Skip to main content
Log in

Direct microextraction for red lakes detection in painting layers by Raman spectroscopy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Identification of red lakes—obtained by precipitation or adsorption of dyes onto an inorganic substrate—is of fundamental importance for the study of their manufacturing technology and for their conservation, but this poses an analytical challenge. We show how the detection of red lakes in painting layers by Raman spectroscopy can be enhanced. We propose to exploit the solubility of red lakes and their subsequent recrystallization in a hydrogel as a way to isolate the lake from the painted matrix. This analytical method has been found to be an effective tool for the identification of cochineal and madder lakes present in painting layers. The obtained results are compared to available experimental data and DFT calculations, and it is possible to define the organometallic complex present in the hydrogel after the micro-extraction process. We test and demonstrate the efficiency of this methodology on naturally aged mock-up panel paintings and on a historical painting. Reflectance spectra and colorimetric measurements by Fiber Optics Reflectance Spectroscopy are employed to support the Raman data and to evaluate the colorimetric parameters following the micro-extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data are available on request.]

References

  1. J. Kirby and R. White, The identification of Red Lake Pigment Dyestuffs and a Discussion of Their Use, National Gallery Technical Bulletin, vol. 17, 1996, pp. 56–80. JSTOR, www.jstor.org/stable/42616104. Accessed 21 June 2021.

  2. J.H. Hofenk de Graaff (2004) The Colourful Past. Abegg-Stiftung, Riggisberg, and Archetype, London

  3. E. West Fitzhugh, H. Schweppe, J. Winter, Non aggregated colloidal silver nanoparticles for surface enhanced resonance Raman spectroscopy, in Artists’ Pigments: A Handbook of Their History and Characteristics, vol. 3, ed. by E. West Fitzhugh (National Gallery of Art, Washington, 1997), pp. 109–142

    Google Scholar 

  4. C. Grazia, C. Clementi, C. Miliani, A. Romani, Photochem. Photobiol. Sci. 10, 1249 (2011). https://doi.org/10.1039/c1pp05039g

    Article  Google Scholar 

  5. L.F.C. de Oliveira, H.G.M. Edwards, E.S. Velozo, M. Nesbitt, Vib. Spectrosc. 28, 243 (2002). https://doi.org/10.1016/S0924-2031(01)00138-2

    Article  Google Scholar 

  6. A. Chieli, J. Sanyova, B. Doherty, B.G. Brunetti, C. Miliani, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 162, 86 (2016). https://doi.org/10.1016/j.saa.2016.03.007

    Article  ADS  Google Scholar 

  7. M. Leona, M.V. Canamares, J. Raman Spectrosc. 38, 1259 (2007). https://doi.org/10.1002/jrs.1761

    Article  ADS  Google Scholar 

  8. M.V. Cañamares, J.V. Garcia-Ramos, C. Domingo, S. Sanchez-Cortes, J. Raman Spectrosc. 35, 921 (2004). https://doi.org/10.1002/jrs.1228

    Article  ADS  Google Scholar 

  9. S.N. Meloan, L.S. Valentine, H. Puchtler, Histochemie 27, 87 (1971). https://doi.org/10.1007/BF00284950

    Article  Google Scholar 

  10. J. Kirby, M.R. van Bommel, A. Verhecken, Natural colorants for dyeing and lake pigments: practical recipes and their historical sources (Archetype Publications, London, 2014)

    Google Scholar 

  11. M. Merrifield, Original teatrises on art painting, vol. II, ed. by J. Murray (Albemarle Street, London, 1849), pp. 641–717

  12. D. Saunders, J. Kirby, Natl. Gallery Tech. Bull. 15, 79 (1994)

    Google Scholar 

  13. J. Sanyova, Contribution à l’etude de la structure et propri ‘et’ es des laques’ de garance, PhD. Thesis, Universite Libre de Bruxelles, Belgium (2001)

