAB) is
parallel and antiparallel to vector l from equation (24), respectively. In the case of law 1-(a),
if τA < τB , then at τA +dt velocity vm (τAB) makes mediatorino m move always away from
particle A. It means that sv = −1 does not exist in these transfers. The orientation of vm (τAB)

is independent of the orientation of �q. Moreover, vm (τAB) can influence an information
transfer only at τAB , that is later than at time τA. Consequently, the orientation of vm (τAB)

does not influence Ki,A which is a quantity describing the distribution of a change of q at
time τA. For that reason the orientation of vm (τAB) represented by the second superscript
sign will occur only in Ki,B .

At time τA each of vectors �q and vm (τAB) points toward or away from the current
location of particle A. However, after some motion of particle A, this may no longer be true:
the vectors may no point toward or away from the current location of particle A. Consequently,
both the signs are valid at time τA and not necessarily at any later time.

Each Ki,A has maximally two variants, K+
i,A and K−

i,A. Similarly, each Ki,B has maximally

four variants, K++
i,B , K+−

i,B , K−+
i,B and K−−

i,B . In total, there are maximally six variants of Ki

for each information transfer. Since we study 28 information transfers, there are maximally
168 possible Ki , 168 possible Γ

j
i and 168 possible Γ kl

i . In order to keep this article at a
reasonable length, we use a very condensed way to express all these, in total, maximally
504 quantities.
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7.9 Zero average force on particle A

Information transfers I1, I2, I3, I9, I10 and I11 satisfy τ0 = τA and S = A. Let z-axis vector
be defined as

z = xB (τB) − xA (τA) . (56)

Mediatorino m is at time τA co-local with particle A. For point-like particle A, it means
that �q is always determined by law 1-(a), that is the distribution K+

i,A is the same for all

directions, K+
i,A = const . Using the condition (34), we get that for all i ∈ {1, 2, 3, 9, 10, 11}

K+
i,A

(
ê
) = 1/4π. (57)

We use this value to express the 1-rank tensor Γ
j+
i,A and 2-rank tensor Γ kl+

i,A by equation (37).
Namely,

Γ
j+
i,A = (0, 0, 0)T , (58)

Γ kl+
i,A =

⎛

⎝
1/3 0 0
0 1/3 0
0 0 1/3

⎞

⎠ . (59)

The former equation implies that the mean force 〈F+
i,A〉 on particle A is zero,

〈F+
i,A〉 = 0, (60)

while the latter equation implies that the mean dispersion tensor on particle A is spherically
symmetric. In other words, the studied information transfers tend to disperse particle A
equally in all the directions.

7.10 Constant force on particle A

Information transfers I17, I18, I19, I25, I26 and I27 satisfy τ0 = τA and S = B. Let z-axis
vector be defined as

z = xB (τA) − xA (τA) . (61)

Mediatorinom is at time τA still on particle B, and thus is generally non-co-local with particle
A. It means that �q is always determined by law 1-(b), that is in the direction of particle
B from particle A. Since particles A and B are at time τA both point-like, the directional
distribution Ki,A is non-zero only for one direction represented by angles ϑ0 and ϕ0. Let
δd (ϑ, ϕ) be a directional Dirac delta function defined in the way that for every ordinary
function g (ϑ, ϕ) and every ϑ0 ∈ [0, π ], ϕ0 ∈ [0, 2π ],

∮

ϑ,ϕ

g (ϑ, ϕ) δd (ϑ − ϑ0, ϕ − ϕ0) sin ϑ dϑ dϕ = g (ϑ0, ϕ0) . (62)

Using the condition in equation (34), we get that Ki,A can be expressed as

Ki,A (ϑ, ϕ) = g (ϑ, ϕ) · δd (ϑ − ϑ0, ϕ − ϑ0) , (63)

where g is an unknown function satisfying g (ϑ0, ϕ0) = 1. Without loss of generality, we can
choose the simplest form of Ki,A where for all ϑ, ϕ : g (ϑ, ϕ) = 1. Moreover, for distribution
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K+
i,A, there is ϑ0 = π . In this polar situation ϕ0 is irrelevant, so we choose ϕ0 = π . Thus,

for all i ∈ {17, 18, 19, 25, 26, 27} we have

K+
i,A (ϑ, ϕ) = δd (ϑ − π, ϕ − π) . (64)

Then, we can easily calculate the 1-rank tensor Γ
j+
i,A and 2-rank tensor Γ kl+

i,A ,

Γ
j+
i,A = (0, 0,−1)T , (65)

Γ kl+
i,A =

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ . (66)

This leads to the fact that the mean force 〈F+
i,A〉 on particle A is constant and points in the

direction of −z-axis,

〈F+
i,A〉 = − fi,A · ẑ, (67)

and that the average dispersion tensor 〈D+
i,A〉 does not tend to disperse particle A in all the

directions but in only one.

7.11 Intermezzo for transfers with τ0 < τA < τE

In the transfers with τ0 < τA < τE mediatorinom is at time τA on a sphere. It is a consequence
of the fact that particle S is at time τ0 a point-like particle, the speed of mediatorino m is
during time interval (τ0, τA) constant and positive, vm (τ0A) > 0, and that τA−τ0 is constant.
The sphere (hereafter denoted by SR) has its center at xS (τ0) and radius

R = vm (τ0A) · (τA − τ0). (68)

Unlike the mediatorino, particle A can at time τA be only at single point xA (τA). This leads
us to a sphere-to-point situation (denoted by sp) which is axis-symmetric with respect to

z = rS = xS (τ0) − xA (τA) , (69)

where z is the z-axis vector and rS is a vector with characteristic length rS .

7.11.1 Directional distribution

Let us examine the directional distribution of the sphere-to-point situation, K+
sp,A. Since

xcm(τA) is at time τA generally not co-local with particle A, direction �q̂ of �q is determined
by law 1-(b). If particle A is at time τA inside sphere SR , rS < R, then every direction
�q̂ (when its origin is moved to xA (τA)) intersects the sphere exactly once. It means that
K+
sp,A

(
rS, ê

)
is composed of only one contribution corresponding to the unique xcm(τA) lying

on the sphere in the direction �q̂ from xA (τA). On the other hand, if particle A is outside
the sphere or on its surface, rS ≥ R, then direction �q̂ (when its origin is moved to xA (τA))
can intersect the sphere twice, once, or zero times depending on the value of ϑ . It can be
rephrased in the way that for a given direction �q̂, K+

sp,A

(
rS, ê

)
can be composed of two,

one, or zero contributions, each corresponding to a different xcm(τA) lying on the sphere in the
direction �q̂ from xA (τA). Since the intersection of direction �q̂ and sphere SR contributes
to K+

sp,A

(
rS, ê

)
only when �q̂ = −ê, distribution K+

sp,A

(
rS, ê

)
can be expressed as
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K+
sp,A

(
rS, ê

) =

⎧
⎪⎪⎨

⎪⎪⎩

|k+
(−ê

) |, if rS < R, ϑ ∈ [0, π],
0, if rS ≥ R, ϑ ∈ [0, π − ϑR),

|k+
(−ê

) |, if rS ≥ R, ϑ = π − ϑR,

|k+
(−ê

) | + |k−
(−ê

) |, if rS ≥ R, ϑ ∈ (π − ϑR, π],
(70)

where ê = ê (ϑ, ϕ), k+
(−ê

)
and k−

(−ê
)

are the individual contributions and

ϑR = arcsin

(
R

rS

)
. (71)

The absolute values were added to equation (70) to ensure that all the contributions sum
constructively.

Let us look at how k
(
ê
)
, a contribution to directional distribution K+

sp,A

(
rS,−ê

)
, is

transformed. We use primes when we want to describe a special situation where particle A is
at time τA at the center of the sphere, xA (τA) = xS (τ0). Let us assume every xcm(τA) on the
surface of the sphere SR has the same probability dP ′ = k′ dΩ ′ of being chosen. It means
that k′ is constant. Moreover, once we require that the sum of probability contributions dP ′
on the whole sphere equals one, we get k′ = 1/4π . Since every choice of xcm(τA) is followed
by taking �q from particle A, the probability dP ′ fully contributes to dP = k dΩ . Thus, we
have k′ dΩ ′ = k

(
ê
)
dΩ , or equivalently

k′ sin ϑ ′ dϑ ′ dϕ′ = k
(
ê
)

sin ϑ dϑ dϕ. (72)

There is dϕ′ = dϕ. If we use equation (24) and define

l′ = xcm (τA) − xS (τ0) , (73)

then l ′ sin ϑ ′ = l sin ϑ . Moreover, l dϑ = l ′ dϑ ′ · cos ω, where ω is the angle between vector
l and vector l′. Since angle ω satisfies cos ω = (l − r cos ϑ)/ l ′, we get

k
(
ê
) = k′ · l2

l ′ (l − rS cos ϑ)
. (74)

The value of l can be evaluated from the law of cosines and with use of l ′ = R we obtain

l± = rS cos ϑ ±
√
R2 − r2

S sin2 ϑ. (75)

The location of mediatorino m at time τA, then, can be expressed as

xcm± (τA, ϑ, ϕ) = xA (τA) + l± · ê (ϑ, ϕ) . (76)

When we express k explicitly using k′ = 1/4π , we obtain

k±
(
ê
) = ±

(
rS cos ϑ ±

√
R2 − r2

S sin2 ϑ

)2

4πR ·
√
R2 − r2

S sin2 ϑ

. (77)
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While for rS < R only k+ is usable, for rS ≥ R both k+ and k− are usable. Now we can
combine equations (70) and (77) in order to explicitly express K+

sp,A

(
rS, ê

)
,

K+
sp,A

(
rS, ê

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−rS cos ϑ +

√
R2 − r2

S sin2 ϑ

)2

4πR ·
√
R2 − r2

S sin2 ϑ

, if rS < R, ϑ ∈ [0, π],

0, if rS ≥ R, ϑ ∈ [0, π − ϑR),

R2 + r2
S cos 2ϑ

2πR ·
√
R2 − r2

S sin2 ϑ

, if rS ≥ R, ϑ ∈ (π − ϑR, π],

(78)

where we excluded the infinite value of K+
sp,A for r ≥ R, ϑ = π − ϑR . This redefinition

does not influence Γ
j+
sp,A and Γ kl+

sp,A based on an integration of K+
sp,A. While Γ 3+

sp,A can be
expressed as

Γ 3+
sp,A (rS) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2rS
3R

, if rS ≤ R,

−
(

1 − R2

3r2
S

)
, if rS ≥ R,

(79)

Γ 11+
sp,A and Γ 22+

sp,A can be expressed as

Γ 11+
sp,A (rS) = Γ 22+

sp,A (rS) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3, if rS = 0,

1

8
+ R2

8r2
S

+ (R2 − r2
S)

2

16Rr3
S

ln

(
R − rS
R + rS

)
, if 0 < rS < R,

1/4, if rS = R,

1

8
+ R2

8r2
S

+ (r2
S − R2)2

16Rr3
S

ln

(
rS − R

rS + R

)
, if rS > R,

(80)

and finally Γ 33+
sp,A can be expressed as

Γ 33+
sp,A (rS) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/3, if rS = 0,

3

4
− R2

4r2
S

− (R2 − r2
S)

2

8Rr3
S

ln

(
R − rS
R + rS

)
, if 0 < rS < R,

1/2, if rS = R,

3

4
− R2

4r2
S

− (r2
S − R2)2

8Rr3
S

ln

(
rS − R

rS + R

)
, if rS > R.