  14. J. Wouters, Stud. Conserv. 30(3), 119–128 (1985)

    Google Scholar 

  15. J. Sanyova, Microchim. Acta 162, 361 (2008). https://doi.org/10.1007/s00604-007-0867-z

    Article  Google Scholar 

  16. D. Fabbri, G. Chiavari, H. Ling, J. Anal. Appl. Pyrolysis 56, 167 (2000). https://doi.org/10.1016/S0165-2370(00)00092-9

    Article  Google Scholar 

  17. I. Degano, P. Tognotti, D. Kunzelman, F. Modugno, Herit. Sci. 5, 1 (2017). https://doi.org/10.1186/s40494-017-0120-y

    Article  Google Scholar 

  18. A. Romani, C. Clementi, C. Miliani, G. Favaro, Acc. Chem. Res. 43, 837 (2010). https://doi.org/10.1021/ar900291y

    Article  Google Scholar 

  19. C. Clementi, B. Doherty, P.L. Gentili, C. Miliani, A. Romani, B.G. Brunetti, A. Sgamellotti, Appl. Phys. A Mater. Sci. Process. 92, 25 (2008). https://doi.org/10.1007/s00339-008-4474-6

    Article  ADS  Google Scholar 

  20. A. Claro, M.J. Melo, J.S. Seixas de Melo, K.J. van den Berg, A. Burnstock, M. Montague, R. Newman, J. Cult. Herit. 11, 27 (2010). https://doi.org/10.1016/j.culher.2009.03.006

    Article  Google Scholar 

  21. G. Verri, C. Clementi, D. Comelli, S. Cather, F. Piqué, Appl. Spectrosc. 62, 1295 (2008). https://doi.org/10.1366/000370208786822296

    Article  ADS  Google Scholar 

  22. M. Aceto, A. Agostino, G. Fenoglio, A. Idone, M. Gulmini, M. Picollo, P. Ricciardi, J.K. Delaney, Anal. Methods 6, 1488 (2014). https://doi.org/10.1039/C3AY41904E

    Article  Google Scholar 

  23. T. Vitorino, A. Casini, C. Cucci, M.J. Melo, M. Picollo, L. Stefani, Appl. Phys. A Mater. Sci. Process. 121, 891 (2015). https://doi.org/10.1007/s00339-015-9360-4

    Article  ADS  Google Scholar 

  24. L. Pronti, J.B. Mazzitelli, M.P. Bracciale, L. Massini Rosati, C. Vieillescazes, M.L. Santarelli, A.C. Felici, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 200, 10 (2018). https://doi.org/10.1016/j.saa.2018.04.008

    Article  ADS  Google Scholar 

  25. I. Marcaida, M. Maguregui, H. Morillas, C. García-Florentino, V. Pintus, T. Aguayo, M. Campos-Vallette, J.M. Madariaga, Anal. Bioanal. Chem. 409, 2221 (2017). https://doi.org/10.1007/s00216-016-0169-6

    Article  Google Scholar 

  26. L. Burgio, R.J.H. Clark, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57(7), 1497–1521 (2001). https://doi.org/10.1016/S1386-1425(00)00495-9

    Article  ADS  Google Scholar 

  27. I. Osticioli, A. Zoppi, E.M. Castellucci, J. Raman Spectrosc. 37, 974 (2006). https://doi.org/10.1002/jrs.1587

    Article  ADS  Google Scholar 

  28. F. Rosi, M. Paolantoni, C. Clementi, B. Doherty, C. Miliani, B.G. Brunetti, A. Sgamellotti, J. Raman Spectrosc. 41, 452 (2010). https://doi.org/10.1002/jrs.2447

    Article  Google Scholar 

  29. A. Idone, M. Aceto, E. Diana, L. Appolonia, M. Gulmini, J. Raman Spectrosc. 45, 1127 (2014). https://doi.org/10.1002/jrs.4491