(81)

7.11.2 Restriction of movement of mediatorino m

Mediatorinos do not necessarily move in full space. In the transfers with τ0 < τA < τE if
rS > R, then the movement of the mediatorinos within time interval (τA, τB) is bounded by
a double cone. Let C+ (x, r, ρ) be a cone defined by the apex at point x, the axis parallel to
line segment r, and the sphere with the center at x + r and radius ρ that is inscribed to the
cone. Let also C− (x, r, ρ) = C+ (x,−r, ρ) and C (x, r, ρ) = C+ (x, r, ρ) ∪ C− (x, r, ρ).
Finally, the set of all the unit vectors which originate at point x and are within C+, C− and
C will be denoted by E+, E−, and E , respectively. Namely,
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E± (x, r, ρ) = {ê | x + ê ∈ C± (x, r, ρ)}, (82)

E (x, r, ρ) = {ê | x + ê ∈ C (x, r, ρ)}. (83)

If we do not consider the sign of sq , then all the possible �q (when their origin is moved
to xA (τA)) are within double cone CR = C (xA (τA) , rS, R). The apex angle of CR is 2 ϑR ,
where ϑR is defined by equation (71). Finally, the set of all the possible unit vectors �q̂ is
ER = E (xA (τA) , rS, R). Since vA (τAB) is either parallel or antiparallel to �q, and since
m is at time τA on the surface of sphere SR that is inscribed to the double cone, we conclude
that in the transfers with τ0 < τA < τE during (τA, τB) all the mediatorinos move inside or
on the surface of double cone CR . Double cone CR can be decomposed into two cones, C−

R
and C+

R , with common point xA (τA). The cone C+
R itself is composed of three disjunctive

parts

C+
R = C+

R,c ∪ SR ∪ C+
R, f , (84)

where SR is the already mentioned sphere with center at xA (τA) + rS and radius R. C+
R,c

is the set of the points of C+
R that are closer to point xA (τA) than sphere SR , and finally

C+
R, f is the set of the points of C+

R that are farther from xA (τA) than sphere SR . Note that
for rS ≤ R, CR is no longer a double cone, but rather full space. It means that, in that case,
the mediatorinos can during time interval (τA, τB) move in any direction. Moreover, space
is divided into two relevant parts SR and R

3 \ SR .

7.12 Asymptotically free force on particle A

Information transfers I21, I22, I23, I29, I30 and I31 satisfy τ0 < τA < τE and S = B. Let
vectors z and rS be defined as

z = rS = xB (τ0) − xA (τA) . (85)

Mediatorino m is at time τA on sphere SR , that is on a sphere with center at xB (τ0)

and radius R = vm (τ0A) · (τA − τ0), where vm (τ0A) > 0 is the speed of the media-
torino during (τ0, τA). The directional distribution K+

i,A can, then, be expressed for all
i ∈ {21, 22, 23, 29, 30, 31} as

K+
i,A

(
rS, ê

) = K+
sp,A

(
rS, ê

)
. (86)

When we calculate the mean force, we get

〈F+
i,A (rS)〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− fi,A · 2rS
3R

· ẑ, if rS ≤ R,

− fi,A ·
(

1 − R2

3r2
S

)
· ẑ, if rS ≥ R.

(87)

Since the force depends on the distance of particles A and B and satisfies

lim
rS→0

〈F+
i,A

(
rS · ẑ)〉 = 0, (88)

lim
rS→∞〈F+

i,A

(
rS · ẑ)〉 = − fi,A · ẑ, (89)

we are justified in calling these transfers asymptotically free forces. If we knew the transfers
are attractive at large distances, we would call them asymptotically free confining forces.
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7.13 Speed-dependent force on particle A

Information transfers I5, I6, I7, I13, I14 and I15 satisfy τ0 < τA < τE and S = A. Let vectors
z and rS be defined as

z = rS = xA (τ0) − xA (τA) . (90)

Mediatorino m is at time τA on sphere SR , that is on a sphere with center at xA (τ0) and
radius R = vm (τ0A) · (τA − τ0), where vm (τ0A) > 0 is the speed of the mediatorino. The
directional distribution K+

i,A can be expressed for all i ∈ {5, 6, 7, 13, 14, 15} as

K+
i,A

(
rS, ê

) = K+
sp,A

(
rS, ê

)
. (91)

Once we express rS = vA (τ0A) · (τA − τ0), where vA (τ0A) ≥ 0, we see that K+
i,A does not

depend on the distance of particles A and B and depends on the speeds vm (τ0A) and vA (τ0A).
For the mean force we get

〈F+
i,A (rS)〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− fi,A · 2vA

3vm
· ẑ, if vA ≤ vm,

− fi,A ·
(

1 − v2
m

3v2
A

)
· ẑ, if vA ≥ vm,

(92)

which naturally also depends on speeds vm (τ0A) and vA (τ0A), rather than on the distance
of particles A and B.

7.14 Implementation of co-locality

The information transfers with τB = τE , in order to transfer �q to particle B, require
mediatorino m to be co-local with particle T . That is, the mediatorino must hit target particle
T . Since there is a zero probability that point-like mediatorino m hits point-like particle T
in continuous space of dimension d > 1, it raises the question what co-local really means
and how it is implemented. There are several ways to get a non-zero probability, and make
the information transfers work: (a) space is of dimension d = 0 or d = 1, or (b) space is
discrete, not continuous, or (c) mediatorino m and/or particle T is (almost) never a point-like
particle or at least it works as if it had a non-zero interaction size. From experience we know
that space is neither of dimension zero nor of dimension one. Moreover, there has been no
evidence for the discreteness of space so far. We have also assumed that particle T is at time
τE a point-like particle. The remaining possibility is that mediatorino m has an interaction
size. From now on, we assume mediatorino m behaves as if it were a sphere with center at
xm (t) and a relatively small radius w > 0. In other words, in the transfers with τB = τE
mediatorino m can hit target particle T if the distance of xm (t) from particle T becomes at
some moment no greater than w. The cross section of the mediatorino is, therefore, of order
w2. If mediatorino m starts on particle S, then the probability of hitting particle T randomly
located in 3-dimensional space can be estimated as

P(r) ∝ w2/r2, (93)

where r is the distance between particle S and particle T . In total, in the transfers with
τB = τE the influence between two particles rapidly decreases as their distance increases.
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7.15 Force on particle B in transfers with τB < τE

The information transfers with τB < τE transfer �q at time τB to particle B via one or two
entanglements. Unlike the transfers with τB = τE , the transfers with τB < τE in order to
transfer �q to particle B do not require mediatorino m to be co-local with particle T . On the
other hand, there may be a requirement for the non-co-locality of mediatorino m with particle
T . This requirement is in 3-dimensional space very weak and is almost always satisfied. Even
if mediatorino m and particle T were co-local with each other, the mediatorino can wait quite
a short time until the requirement is satisfied, and then it can use the entanglement(s) to
transfer �q to particle B. In other words, if m starts and takes some �q from particle A, then
there is probability

P(r) = 1, (94)

that �q will eventually be transferred to particle B, no matter what distance r between
particles S and T is, and no matter what the dimension of the space is. The transfers with
τB < τE are, therefore, maximally effective. For every odd i ∈ F, we can immediately write

rT = rS, (95)

K+±
i,B

(
rT , ê

) = K+
i,A

(
rS,−ê

)
, (96)

Γ
j+±
i,B (rT ) = −Γ

j+
i,A (rS) , (97)

Γ kl+±
i,B (rT ) = Γ kl+

i,A (rS) , (98)

〈Fi,B (rT )〉 = −〈Fi,A (rS)〉. (99)

It means that the transfers with τB < τE are completely described, and from now on we look
for Ki , Γ

j
i , and Γ kl

i only within the transfers with τB = τE .

7.16 Hitting particle T

Here we examine hitting particle T by a mediatorino in transfers I2, I6, I10, I14, I18, I22,
I26, and I30 satisfying τA < τB = τE . If mediatorino m is a sphere with center at xm (t) and
radius w > 0, then hitting point-like particle T at time τE for mediatorino m means

|xm (τE ) − xT (τE ) | ≤ w. (100)

It can be rephrased in the way that xm (τE ) must intersect a sphere (hereafter denoted by
Sw) with center at xT (τE ) and radius w. Once during a single transfer Ii mediatorino m hits
particle T , Ki,A

(
rS,−ê

)
with a specific ê contributes to Ki,B

(
rT , ê

)
. That is, for information

transfers Ii with i ∈ {2, 6, 10, 14, 18, 22, 26, 30}:

Ki,B
(
rT , ê

) =
{
Ki,A

(
rS,−ê

)
, if m hits T,

0, otherwise,
(101)

where rT and its direction r̂T are defined as

rT = rT · r̂T = xT (τE ) − xA (τA) , (102)

r̂T = (sin ϑT cos ϕT , sin ϑT sin ϕT , cos ϑT ) . (103)

Since sphere Sw is of a limited size, in most cases not every location xm (τA) and not every
direction of vm (τAB) allow mediatorino m to hit particle T . Hence, the condition in equa-
tion (101) that the mediatorino hits particle T means that a condition on xm (τA) and a
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condition on vm (τAB) must be satisfied. The velocity vm (τAB) with direction v̂m is either
parallel or antiparallel to �q̂ which itself is in Ki,B

(
rT , ê

)
represented by +ê. Therefore,

the condition on vm (τAB) will usually be expressed as the corresponding condition on ê.
Let us start with a study of hitting particle T in the case of rT ≤ w, that is when particle A

is at time τA in sphere Sw . If velocity vm (τAB) points away from particle A, sv = +1, then
the mediatorino can hit particle T only when xm (τA) is in the sphere. On the other hand,
if velocity vm (τAB) points toward particle A, sv = −1, the mediatorino can hit particle T
always. We get

K++
i,B

(
rT , ê

) =
{
K+
i,A

(
rS,−ê

)
, if xm (τA) ∈ Sw,

0, otherwise,
(104)

K+−
i,B

(
rT , ê

) = K+
i,A

(
rS,−ê

)
. (105)

Now we move to the case of rT > w, that is when particle A is at time τA outside sphere
Sw . Let Cw = C (xA (τA) , rT , w) be a double cone composed of two cones, C−

w and C+
w ,

having a common point xA (τA). Moreover, let C+
w be composed of three disjunctive parts,

C+
w = C+

w,c ∪ Sw ∪ C+
w, f , (106)

where Sw is the already mentioned sphere with center at xT (τE ) and radius w, C+
w,c is

xA (τA) plus the set of all the points of C+
w that are between point xA (τA) and sphere Sw ,

and C+
w, f is the set of all the points of C+

w that are from point xA (τA) farther than sphere
Sw . The apex angle of each of cones C+

w and C−
w is 2 ϑw where

ϑw (rT ) = arccos

(√
1 − w2

r2
T

)
. (107)

The corresponding apex solid angle Ωw can be calculated as Ωw = 2π(1 − cos ϑw), and
thus

Ωw (rT ) = 2π ·
(

1 −
√

1 − w2

r2
T

)
. (108)

Since mediatorino m moves during (τA, τB) along line l defined by equation (24), the medi-
atorino can hit particle T only when xm (τA) is on the surface or inside double cone Cw,
that is when ê ∈ Ew. Moreover, velocity vm (τAB) must have a good orientation. Namely, if
velocity vm (τAB) points away from particle A, sv = +1, the mediatorino can hit particle T
only when xm (τA) is in C+

w,c or in Sw . On the other hand, if velocity vm (τAB) points toward
particle A, sv = −1, the mediatorino can hit particle T only when xm (τA) is in C−

w , Sw , or
C+

w, f . In total,

K++
i,B

(
rT , ê

) =
{
K+
i,A

(
rS,−ê

)
, if xm (τA) ∈ C+

w,c ∪ Sw ∧ ê ∈ E+
w ,

0, otherwise,
(109)

K+−
i,B

(
rT , ê

) =

⎧
⎪⎨

⎪⎩

K+
i,A

(
rS,−ê

)
, if xm (τA) ∈ Sw ∪ C+

w, f ∧ ê ∈ E+
w ,

K+
i,A

(
rS,−ê

)
, if xm (τA) ∈ C−

w ∧ ê ∈ E−
w ,

0, otherwise.

(110)

The concrete form of K++
i,B and K+−

i,B depends on the specific transfer. In transfers I18 and
I26 mediatorino m has at time τA a single location (on particle B) and a single direction v̂m .
In transfers I2 and I10 the mediatorino has at time τA a single location (on particle A) but
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arbitrary direction v̂m , and finally in transfers I6, I14, I22, and I30 mediatorino m can at time
τA be at various locations (on the surface of sphere SR) and to each of them corresponds
a single direction v̂m . The further analysis of hitting particle T is, therefore, saved for the
analysis of the individual transfers.

7.17 Frequencies

The mean frequency 〈νi,0〉 of the initiation of information transfer Ii can be different from
the mean frequency 〈νi,A〉 of taking �q from particle A. This happens in the transfers with
τ0 < τA = τE where mediatorino m must hit particle T in order to take �q from particle
A. The frequency 〈νi,A〉 is, therefore, influenced by Doppler effect caused by the speed of
particle T . The Doppler effect for the transfers with τ0 < τA = τE can be expressed as [34]

〈νi,A〉 = 〈νi,0〉 ·
(

vm (τ0A) − vT (τA) · n0A

vm (τ0A) − vS (τ0) · n0A

)
, (111)

where vector n0A is

n0A = xT (τA) − xm (τ0) . (112)

In the information transfers with τ0 = τA, �q is taken from particle A at the beginning of the
transfer. Similarly, in the transfers with τ0 < τA < τE the value of �q is taken from particle
A after a constant time τA − τ0. In both cases, the frequency of taking �q from particle A
is the same as the frequency of the initiation of the transfer. That is, for the transfers with
τ0 = τA or with τ0 < τA < τE ,

〈νi,A〉 = 〈νi,0〉. (113)

The mean frequency 〈νi,A〉 of taking �q from particle A can be different from the mean
frequency 〈νi,B〉 of putting �q onto particle B. For the transfers with τA < τB = τE where
mediatorino m must hit particle T in order to put �q into particle B, Doppler effect must be
incorporated:

〈νi,B〉 = 〈νi,A〉 ·
(

vm (τAB) − vT (τB) · nAB

vm (τAB) − vS (τ0) · nAB

)
, (114)

where nAB satisfies

nAB = xT (τB) − xm (τA) . (115)

In the other transfers, i.e., in the transfers with τB < τE and in the transfers with
τ0 < τA = τE , �q is transferred to particle B via an entanglement. In the case of
τA = τB < τE or the case of τ0 < τA = τE , �q is transferred to particle B immediately
when it is taken from particle A, and in the case of τA < τB < τE , it is transferred after a
constant time τB − τA. In both cases,

〈νi,B〉 = 〈νi,A〉. (116)

The differences of 〈νi,0〉, 〈νi,A〉, and 〈νi,B〉 influence the differences of fi,0, fi,A and fi,B via
equation (41).

7.18 Force on particle B in transfers I2 and I10

Information transfers I2 and I10 satisfy S = A and τ0 = τA < τB = τE . Vector z is defined
by equation (56). Let rT = z. For xm (τA) = xA (τA) mediatorino m at time τA starts to move
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always from particle A, i.e., sv = −1 has no good meaning. Therefore, we use only sv = +1.
For rT ≤ w, K++

i,B is given by equation (104). Since xm (τA) = xA (τA), point xm (τA) is
automatically in sphere Sw . We get

K++
i,B

(
rT , ê

) = K+
i,A

(
rS,−ê

)
. (117)

For rT > w distribution K++
i,B is given by equation (109). Since xm (τA) = xA (τA), there is

xm (τA) ∈ C+
w,c. It leads to

K++
i,B

(
rT , ê

) =
{
K+
i,A

(
rS,−ê

)
, if ê ∈ E+

w ,

0, otherwise.
(118)

In transfers I2 and I10, K+
i,A is given by equation (57). Therefore, the directional distribution

of a change of q on particle B for i ∈ {2, 10} can finally be written as

K++
i,B

(
rT , ê

) =
⎧
⎨

⎩

1/4π, if rT ≤ w,

1/4π, if rT > w, ê ∈ E+
w ,

0, otherwise.
(119)

It can be used to calculate Γ
j++
i,B and Γ kl++

i,B . While for rT ≤ w we have

Γ
j++
i,B = (0, 0, 0)T , (120)

Γ kl++
i,B =

⎛

⎝
1/3 0 0
0 1/3 0
0 0 1/3

⎞

⎠ , (121)

for rT > w we have

Γ 3++
i,B = w2

4 r2
T

, (122)

Γ 11++
i,B = Γ 22++

i,B = 1

6

[
1 −

√
1 − w2

r2
T

(
1 + w2

2 r2
T

)]
, (123)

Γ 33++
i,B = 1

6

⎡

⎣1 −
(

1 − w2

r2
T

)3/2
⎤

⎦ . (124)

Moreover, for rT � w, Γ 11++
i,B , Γ 22++

i,B and Γ 33++
i,B can be expressed in terms of order no

higher than w4/r4
T as

Γ 11++
i,B = Γ 22++

i,B ∼ w4

16 r4
T

, (125)

Γ 33++
i,B ∼ w2

4 r2
T

− w4

16 r4
T

. (126)

When we calculate the mean force for i ∈ {2, 10}, we get

〈F++
i,B (rT )〉 =

⎧
⎨

⎩

0, if 0 ≤ rT ≤ w,

fi,B w2

4 r2
T

· ẑ, if rT > w.
(127)

We see that although transfers I2 and I10 behave at large distances proportionally to the
inverse square of distance rT , there is no divergence for short distances rT .
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7.19 Force on particle B in transfers I18 and I26

Information transfers I18 and I26 satisfy S = B and τ0 = τA < τB = τE . Vector z is defined
by equation (61) and vector rT is defined by

rT = xA (τB) − xA (τA) , (128)

which can be written in terms of the average velocity 〈vA (τAB)〉 as

rT = 〈vA (τAB)〉 · (τB − τA) . (129)

Mediatorino m is at time τA on particle B and during time interval (τA, τB) travels along line
l defined by equation (24). In order to transfer �q to particle B the mediatorino needs to hit
particle T = A. Since due to equation (64), K+

i,A is non-zero only for a single direction, and
since mediatorino m is at time τA on a point-like particle, we can use equation (101) to write

K+±
i,B = P+±

i,B · δd (ϑ, ϕ) , (130)

where P+±
i,B is the probability that mediatorino m hits particle A. The corresponding Γ

j+±
i,B ,

Γ kl+±
i,B and 〈F+±

i,B 〉 are

Γ
j+±
i,B = P+±

i,B · (0, 0, 1)T , (131)

Γ kl+±
i,B = P+±

i,B ·
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ , (132)

〈F+±
i,B 〉 = fi,B · P+±

i,B · ẑ. (133)

Now we only need to express P+±
i,B .

For rT ≤ w particle A is practically static and stays on or very close to line l. If vm (τAB)

points away from particle A, sv = +1, then the mediatorino is getting during time interval
(τA, τB) farther from particle A. Consequently, mediatorino m never hits particle T . On the
other hand, if vm (τAB) points toward particle A, sv = −1, then the mediatorino is getting
during (τA, τB) closer to particle A, and eventually hits particle T . In total, for i ∈ {18, 26} :

P++
i,B = 0, (134)

P+−
i,B = 1. (135)

This exhibits an asymmetry with respect to a change of the sign of sv .
For rT > w equations (109) and (110) describe the situation completely, nevertheless

they do not provide any quick insight into what is going on in this case. Moreover, due to
equation (129), the result highly depends on the behavior of particle A. Therefore, we choose
to investigate a specific system rather than a general case. Namely, we investigate a system
where the direction of the velocity of particle A rapidly changes and the distribution of the
directions of the velocities vA (τAB) is uniform, such as in the case when particle A is within
a small spherical symmetric bound system. The mediatorino hits particle A only when the
mediatorino is on the surface or inside double cone Cw (xA (τA) , rT , w). For mediatorino m,
the probability of being within a single arm of the double cone Cw with randomly oriented
axis and solid angle Ωw is Pw = Ωw/4π . Since Ωw is given by equation (108), we have

Pw = 1

2

(
1 −

√
1 − w2

r2
T

)
. (136)
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In addition to being in an arm of the double cone, there is also important the fact in what region
(C−

w , C+
w,c, Sw , C+

w, f ) mediatorino m is located at time τA. It depends on distance l of the
mediatorino from xA (τA), the apex of the double coneCw. For most distances l the probability
P+±
i,B can be calculated from Pw, nevertheless there are two exceptions. Namely, in the case

of P+−
i,B for l ∈ (rT − w,

√
r2
T − w2) and in the case of P++

i,B for l ∈ (

√
r2
T − w2, rT + w).

In these cases, the probability is proportional to the intersection of a sphere with center at
xA (τA) and radius l and sphere Sw with radius w. The surface of a sphere with radius l
which is intersected by a sphere with radius w is

Slw = 2πl

(
l − r2

T + l2 − w2

2rT

)
, (137)

provided rT is the distance of the sphere centers. Since for a mediatorino being on the
surface of the sphere with radius l the probability of being on the intersecting surface Slw is
Plw = Slw/4πl2, we obtain

Plw = 1

2

(
1 − r2

T + l2 − w2

2rT l

)
. (138)

When we decompose equations (109) and (110) into their regions, convert the regions into
the corresponding distances l and merge, we get

P++
i,B =

⎧
⎪⎪⎨

⎪⎪⎩

Pw, l ∈ (0,

√
r2
T − w2],

Plw, l ∈ [
√
r2
T − w2, rT + w],

0, l ∈ [rT + w,∞),

(139)

P+−
i,B =

⎧
⎪⎪⎨

⎪⎪⎩

Pw, l ∈ (0, rT − w],
Pw + Plw, l ∈ [rT − w,

√
r2
T − w2],

2Pw, l ∈ [
√
r2
T − w2,∞).

(140)

We again see an asymmetry with respect to a change of the sign of sv , this time for l > rT − w.
For rT � w we can ignore the tiny transitional middle interval l ∈ [rT − w, rT + w] and in
terms of w/rT write

P++
i,B ∼

⎧
⎪⎨

⎪⎩

w2

4r2
T

, l ∈ (0, rT ),

0, l ∈ (rT ,∞),

(141)

P+−
i,B ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w2

4r2
T

, l ∈ (0, rT ),

w2

2r2
T

, l ∈ (rT ,∞).

(142)

This, along with equations (131) to (133), gives us the wanted quick overview of the case.

7.20 Force on particle B in I6, I14, I22 and I30

Information transfers I6, I14, I22 and I30 satisfy τ0 < τA < τB = τE . Vectors z and rS are
defined by equation (69) and vector rT is defined by equation (102). Since the transfers

123



Eur. Phys. J. Plus          (2022) 137:27 Page 41 of 63    27 

satisfy τ0 < τA < τE , the movement of their mediatorino m during (τA, τB) is bounded by
CR = C (xA (τA) , rS, R). The transfers also satisfy τA < τB = τE , and thus �q is trans-
ferred to particle B only when mediatorino m hits target particle T , that is when mediatorino
m moves within Cw = C (xA (τA) , rT , w). In total, �q is transferred to particle B when
mediatorino m moves within CR ∩ Cw . Different locations of xA (τA), xT (τE ) and xS (τ0),
different sizes of w and R, and different values of sv give rise to several tens of possible
situations. Information transfers I6, I14, I22 and I30 are, therefore, by far the most complex
of all the studied information transfers. We do not study all the situations, we focus only on
few of them. Namely, we examine the situations where locality parameter w is substantially
smaller than radius R, w � R, and ignore all the situations where sphere Sw intersects any
region of CR partially (regardless of whether CR is a double cone or full space). Moreover,
in the case of rT > w, we examine only rT � w. There still remain 18 situations to be
examined.

For rT ≤ w point xA (τA) is inside sphere Sw . There are four possible situations (without
partial intersection of spheres SR and Sw) which come from two regions where xT (τE ) can
be located (SR and R

3 \SR) and two variants of sv (+1 and −1). The cases are as follows:
(1) xT (τE ) ∈ SR , sv = +1: Mediatorinos m go from the surface of SR away from particle
A. Since due to rT ≤ w particle A is inside sphere Sw , the mediatorinos go away from
sphere Sw and will never hit particle T . (2) xT (τE ) ∈ SR , sv = −1: Mediatorinos m go
from the surface of SR toward particle A. Since rT ≤ w, the mediatorinos go toward sphere
Sw and will eventually hit particle T . (3) xT (τE ) /∈ SR , sv = +1: Similar to the first case,
mediatorinos m go from the surface of SR away from sphere Sw , and thus they will never
hit particle T . (4) xT (τE ) /∈ SR , sv = −1: Similar to the second case, mediatorinos m go
from the surface of SR away from sphere Sw , and will eventually hit particle T . In total, for
rT ≤ w we get

K++
i,B

(
rT , ê

) = 0, (143)

K+−
i,B

(
rT , ê

) = K+
i,A

(
rS,−ê

)
. (144)

The corresponding Γ
j+±
i,B is

Γ
j++
i,B = (0, 0, 0)T , (145)

Γ
j+−
i,B = Γ

j+
sp,A, (146)

where Γ
j+
sp,A is given by equation (79), and the corresponding Γ kl+±

i,B is

Γ kl++
i,B =

⎛

⎝
0 0 0
0 0 0
0 0 0

⎞

⎠ , (147)

Γ kl+−
i,B = Γ kl+

sp,A, (148)

where Γ kl+
sp,A is given by equations (47), (80) and (81). Finally, the corresponding average

force is

〈F++
i,B (rT )〉 = 0, (149)

〈F+−
i,B (rT )〉 = −〈F+

i,A (rS)〉. (150)

For rT > w point xA (τA) is outside sphere Sw . We examine only rT � w, that is double
cone Cw has a very small solid angle Ωw . This case contains 14 situations, 4 situations for
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rS ≤ R and 10 situations for rS > R. Let us define xm
(
r̂
)

as the location of mediatorino m
on the surface of sphere SR which is in direction r̂ from xA (τA). For rT > w and rS ≤ R
point xA (τA) is inside sphere SR . In that case, we distinguish four situations which come
from two regions where xT (τE ) can be located (SR and R

3 \ SR) and two variants of sv
(+1 and −1). The individual cases are the following: (5) xT (τE ) ∈ SR , sv = +1: Sphere
Sw is (due to xT ∈ SR) inside sphere SR ; however, all mediatorinos m are at time τA on
the surface of SR and (due to sv = +1) go away from particle A. Since particle A is (due
to rS < R) inside sphere SR , no mediatorino can ever hit particle T . (6) xT (τE ) ∈ SR ,
sv = −1: Sphere Sw is inside sphere SR and all mediatorinos m are at time τA on the surface
of SR and go toward particle A. Since particle A is inside sphere SR , mediatorinos located
close to xm

(
r̂T
)

and xm
(−r̂T

)
can hit particle T . To be close to point xm here means that they

are within the intersection of the corresponding arm of double cone Cw and the surface of
sphereSR . (7) xT (τE ) /∈ SR , sv = +1: Sphere Sw is outside sphereSR and all mediatorinos
m are at time τA on the surface of SR and go away from particle A. Since particle A is inside
sphere SR , only mediatorinos located close to xm

(
r̂T
)

can hit particle T . (8) xT (τE ) /∈ SR ,
sv = −1: Sphere Sw is outside sphere SR and mediatorinos m are at time τA on the surface
of SR and go toward particle A. Since particle A is inside sphere SR , mediatorino m located
close to xm

(−r̂T
)

can hit particle T . For rT > w and rS > R, CR is a double cone. Now we
distinguish ten situations which come from five regions where xT (τE ) can be located (C−

R ,
C+
R,c, SR , C+

R, f and R
3 \CR) and two variants of sv (+1 and −1). Let us define xm−

(
r̂
)

and

xm+
(
r̂
)

as the locations of mediatorino m on the surface of sphere SR which are from point
xA (τA) in direction r̂ and at distance l− and l+, respectively, provided l− and l+ are given
by equation (75). The individual situations are: (9) xT (τE ) ∈ C+

R, f , sv = +1: Mediatorinos

m go from the surface of SR away from particle A. Since sphere Sw is in C+
R, f which is

farther from point xA (τA) than sphere SR , then mediatorinos m can hit particle T when the
mediatorinos are at time τA located close to xm−

(
r̂T
)

or xm+
(
r̂T
)
. (10) xT (τE ) ∈ C+

R, f ,
sv = −1: Mediatorinos m go from the surface of SR toward particle A. Since sphere Sw

is in C+
R, f which is farther from point xA (τA) than sphere SR , then no mediatorino can

hit particle T . (11) xT (τE ) ∈ SR , sv = +1: Mediatorinos m go from the surface of SR

away from particle A. Since sphere Sw is inside sphere SR , only the mediatorinos that
are at time τA located close to xm−

(
r̂T
)

can hit particle T . (12) xT (τE ) ∈ SR , sv = −1:
Mediatorinos m go from the surface of SR toward particle A. Since sphere Sw is inside
sphere SR , only the mediatorinos that are at time τA located close to xm+

(
r̂T
)

can hit
particle T . (13) xT (τE ) ∈ C+

R,c, sv = +1: Mediatorinos m go from the surface of SR away

from particle A. Since sphere Sw is in C+
R,c which is closer to point xA (τA) than sphere SR ,

then no mediatorino can hit particle T . (14) xT (τE ) ∈ C+
R,c, sv = −1: Mediatorinos m go

from the surface of SR toward particle A. Since sphere Sw is in C+
R,c which is closer to point

xA (τA) than sphere SR , the mediatorinos that are at time τA close to xm−
(
r̂T
)

and xm+
(
r̂T
)

can hit particle T . (15) xT (τE ) ∈ C−
R , sv = +1: Mediatorinos m go from the surface of SR

away from particle A. SinceC−
R is from xA (τA) on the opposite side thanSR , no mediatorino

can hit particle T . (16) xT (τE ) ∈ C−
R , sv = −1: Mediatorinos m go from the surface of SR

toward particle A. Even C−
R is from xA (τA) on the opposite side than SR , the mediatorinos

that are close to xm−
(
r̂T
)

and xm+
(
r̂T
)

can hit particle T . (17) xT (τE ) ∈ R
3 \ CR , sv = −1:

Since the intersection of double conesCw andCR is empty, mediatorinosm cannot hit particle
T . (18) xT (τE ) ∈ R

3 \ CR , sv = −1: Similar to the previous case, since the intersection of
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Cw and CR is empty, no mediatorino can hit particle T . In total, for rT � w we get

K++
i,B

(
rT , ê

) =

⎧
⎪⎪⎨

⎪⎪⎩

|k+ (rS, ϑ) |, if rS < R, ê ∈ E+
w , xT ∈ R

3 − SR,

|k− (rS, ϑ) |, if rS > R, ê ∈ E+
w , xT ∈ SR,

|k+ (rS, ϑ) | + |k− (rS, ϑ) |, if rS > R, ê ∈ E+
w , xT ∈ C+

R, f ,

0, otherwise,

(151)

K+−
i,B

(
rT , ê

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|k+ (rS, ϑ) |, if rS < R, ê ∈ E+
w ∪ E−

w , xT ∈ SR,

|k+ (rS, ϑ) |, if rS < R, ê ∈ E−
w , xT ∈ R

3 − SR,

|k+ (rS, ϑ) |, if rS > R, ê ∈ E+
w , xT ∈ SR,

|k+ (rS, ϑ) | + |k− (rS, ϑ) |, if rS > R, ê ∈ E+
w , xT ∈ C−

R ∪ C+
R,c,

0, otherwise,

(152)

where R is given by equation (68), k+ and k− are given by equation (77), ê = ê (ϑ, ϕ) is
defined by equation (31), xT = xT (τE ), and E±

w = E (xA (τA) ,±rT , w). Since rT � w,
K+±
i,B is non-zero only for a small solid angle Ωw. The size of the solid angle can be estimated

as Ωw ∼ w2/4r2
T and K+±

i,B within that small solid angle can be estimated as a constant value

K+±
i,B

(
rT , r̂T

)
. The values of Γ

j+±
i,B and 〈F+±

i,B (rT )〉, then, can be estimated as

Γ
j+±
i,B ∼ K+±

i,B

(
rT , r̂T

) · w2

4r2
T

· r̂T , (153)

〈F+±
i,B (rT )〉 ∼ fi,B · K+±

i,B

(
rT , r̂T

) · w2

4r2
T

· r̂T . (154)

Since K+±
i,B is within Ωw approximated by a constant, we can use Γ kl++

2,B given by equa-

tions (125) and (126) to calculate Γ kl+±
i,B . In transfer I2 the direction r̂T is along +z axis

while in the herein examined transfers r̂T has a general direction given by equation (103).
Moreover, within Ωw it is K++

2,B

(
rT · ẑ, ẑ) = 1/4π , while here we use K+±

i,B

(
rT , r̂T

)
. There-

fore, we need to rotate and rescale Γ kl++
2,B to get Γ kl+±

i,B ,

Γ kl+±
i,B ∼ K+±

i,B

(
rT , r̂T

)

K++
2,B

(
rT · ẑ, ẑ) · R · Γ kl++

2,B · R−1, (155)

where R = R (ϑT , ϕT ) is the rotation matrix that rotates first by angle ϑT within plane zx
and then by angle ϕT within plane xy. When we explicitly express Γ kl+±

i,B for rT � w, we
get

Γ kl+±
i,B ∼ 4π · K+±

i,B

(
rT , r̂T

) · Γ kl++
2,B,(rot), (156)

where Γ kl++
2,B,(rot) = R · Γ kl++

2,B · R−1, or explicitly

Γ kl++
2,B,(rot) =

w2

4r2
T

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

s2
ϑ c

2
ϕ + w2

4r2
T

(
c2
ϑ c

2
ϕ + s2

ϕ − s2
ϑ c

2
ϕ

)
s2
ϑ sϕcϕ

(
1 − w2

2r2
T

)
sϑ cϑ cϕ

(
1 − w2

2r2
T

)

s2
ϑ sϕcϕ

(
1 − w2

2r2
T

)
s2
ϑ s

2
ϕ + w2

4r2
T

(
c2
ϑ s

2
ϕ + c2

ϕ − s2
ϑ s

2
ϕ

)
sϑ cϑ sϕ

(
1 − w2

2r2
T

)

sϑ cϑ cϕ

(
1 − w2

2r2
T

)
sϑ cϑ sϕ

(
1 − w2

2r2
T

)
c2
ϑ + w2

4r2
T

(
s2
ϑ − c2

ϑ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

(157)
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where sϑ = sin ϑT , cϑ = cos ϑT , sϕ = sin ϕT and cϕ = cos ϕT .
Information transfers I6 and I14 differ from transfers I22 and I30 in their definition of rT .

In the case of I6 and I14, rT is defined by

rT = xB (τE ) − xA (τA) . (158)

On the other hand, in the case of I22 and I30, rT is defined by

rT = xA (τE ) − xA (τA) , (159)

that is it can be written as

rT = 〈vA (τAB)〉 · (τB − τA) . (160)

The information transfers I22 and I30, therefore, highly depend on the behavior of particle
A.

7.21 Information transfers with τ0 < τA = τE

Information transfers I4, I12, I20 and I28 satisfy τ0 < τA = τE . Let vector z, rS and rT be
defined as

z = xB (τA) − xA (τA) , (161)

rS = rT = xT (τE ) − xS (τ0) , (162)

respectively. In transfers I4 and I12 with T = B, mediatorino m is at time τA co-local with
particle B, and thus generally not co-local with particle A. The value of �q is, therefore,
determined by law 1-(b). In the transfers with τ0 < τA = τE , the value of �q is taken from
particle A only if mediatorino m hits particle T . The probability of hitting randomly located
particle T by mediatorino m with radius w is

Pw (rS) = Ωw (rS) /4π, (163)

where Ωw for rS ≤ w satisfies Ωw (rS) = 4π and for rS > w it is given by equation (108).
Therefore, we can immediately write that for i ∈ {4, 12}

K+
i,A (rS, ϑ, ϕ) = Pw (rS) · δd (ϑ − π, ϕ − π) . (164)

The corresponding Γ
j+
i,A and Γ kl+

i,A are given by

Γ
j+
i,A = Pw (rS) · (0, 0,−1)T , (165)

Γ kl+
i,A = Pw (rS) ·

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ . (166)

The mean force on particle A can for i ∈ {4, 12} and rS > 0 be expressed as

〈F+
i,A (rS)〉 = − fi,A · Pw (rS) · ẑ, (167)

where fi,A is given by equation (41) with 〈νi,A〉 given by equation (111).
In transfers I20 and I28 with T = A, mediatorino m is at time τA co-local with particle A,

and thus �q is always determined by law 1-(a). For i ∈ {20, 28}, we obtain

K+
i,A (rS, ϑ, ϕ) = Pw (rS) /4π. (168)
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The corresponding Γ
j+
i,A and Γ kl+

i,A are given by

Γ
j+
i,A = (0, 0, 0)T , (169)

Γ kl+
i,A = Pw (rS) ·

⎛

⎝
1/3 0 0
0 1/3 0
0 0 1/3

⎞

⎠ . (170)

The mean force on particle A can for i ∈ {20, 28} be expressed as

〈F+
i,A (rS)〉 = 0. (171)

In all the four cases, �q is at time τA transferred from particle A to particle B directly via
an entanglement. Therefore, for i ∈ {4, 12, 20, 28},

K+±
i,B (rT , ϑ, ϕ) = K+

i,A (rS, π − ϑ, π + ϕ) , (172)

Γ
j+±
i,B = −Γ

j+
i,A , (173)

Γ kl+±
i,B = Γ kl+

i,A , (174)

〈F+±
i,B (rT )〉 = −〈F+

i,A (rS)〉. (175)

This concludes our investigation of directional distributions Ki,A and Ki,B of the studied
information transfers.

7.22 Transformations and symmetries

Symmetries are important properties of each information transfer. We distinguish two types of
symmetries, fundamental and emergent. By the fundamental symmetry, we mean a symmetry
in a transfer of �q from particle A to particle B. By the emergent symmetry we mean any
non-fundamental symmetry which emerges when we combine several transfers. It can be a
combination of different paths, such as a transfer of information from particle A to particle
B with a transfer of information from particle B to particle A within the same transfer Ii ,
or it can be a combination of several different information transfers. Since transfers I2, I4,
I6 and I28 do not require any entanglement between A and B, each of them may naturally
demonstrate emergent symmetries. The other information transfers require ε

(
R, R̄

)
in order

to work, and thus they may demonstrate emergent symmetries if there is also ε
(
R̄, R

)
. In

the following text, if not said otherwise, we investigate only the fundamental symmetries of
information transfers.

7.22.1 Q transformation–reverting sign of �q

For all the information transfers we have expressed only K+
i . The sign + specifies that �q at

time τA points away from particle A. Now we express K−
i with �q pointing toward particle

A. The value K−
i can be obtained from K+

i by transformation

�q
Q→ −�q. (176)

This transformation will be called Q transformation, and quantities of information transfers
being symmetric with respect to this transformation will be called Q-symmetric. Since the
reversion of �q to −�q is within Ki

(
r, ê
)

equivalent to the change of the direction of ê to
its opposite, for particle A we have
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K−
i,A

(
rS, ê

) = K+
i,A

(
rS,−ê

)
, (177)

Γ
j−
i,A (rS) = −Γ

j+
i,A (rS) , (178)

Γ kl−
i,A (rS) = Γ kl+

i,A (rS) . (179)

The second sign in the superscript of K±±
i,B specifies the orientation of vm (τAB) which is

independent of the orientation of �q. It means that the transformation �q → −�q does not
change the second sign. Thus, for particle B we have

K−±
i,B

(
rT , ê

) = K+±
i,B

(
rT ,−ê

)
, (180)

Γ
j−±
i,B (rT ) = −Γ

j+±
i,B (rT ) , (181)

Γ kl−±
i,B (rT ) = Γ kl+±

i,B (rT ) . (182)

Some information transfers have Q-symmetric Ki,A and some have Q-symmetric Ki,B .
In transfers I1, I2, I3, I9, I10, I11 (τ0 = τA, S = A), I20 and I28 (τ0 < τA = τE , T = A)
particle A is at time τA co-local with mediatorino m, and thus xcA(τA) = xcm(τA). Law 1,
then, guarantees point-symmetric Ki,A, and thus we can immediately write for the transfers
Ii with i ∈ {1, 2, 3, 9, 10, 11, 20, 28} :

K−
i,A

(
rS, ê

) = K+
i,A

(
rS, ê

)
, (183)

Γ
j−
i,A (rS) = Γ

j+
i,A (rS) = 0, (184)

Γ kl−
i,A (rS) = Γ kl+

i,A (rS) , (185)

that is transfers I1, I2, I3, I9, I10, I11, I20 and I28 have Q-symmetric Ki,A. Moreover, in
transfers I1, I3, I9, I11, I20 and I28, transferring �q to particle B always via at least one
entanglement implies Ki,B

(
rT , ê

) = Ki,A
(
rS,−ê

)
. Therefore, for i ∈ {1, 3, 9, 11, 20, 28} :

K−±
i,B

(
rT , ê

) = K+±
i,B

(
rT , ê

)
, (186)

Γ
j−±
i,B (rT ) = Γ

j+±
i,B (rT ) = 0, (187)

Γ kl−±
i,B (rT ) = Γ kl+±

i,B (rT ) . (188)

In other words, information transfers I1, I3, I9, I11, I20 and I28 have Q-symmetric Ki,B .

7.22.2 V transformation–reverting sign of vm (τAB)

The role of vm (τAB) is to propagate mediatorinos during time interval (τA, τB) through space.
Since for a given �q there are two possible directions of vm (τAB), parallel and antiparallel
to �q, we can ask about the symmetry of information transfers with respect to

vm (τAB)
V→ −vm (τAB) , (189)

hereafter called V transformation. We already know that Ki,A is not influenced by vm (τAB)

because Ki,A describes the distribution of a change of q on particle A at time τA, while
vm (τAB) moves mediatorino m during time interval (τA, τB), which is later than at time τA.
Consequently, all the information transfers have V -symmetric Ki,A. It is expressed in the
way that Ki,A never has the second superscript sign.

Now, let us focus on Ki,B . In the information transfers with τA = τB there is no τAB , and
consequently V transformation does not affect Ki,B in these transfers. We can, therefore,
write that for i ∈ {1, 4, 5, 9, 12, 13, 17, 20, 21, 25, 28, 29} :
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K±−
i,B

(
rT , ê

) = K±+
i,B

(
rT , ê

)
. (190)

In total, the transfers with τA = τB have V -symmetric both Ki,A and Ki,B . Now, let us ask
about V symmetry only in the transfers with τA < τB . We exclude transfers I2, I3, I10 and
I11 because they do not have sv = −1, and thus V transformation has no good meaning
in these transfers. In the case of the transfers with τA < τB < τE , �q is transferred to
particle B via one or two entanglements. Consequently, Ki,B is independent of the location
of mediatorino m at time τB , and thus Ki,B is also independent of velocity vm (τAB) which
moved the mediatorino to that location. In total, the transfers with τA < τB < τE have
V -symmetric Ki,B , or equivalently, for i ∈ {7, 15, 19, 23, 27, 31} :

K±−
i,B

(
rT , ê

) = K±+
i,B

(
rT , ê

)
. (191)

The remaining information transfers, that is transfers I6, I14, I18, I22, I26 and I30, are the
only transfers that may violate V -symmetry in Ki,B .

Directional distribution Ki is not the only thing that can be affected by V transformation.
V transformation is purely spatial, and thus it can also affect the distribution of mediatorinos
in space. The distribution of mediatorinos in space directly depends on the distribution of the
velocities of mediatorinos. Let V±

i,m (ϑ, ϕ, t) be the distribution of the velocities of media-
torinos at time t , provided the sign in the superscript is equal to the sign of sv . Since �q and
vm (τAB) are either parallel or antiparallel to each other, for t ∈ (τA, τB) we can immediately
write

V±
i,m (ϑ, ϕ, τAB) =

{
K±
i,A (ϑ, ϕ) , if sqsv = 1,

K∓
i,A (ϑ, ϕ) , if sqsv = −1.

(192)

We are interested in the transfers with τA < τB because during time interval (τA, τB) medi-
atorinos are real and perhaps detectable. Mediatorinos are detectable at least for transfers
I2 and I6, which not only satisfy τA < τB , but also their mediatorinos can finish on a yet
unknown particle T , that is on a particle of a detector. We do not go into further details. For
now, it is sufficient to keep in mind that asymmetry with respect to V -transformation may be
measurable via the distribution of mediatorinos in space which depends on Vi,m .

7.22.3 P transformation–reverting spatial axes

One of the most important symmetries is symmetry with respect to parity transformation.
Parity transformation, P , can be written as

x
P→ −x, y

P→ −y, z
P→ −z. (193)

Location r is a spatial vector, and thus is transformed as

r
P→ −r. (194)

On the other hand, a specific quantity q (with direction e for �q) can be either vectorial or
pseudovectorial. If q is a vector, then the parity transformation reverts the orientation of �q.
That is, for a vectorial q and all i ∈ F we get

K±P
i,A

(
r, ê
) = K±

i,A

(−r,−ê
)
, (195)

K+±P
i,B

(
r, ê
) = K+±

i,B

(−r,−ê
)
, (196)

K−±P
i,B

(
r, ê
) = K−±

i,B

(−r,−ê
)
. (197)

123



   27 Page 48 of 63 Eur. Phys. J. Plus          (2022) 137:27 

If q is a pseudovector, then the parity transformation does not affect the orientation of �q,

K±P
i,A

(
r, ê
) = K±

i,A

(−r, ê
)
, (198)

K+±P
i,B

(
r, ê
) = K+±

i,B

(−r, ê
)
, (199)

K−±P
i,B

(
r, ê
) = K−±

i,B

(−r, ê
)
. (200)

The distribution of mediatorinos in space depends on Vi,m (τAB), which is the distribution
of the velocities of mediatorinos during time interval (τA, τB). Since velocity vm (τAB) is
a vector, parity transformation reverts its orientation. The distribution of the velocities of
mediatorinos is, therefore, transformed as

V±P
i,m

(
ê, τAB

) = V±
i,m

(−ê, τAB
)
. (201)

This, along with a psuedovectorial �q , can be used to reveal asymmetry with respect to parity
transformation.

7.22.4 T transformation–reverting flow of time

Another important symmetry is the symmetry with respect to T transformation, the transfor-
mation which reverts the flow of time. Postulate 2 says that time flows only in one direction,
and the order of events plays an important role in deciding how each information transfer
works and what minimal set of entanglements it requires. If time flowed in the opposite
direction, most information transfers could not do all their steps in the reversed order, and
consequently they could not transfer information �q from particle B to particle A. Firstly,
because in the transfers with T = R̄ and ε (m, R) there is no way to create at time τE
mediatorino m with entanglement ε (m, R). This is because particle R̄ does not know the
identity of particle R. It comes from no requirement for entanglement ε

(
R̄, R

)
, that is even

if the entanglement existed, it would not be used in the transfer. Secondly, in the information
transfers which require ε

(
R, R̄

)
, the reverting the flow of time implies that mediatorino m

must go from a specific particle T to a specific particle S. The problem is that although in
most transfers the mediatorino checks for the presence of specific particle T , it never checks
for the presence of specific particle S. There is, therefore, no mechanism which would guar-
antee that mediatorino m finished within the reversed time its journey on the specific particle
S. Transfers I4, I6 and I28, which require ε (m, R), face the same problem. Mediatorino m
must within the reversed time finish on the specific particle S = R. All the above-mentioned
information transfers, therefore, cannot demonstrate the fundamental time symmetry. That
is, if they ever demonstrate time symmetry, it must be an emergent time symmetry. On the
other hand, the remaining transfer I2 does not require any entanglement. If it also does not
require any specific particle S for the interaction, then it is the only transfer that demonstrates
fundamental time symmetry.

7.23 Types of information transfers

Information transfers can be grouped by forces they produce. We know five types of forces
and each of them will be denoted by a letter: Z means a zero average force,C means a constant
force, A means an asymptotically free force, S means a speed-dependent force, and finally
L means a force based on the co-locality, i.e., 〈F〉 ∝ 1/rd−1. Since the force on particle A
is not always the same as the force on particle B, the type of an information transfer will be
represented by two letters, the first letter specifying the type of the force on particle A and
the second letter specifying the type of the force on particle B. Two same letters indicate that
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�q is transferred to particle B via one or more entanglements without any loss. On the other
hand, if the letters are not the same, then the second letter is always L indicating that the
co-locality plays an important role in the force on particle B. For example, I2 is a ZL-type
information transfer because 〈F2,A〉 is a zero average force (equation (60)) and 〈F2,B〉 is a
force based on the co-locality (equation (127)). The type of every fundamental information
transfer is shown in the periodic table of information transfers, in table 3. We can see there
that 28 fundamental information transfers belong to 10 types of transfers.

8 Fundamental interactions

Let us examine whether the fundamental interactions we experience in our Universe can be
represented by at least one information transfer.

8.1 Electromagnetic scattering

8.1.1 Force between every two charged particles

Electromagnetic scattering works between every two electrically charged particles, no matter
how many particles are present. On the other hand, information transfers requiring entan-
glement ε

(
R, R̄

)
do not work between every two particles when the number of interacting

particles exceeds 2Nmax
ε + 1. It means that such information transfers cannot represent elec-

tromagnetic scattering. The only information transfers able to do so are those which do not
require entanglement ε

(
R, R̄

)
in order to work, that is transfers I2, I4, I6 and I28.

8.1.2 Attractive and repulsive force

Electromagnetic force can be attractive or repulsive depending on the electric charge of the
interacting particles. Since information transfer I28 always produces a zero force, that is
〈F28,A〉 = 〈F28,B〉 = 0, it is neither attractive nor repulsive. The immediate consequence is
that transfer I28 cannot represent the electromagnetic force.

Let us assume both variants, attractive force and repulsive force, can be achieved by a single
mediator, that is there are no two types of mediator such that one causes only an attractive
force and the other causes only a repulsive force. Whether electromagnetic force between
particles A and B is attractive or repulsive depends on the sign of the electric charge of
the particles, and relates to the transferred momentum �p, which, like any other transferred
conserved quantity, is determined at time τA. It means that at time τA the mediator must
know the sign of the electric charge of particle B in order to determine the orientation of �p
correctly.

Information transfers I2 and I6 work in the way that they do not rely on entanglement
ε (M, B) nor ε (A, B). It means that even if these entanglements existed, the transfers would
not use them. A consequence is that mediator M never finds out the value of the electric charge
of particle B non-locally, it always finds out the value locally. However, in these transfers,
the mediator is co-local with particle B only at time τB . Since τB > τA, the mediator finds
out the sign of the electric charge of particle B later than it is needed for the determination
of �p. Moreover, postulate 2 forbids mediator M from going backward in time from τB to
τA and using there the value of the charge. In total, information transfers I2 and I6 do not
guarantee an attractive/repulsive force based on the electric charge of particle B, and thus
the electromagnetic scattering cannot be represented by I2 nor by I6.
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8.1.3 Electromagnetic scattering is I4

The remaining information transfer I4 is the only transfer able to exhibit force working
between every two electrically charged particles and depending on the sign of their charge.
It means that electromagnetic scattering can only be represented by I4, the transfer which
satisfies τ0 < τA = τB = τE and R = S = A, and which requires entanglement ε (M4, A)

in order to work. Let us mention several consequences.
First of all, the value �q is determined at time τA, that is at the end of transfer I4. It means

that �q does not exist until the last moment of the transfer. This is a very important quantum
property saying that during transfer I4 the value �q is not stored in any hidden variable. It
also means that mediator M4 is always a virtual.

Directional distribution of electric force is, due to equation (164), K4 ∝ δd (ϑ, ϕ). It means
that, except for the sign, the force can have only one direction. Thus, in the calculation of the
average force 〈F4,A〉 and 〈F4,B〉 by equations (40) and (37), no information is lost. In other
words, electromagnetic interaction between two point particles can be fully described by a
vector theory. Moreover, due to equation (24), the direction of the average force satisfies

〈F4,B (τA)〉 ‖ xB (τA) − xA (τA) . (202)

It means that the force on particle B points along the line going through xA (τA), the current
location of particle A, rather than xA (τ0), the location of particle A at the moment it emitted
the mediator. This result, which is known already in classical electrodynamics [35], is usually
explained in the way that the direction of the electric force is due to the length contraction
along the direction of the movement of particle A, that is it is a consequence of special
relativity. This may indicate that special relativity is already included in the model and we
do not need to postulate it explicitly.

8.2 Strong scattering

8.2.1 Interaction between color particles

It is usually said that strong interaction works between every two color particles. However,
the groups of color particles held together by gluons and usually seen in todays’ experiments
are mesons and baryons, that is pairs and triplets of valence quarks. There has also been found
evidence for tetraquarks and pentaquarks [36–39], but they are under an active investigation,
and we still do not know much about their dynamics. In other words, our established knowl-
edge is limited to groups of no more than three color particles. For the minimal possible
value of Nmax

ε , Nmax
ε = 1, it is required to have a group of at least four particles in order to

be able to safely determine whether an information transfer can work among all the particles
of the group. Therefore, we do not feel safe to assume that every color particle can interact
by gluons with every other color particle. Instead, we focus on the properties which are the
signatures of strong interaction: confinement and asymptotic freedom.

8.2.2 Confinement

In experiments we can see groups of quarks, but no single free quark has ever been observed
[10]. The impossibility to separate a single quark, the so-called quark confinement, is caused
by the fact that such a separation would require infinite energy, no matter what the initial
distance r0 between two quarks is,
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∀r0 ∈ R :
∣∣∣∣∣∣

∞∫

r0

〈Fi (r)〉 dr
∣∣∣∣∣∣
= ∞. (203)

Information transfer Ii cannot demonstrate confinement if none of forces 〈Fi,A〉, 〈Fi,B〉 and
|〈Fi,A〉|+ |〈Fi,B〉| satisfy equation (203). Information transfers I1, I3, I9, I11, I20 and I28 are
on average zero, 〈Fi,A〉 = 〈Fi,B〉 = 0, and thus they never satisfy condition (203). Similarly,
transfers I2 and I10 satisfy 〈Fi,A〉 = 0 and 〈Fi,B (r)〉 ∝ 1/r2, and transfers I4 and I12 satisfy
〈Fi,A (r)〉 ∝ 1/r2 and 〈Fi,B (r)〉 ∝ 1/r2. None of these transfers satisfy condition (203). In
total, information transfers I1 to I4, I9 to I12, I20 and I28 do not demonstrate confinement,
and therefore they cannot represent strong scattering.

8.2.3 Asymptotic freedom

Experiments show that quarks inside hadrons in high-energy limit demonstrate the so-called
asymptotic freedom [40]. It means that when distance r of two quarks decreases, the color
force between the quarks also decreases and eventually vanishes. That is, for every distance
r0 > 0:

0 = lim
r→0

|〈Fi (r)〉| < |〈Fi (r0)〉| < lim
r→∞ |〈Fi (r)〉| . (204)

Let us examine which information transfers with confinement can also demonstrate asymp-
totic freedom. We require asymptotic freedom on both particles A and B because a quark in
a hadron may play both these roles simultaneously.

In information transfers I5, I7, I13, and I15, forces 〈Fi,A〉 and 〈Fi,B〉 are the functions of
the speed of particle A and not the functions of distance r between particle A and particle B.
Consequently, they cannot systematically satisfy condition (204). Similarly, in information
transfers I6 and I14, force 〈Fi,A〉 is the function of the speed of particle A and not any
function of distance r between particles A and B and 〈Fi,B (r)〉 ∝ 1/r2. These transfers
also cannot systematically satisfy condition (204). Hence, information transfers I5 to I7 and
I13 to I15 do not demonstrate asymptotic freedom, and thus they cannot represent strong
scattering. In information transfers I17, I19, I25 and I27 there is | limr→0〈Fi,A (r)〉| = fi,A,
and | limr→0〈Fi,B (r)〉| = fi,B . Since fi > 0, these transfers do not satisfy condition (204).
It means they also cannot represent strong scattering. In information transfers I18 and I26,
| limr→0〈Fi,A (r)〉| = fi,A �= 0 and 〈Fi,B (r)〉 ∝ 1/r2. Therefore, transfers I18 and I26 also
do not satisfy condition (204), and cannot represent strong scattering. Information transfers
I22 and I30 satisfy asymptotic freedom on particle A but not on particle B, 〈Fi,B〉 ∝ 1/r2.
Consequently, these transfers can also be ruled out of the strong scattering candidates.

8.2.4 Strong scattering candidate transfers

The only information transfers satisfying both confinement and asymptotic freedom on both
particles are transfers I21, I23, I29 and I31. The question whether all these four information
transfers really represent strong scattering we leave open and assume they do. Let us look at
some consequences for strongly interacting particles.

Information transfers I21, I23, I29 and I31 have common features. Firstly, they all satisfy
τ0 < τA < τE and S = B. For short distances r between two strongly interacting particles
A and B, r < R, the total mean force 〈Fi 〉 is composed of force contributions with every
possible direction. That is, every force contribution with a given direction partially or fully
cancels out a force contribution with the opposite direction. The smaller the distance r is, the
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better the cancellation is. For r = 0, the force contributions from all the directions are equal,
and thus the total force is zero. This is how asymptotic freedom is demonstrated in strong
interaction. The transferring of �q always via one or two entanglements over an arbitrary
distance makes the force between strongly interacting particles not vanish at large distances.
This, along with the efficiency of the transfers of �q via entanglement(s), causes all the
mutually interacting particles to be very close to each other, i.e., they are confined. Since
strongly interacting particles do not interact with not entangled particles, the proximity of
the entangled particles, then, makes strong scattering be seemingly of a short range. This
results in the fact that quarks of two hadrons do not interact with each other in the same
way as quarks of the same hadron do. The requirement Nmax

ε ≤ 2 for particle R makes
strongly interacting particles highly selective in what particles they interact with. This results
in forming groups with a small number of strongly interacting particles rather than with a
large number of strongly interacting particles. All the candidate information transfers for
strong scattering satisfy equations (87) and (99), and thus the average force corresponds to a
potential

V (r) =

⎧
⎪⎪⎨

⎪⎪⎩

f · r2

3R
, if r ≤ R,

f ·
(
r − R + R2

3r

)
, if r > R,

(205)

where f and R are r -independent values. First of all, this potential behaves linearly at large
distances, and thus satisfies Wilson criterion for confinement [41]. Moreover, for r > R the
potential has, except for ignorable additive constant f R, the same form as Cornell potential
[42]

V (r) = σ · r + κ

r
, (206)

which is, nowadays, the most promising potential of strong interaction presented in the
literature.

There is a subtle difference between strong interaction mediated by transfers I21, I23, I29

and I31 and conventional strong interaction within current quantum chromodynamics. In the
former model, it is possible to have strongly interacting particle C which does not interact
strongly with strongly interacting particle D (just because there is no entanglement between
C and D). However, in the latter model every two color particles interact strongly with each
other. Only a group of at least two color particles may be neutral in the sense that it does
not interact strongly with color particle D. Only an experiment can decide which of these
models of strong interaction (if any) is realized in our Universe.

8.3 Weak decay

8.3.1 Decay as information transfer

Information transfers can represent a decay. If an information transfer represents a decay,
then it behaves as if it had only the part when �q is taken from particle A. It means the
part when �q is transferred to particle B is highly suppressed. The very low probability of
transferring �q to particle B is the reason why the whole process is not recognized as a
transfer, and is considered to be a decay of particle A.

The information transfers with τB < τE have, according to equation (94), a very high
probability of transferring �q to particle B, and thus they can be ruled out of the candidates
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able to represent a decay. Consequently, the information transfers which can represent a
decay satisfy τB = τE .

8.3.2 Weak decay as two-phase process

Weak decay is not a point decay of Fermi type, it always has two phases. In the first phase,
the intermediate boson is virtual, while in the other phase the products of the decay are real
particles.

Information transfers I2, I10, I18 and I26 satisfy τ0 = τA < τB = τE . It means they only
have time phase [τA, τB ] where mediator M is real. These transfers, therefore, behave as
a point decay with no characteristic time corresponding to the lifetime of the intermediate
boson. In conclusion, transfers I2, I10, I18 and I26 cannot represent weak decay. Similarly,
information transfers I4, I12, I20 and I28 with timing τ0 < τA = τB = τE have only time
phase [τ0, τA], where mediator M is virtual. It means they do not have any time phase where
the products of the decay were real particles. Consequently, transfers I4, I12, I20 and I28

cannot represent weak decay. So far not ruled out information transfers are I6, I14, I22 and
I30 which satisfy τ0 < τA < τB = τE .

8.3.3 Weak decay as parity violating process

Weak interaction violates symmetry with respect to parity transformation [43]. The parity
violation can be quantified by the longitudinal polarization defined [44] as

Pl = N+ − N−

N+ + N− , (207)

where N+ and N− is the number of emitted particles with positive and negative helicity,
respectively. Any non-zero value Pl means parity violation. The values N+ and N− can be
expressed as

N+ = N

2π∫

0

π/2∫

0

I (ϑ, ϕ) sin ϑ dϑ dϕ, (208)

N− = N

2π∫

0

π/2∫

0

I (π − ϑ, π + ϕ) sin ϑ dϑ dϕ, (209)

where N is the total number of emitted particles and I (ϑ, ϕ) is the angular distribution of a
product of the decay. The angular distribution I (ϑ, ϕ) is usually taken in the form [45]

I (ϑ, ϕ) = (const.) · (1 + α cos ϑ) . (210)

This form is reasonable for point processes, but weak decay is not a point process. Thus,
instead of using equation (210), we use

I (ϑ, ϕ) = Vi,M (τAB) , (211)

Vi,M being the directional distribution of the velocities of mediatorinos defined by equa-
tion (192). If we align the spin of the system along z-axis, we still do not know whether in a
concrete situation the spin will be parallel or antiparallel to z defined by equation (69). That
is, we do not know whether we should use Vi,M (ϑ, ϕ, τAB) or Vi,M (π − ϑ, π + ϕ, τAB) in
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equation (211). Similarly, we do not know whether a concrete process is described by V+
i,M

or by V−
i,M . Since all the possible results of Pl differ only in the sign, we evaluate the absolute

value of Pl . Let for a moment write vA = vA (τ0A), vM = vM (τ0A) and R = vM · (τA − τ0).
If we calculate |Pl | with the help of equation (207), then for information transfers I6 and I14

we get

|Pl | =
{ vA

vM
, if vA ≤ vM ,

1, if vA > vM ,
(212)

and for information transfers I22 and I30 we get

|Pl | =
{ rS

R
, if rS ≤ R,

1, if rS > R,
(213)

where rS is the distance of particle A and particle B. The speed vM cannot exceed the speed
of light and τA − τ0 is of the same order as W± lifetime. That is, R ∼ 10−17 m. Even if
particles A and B were very close to each other, such as quarks with the distance of order
rS ∼ 10−15 m, it is definitely rS > R. In total, for most situations information transfers I22

and I30 predict |Pl | = 1.
Experiments show [46,47] that in beta decay

|Pl | = ve

c
, (214)

where ve is the speed of emitted electrons. The experimental result does not depend on any
distance. Moreover, the result does not seem to be exactly 1, especially for slow electrons.
Therefore, I22 and I30 can be ruled out of the candidates able to describe weak decay.

8.3.4 Weak decay candidate transfers

The remaining information transfers I6 and I14 behave as non-point decays with characteristic
time τA − τ0 corresponding to the intermediate boson lifetime and predict speed-dependent
parity violation. Consequently, they are the best candidates for a weak decay. Transfer I6
does not require any entanglement between A and B in order to work. So it can work for
both entangled and non-entangled particles, that is it can represent a universal weak decay.
On the other hand, transfer I14 requires ε

(
R, R̄

)
, and consequently it cannot represent a

universal decay. Since the only change of conserved quantities on particle A occurs at time
τA, time τA is the time when particle A decays and not time τ0. Transfers I6 and I14 satisfy
τ0 < τA, and thus their mediator M is during (τ0, τA) composed of two parts, m1 and m2.
Since the universal computer system is passively optimal, each of the parts survives the time
of the decay of particle A, τA, and the decay of particle A has always three products. They
come from A, m1 and m2. Moreover, since parts m1 and m2 were before the decay mutually
interrelated, we expect two of the products of the decay to be also somehow interrelated.

Equation (212) with vA > vM does not seem to occur in experiments. Therefore, the
situation with vA > vM either does not exist (because of kinematical or dynamic reasons)
or we have not built a suitable experiment which would induce this condition. On the other
hand, equation (212) is for vA ≤ vM formally the same as equation (214). Nonetheless, it
is important to note that these equations express different things. In order to see it, we need
to realize that vA (τ0A) is not the speed of an electron that is emitted in the decay. This is
because the electron is created at time τA while vA (τ0A) is the speed of particle A during
interval (τ0, τA), that is before particle A decays. For further examination of the speed ratio
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we would need to know exactly what happens at time τA, that is we would need a definition
of momentum, energy, their conservation laws and average decay. Since we still do not have
them in the model, we do not try to explain the speed ratio here.

8.4 Gravity

8.4.1 Non-zero force for every particle

Gravity is assumed to be the interaction by which all matter and energy interact [48]. It
means that gravity works between particles A and B even if they are not entangled. Since
information transfers Ii with i ∈ F \ {2, 4, 6, 28} require entanglement ε

(
R, R̄

)
in order to

work, they cannot represent gravity. Thus, the only viable candidates for gravity are transfers
I2, I4, I6 and I28.

Gravitational force, though very weak, is systematically non-zero. However, due to equa-
tions (171) and (175) transfer I28 always satisfies 〈F28,A〉 = 〈F28,B〉 = 0. Therefore, we
conclude that information transfer I28 cannot represent gravity.

Let us assume there exists at least one particle R such that mediators can in no way entangle
particle R (for example, because due to incomplete access of the mediators to particle R,
the self-entanglement of particle R is hidden from the mediators). Information transfers I4
and I6 require entanglement ε (M, R) in order to work, but particle R cannot be entangled
in that way. It means that particle R cannot interact by transfers I4 and I6. Since particle R,
like any other particle, interacts by gravity, transfers I4 and I6 cannot represent gravity. Note
that since particle R cannot interact by transfer I4, it must be electrically neutral, and since
it cannot interact by transfer I6 (and obviously also by I14), it must be stable with respect to
weak decay. In total, if such a non-entangleable neutral stable particle exists (maybe graviton
itself is the particle), then the only information transfer able to represent gravity is I2.

8.4.2 Ruling out transfers I4 and I6

Information transfers I4 and I6 can be ruled out of the candidates for gravity even if the
assumed non-entangleable particle does not exist.

General relativity shows that gravity between two point-like particles must be described at
least by a tensor theory and cannot be reduced to a vector theory without loss of some relevant
properties. In information transfer I4 between two point-like particles A and B directional
distributions K4,A and K4,B are given by equations (164) and (172), respectively. Since both
distributions are proportional to directional Dirac delta function δd , the transfer is purely
vectorial. It means that the transfer cannot completely describe tensor-based gravity even
in the case of interaction of two point-like particles. Consequently, information transfer I4
cannot represent gravity.

Every particle in the Universe must be both the source of gravity (plays the role of particle
A) and the target of gravity (plays the role of particle B). If there was a type of particles
whose particles play in gravity only the role of particle A (and never the role of particle B),
then two particles of this type would not gravitationally interact with each other. Similarly,
if there existed a type of particles whose particles play in gravity only the role of particle B,
then two particles of this type would also not gravitationally interact with each other. The
consequence is that the total gravitational force between two particles exerted on of each of
them is 〈FA〉 + 〈FB〉. Since within the remaining information transfers I2 and I6, for vA = 0
there is 〈F2〉 = 〈F6〉, we need to use vA �= 0 in order to distinguish them. Moreover, since
gravity is at large distances attractive, we are interested in the case of sq = −1. For small
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speed vA � vm and sq = −1, we obtain

〈F−
6,A〉 + 〈F−±

6,B〉 ∝ fi,A
2vA

3vm
ẑ + fi,B

4π

(
1 ± 2vA

vm
cos ϑT

)
w2

4r2
T

r̂T , (215)

where z is defined by equation (69). If gravity depended on vA in that way, the first term
would lead to an exponential acceleration of particle A in the direction of +z-axis even for
small speed vA. However, gravity does not depend on the speed of particle A in this way.
Therefore, information transfer I6 cannot represent gravity. Ruling I6 out of the candidates
for gravity is also supported by the fact that gravity does not violate parity, however, as we
have seen earlier transfer I6 violates parity.

8.4.3 Gravity as transfer I2

Information transfer I2 with R = S = A, T = B and τ0 = τA < τB = τE is the only tensor-
based and parity non-violating transfer which exerts a non-zero force and can work among
all the particles in the Universe. Therefore, it is the only transfer which can represent gravity.
Let us mention several of its properties.

Gravity, in order to work, does not require any entanglement, and thus is the only fully
local information transfer. It means that gravity should define and also affect what being local
really means. Gravity satisfies τ0 = τA, which means that the value of �q , i.e., the value of
momentum and other transferable conserved quantities that will be transferred to the final
particle, is determined at the beginning of the transfer. This is the key difference from the
other three fundamental interactions which all satisfy τ0 < τA. The value of �q remains
constant and stored in mediator M2 until the end of the transfer. The determination of �q at
the very beginning of the transfer and keeping it unchanged to the very end makes gravity
very classical, something we do not expect in genuine quantum gravity. However, there is
no way to avoid this property in gravity, and denying it will always lead to constructing
non-viable quantum gravity models. Thus, gravity can be described by quantum framework
only when the equation of motion respects the constancy of �q . Since τ0 = τA < τB = τE ,
mediator M2 is always real and never virtual.

8.5 Unification of fundamental interactions

We distinguish three types of unification of the fundamental interactions: conceptual, mathe-
matical and phenomenological unification. By the conceptual unification we mean that there
exists a set of postulates which implies the existence of all the known fundamental inter-
actions. Postulates 3 and 4 are such postulates, and therefore we claim that the conceptual
unification has been achieved by this article.

By the mathematical unification we mean that there exists a single mathematical frame-
work being able to fully describe all the fundamental interactions. Evidently, building such
a framework is substantially easier when the conceptual unification is achieved. Although
we have not expressed the full framework, we claim that its spatial part should be based on
Qi (x,q), a quantity which expresses dynamic differences among the information transfers
and which gives rise to directional distribution Ki

(
x, ê
)
. Our model predicts that electromag-

netic, weak and strong interactions can be within that framework described identically only
within time interval (τ0, τA) because at time τ0 they differ in the usage of entanglements,
and at time τA each of them starts to behave in a different way. Gravity with τ0 = τA has no
time interval (τ0, τA), and thus it cannot be described in the way the other three fundamental
interactions can be.
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It is widely believed that there exists a threshold point (such as a threshold energy) above
which all the known fundamental interactions behave in the same way. This is what we mean
by the phenomenological unification. Since two different information transfers use different
timings and/or different role distributions, they are intrinsically different. Thus, we claim
that the phenomenological unification may exist only when an extreme environment above
the threshold point hides the differences between the transfers. In other words, the recovery
of broken symmetries is nothing more than an environmental inability to demonstrate all
the details of the transfers. Electromagnetic, weak and strong interaction may be unified
phenomenologically when all τA − τ0 of the corresponding information transfers become
of the same order. Since gravity satisfies τA − τ0 = 0, the phenomenological unification of
all the four fundamental interactions is possible only when the threshold point is at the very
limit of the system.

9 Discussion

We have shown a way to derive a model of the fundamental interactions and their basic phys-
ical properties from four simple postulates and one dynamic law. It required thinking compu-
tationally about physics, the complement to thinking physically about computation usually
used in quantum computation and quantum information [49]. Namely, we have assumed our
Universe is a computer system, have developed some analogies between physics and com-
puter science, and have used computer science concepts to say how our Universe may work.
We have started with a derivation of the list of the fundamental information transfers, that is
the list of different ways information can be transferred from one particle to another. Then, for
each non-instantaneous loopless information transfer we have found out what entanglements
it requires, how it influences interacting point-like particles, and what basic symmetries it
has. This made possible to identify what information transfers can represent gravitational
scattering, electromagnetic scattering, strong scattering and weak decay (see the periodic
table 3). Besides that, we have learnt several lessons about properties of the individual fun-
damental interactions. For example, we have seen that confinement in strong interaction can
be derived from first principles (asked in [50,51]) and that parity violation in weak decay
comes from the geometry of the interaction (asked in [52,53]). We have also seen that gravity
fundamentally differs from the other three interactions in how it behaves at its initial point,
and that this behavior brings an unexpected constraint on quantum gravity (asked in [54]).
At a general level, we have learnt that the fundamental interactions are intrinsically different
from each other. This fact substantially limits the phenomenological unification of the funda-
mental interactions at high energies. On the other hand, we have learnt that the fundamental
interactions cannot have arbitrary properties—each interaction inherits its properties from
the used information transfer(s). This implies that, in contrast to string theories [55,56], the
presented model has a quite modest landscape, and thus indirectly limits several multiverse
models [57].

The presented model can and definitely should be tested. Since it resides naturally in the
low energy limit, many of its properties are testable with today’s technologies. The key pre-
diction of the model is the existence of entanglements in most of the fundamental interactions.
We encourage this conceptual prediction to be tested because its experimental falsification
would mean that the fundamental interactions of our Universe could not be described by the
model presented in this study. The model would fail once and for all. For electromagnetic
scattering and weak decay the model predicts an entanglement between the intermediate vec-
tor boson-antiboson pair and its source particle. For every two strongly interacting particles,
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it predicts that they strongly interact with each other only if they are entangled. Gravity is
the only fundamental interaction which does not require any entanglement.

The presented model has the potential to solve some Standard Model puzzles and confront
other models. Since this article is only its starting point, there are plenty of things which should
be done in order to be used in that way: 1) We have not studied all the information transfers.
Namely, we have not studied 4 instantaneous information transfers with τ0 = τE and S �= T ,
and 32 loop transfers with S = T . We have also not touched 8 self-transfers with only two
participants: particle A = B and mediator M . 2) We have not identified in the model all
the known processes, such as weak scattering, strong hadronization and Higgs mechanism,
whether or not they are proper information transfers or an integral part of some transfer(s). Is
the acquiring of mass related to the zero average forces (I1, I3, I9, I11, I20 and I28) or even to
any information transfer whose dispersion tensor has all diagonal elements non-zero? Finding
the answer may shed light on mass hierarchy [58] and also even on the hadron mass spectrum
[59]. If dark energy is an interaction and if it is independent of gravity (i.e., if it is not described
by the cosmological constant model [60,61] or any modified gravity model, such as f (R) [62]
and DGP model [63]), is it related to constant forces (I17 to I19 and I25 to I27)? We can also
ask about the not mapped information transfers. Transfers I6 and I14 are the universal and the
non-universal version of weak decay, respectively. They differ only in the particle that plays
the role of particle R. Does it mean that transfer I10 is a non-universal gravity, and that I12 is a
non-universal electromagnetic interaction (e.g., playing a role in the fractional electric charge
of quarks)? 3) We have not identified how electric charge, spin, baryon number, mass and
other important physical quantities appear in the model. Similarly, we have not derived the
set of elementary particles that the model implies. Nevertheless, the variants of the individual
information transfers (caused by sq and sv) together with grouping the transfers with the same
requirements (such as the existence of ε

(
R, R̄

)
) seem to be a plausible way to do that. Finding

the set of elementary particles that the model implies may shed light on particle generation
problem [16] and help to set a limit on technicolor [64,65] and see-saw mechanism models
[66]. 4) We have not expressed a relation between quantum field theory and the presented
model. If we limit ourselves only to perturbation regime of quantum field theory, this can be
done by finding a relation between Feynman diagrams and q-diagrams. Since the derivation
of asymptotic freedom in Yang-Mills theories requires a series of Feynman diagrams [67]
but only one q-diagram, q-diagrams seem to be a very efficient way to describe processes.
5) We have not developed fully relativistic quantum model. Nevertheless, we have seen
that the model already contains several quantum and relativistic properties without even
postulating quantum theory and special relativity. Since we are convinced that every viable
theory of all the fundamental interactions must imply quantum theory and relativity theory,
at least as limit cases, we should first find out whether they can be fully derived from the
presented model rather than impose them via an explicit postulation. 6) We have not done any
detailed analysis of the fundamental information transfers. For example, we have seen that
the dispersion tensor of gravity tends to disperse particles in the maximal way. Thus, once
we leave out the assumption of point-like particles, the dispersion may be responsible for the
weakening of gravitational force even in 3D space. Does it explain gauge hierarchy problem
[58] without the necessity of extra-dimensional models [68–70] and string models [71]?
Similarly, we have seen that despite the fact that weak decay and strong interaction satisfy
the same condition τ0 < τA < τE , only strong interaction transfers conserved quantities to
particle B always via entanglements, that is instantaneously over an arbitrary distance. Can
this behavior resolve strong CP problem [72–74] and/or tell us why we have not observed
axions so far [75]? Finally, we have seen that the model contains many information transfers.
Can any of them explain the recent measurements of the anomalous magnetic dipole moment
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of the muon [76,77], or is a more complex mechanism needed? 7) We have not asked many
questions which could not be answered before the model has been presented. For example:
Do there exist new interactions we have not observed yet? And most importantly, if so, what
are their properties? We have seen that in our Universe exist various information transfers.
However, we do not see any reason why our Universe would use only a few information
transfers (i.e., What would prevent our Universe from using the other transfers?) and why it
would be exactly that particular combination of transfers, no matter what the combination
is. Therefore, in agreement with postulates 3 and 4, we propose that every fundamental
information transfer is demonstrated in our Universe. Theoretical studies of the transfers
should reveal their properties in detail and make possible to build ingenious experiments
capable of testing that proposition. Everything is substantially easier when we know exactly
what we are looking for.
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