    Article  ADS  Google Scholar 

  30. F. Pozzi, K.J. Van Den Berg, I. Fiedler, F. Casadio, J. Raman Spectrosc. 45, 1119 (2014). https://doi.org/10.1002/jrs.4827

    Article  ADS  Google Scholar 

  31. E. Van Elslande, S. Lecomte, A.S. Le Hô, J. Raman Spectrosc. (2008). https://doi.org/10.1002/jrs.1994

    Article  Google Scholar 

  32. C. Lofrumento, M. Ricci, E. Platania, M. Becucci, E. Castellucci, J. Raman Spectrosc. 44, 47 (2013). https://doi.org/10.1002/jrs.4162

    Article  ADS  Google Scholar 

  33. M. Ricci, C. Lofrumento, E. Castellucci, M. Becucci, J. Spectrosc (2016). https://doi.org/10.1155/2016/1380105

    Article  Google Scholar 

  34. M. Ricci, E. Trombetta, E. Castellucci, M. Becucci, J. Raman Spectrosc. 49, 997 (2018). https://doi.org/10.1002/jrs.5335

    Article  ADS  Google Scholar 

  35. A. Sansonetti, M. Bertasa, C. Canevali, A. Robbolini, M. Anzani, D. Scalarone, J. Cult. Herit. 44, 285–296 (2020). https://doi.org/10.1016/j.culher.2020.01.008

    Article  Google Scholar 

  36. L. Benedetti, Vita e Pensiero - Pubbl Dell’Università Cattol. Del Sacro Cuore Fasc. 2, 443 (2014)

    Google Scholar 

  37. A.Wallet, in Historical painting Techniques, Materials, and studio Practice, ed. by E. Hermes, M. Peek and A. Wallet, (Allen Press, Inc., Lawrence, Kansas, 1995), p. 40

  38. T. Vitorino, M.J. Melo, L. Carlyule, V. Otero, Stud. Conserv. 61, 255 (2016). https://doi.org/10.1179/2047058415Y.0000000006

    Article  Google Scholar 

  39. G. Zhuang, S. Pedetti, Y. Bourlier, P. Jonnard, C. Mèthirvier, P. Walter, C.M. Pradier, M. Jaber, J. Phys. Chem. C 124, 12370 (2020). https://doi.org/10.1021/acs.jpcc.0c00746

    Article  Google Scholar 

  40. C. Cennini, Il libro dell'arte, Capitolo XLIV, ed. a cura Fernando Tempesti, Milano (1975)

  41. C.G. Lalli, F. Innocenti, OPD Restauro 27, 309 (2015)

    Google Scholar 

  42. M.S. Frinta, Mitteilungen des Kunsthistorischen Institutes in Florenz, 20. Bd., H. 3 (1976), pp.271–300

  43. E. Platania, C. Lofrumento, E. Lottini, E. Azzaro, M. Ricci, M. Becucci, Anal. Bioanal. Chem. 407, 6505 (2015). https://doi.org/10.1007/s00216-015-8816-x

    Article  Google Scholar 

  44. R. Sève, Practical formula for the computation of CIE 1976 hue difference. Color Res. Appl. 21, 314 (1996). https://doi.org/10.1002/col.5080210405

    Article  Google Scholar 

  45. B. Fonseca, C. Schmidt Patterson, M. Ganio, D. MacLennan, K. Trentelman, Herit Sci. 7, 1 (2019). https://doi.org/10.1186/s40494-019-0335-1

    Article  Google Scholar 

  46. L.P. Sarma, P.S.R. Prosad, N. Ravikumar, J. Raman Spectrosc. 29, 851 (1998). https://doi.org/10.1002/(SICI)1097-4555(199809)29:9%3c851::AID-JRS313%3e3.0.CO;2-S

    Article  ADS  Google Scholar 

  47. M. Pagliai, I. Osticioli, A. Nevin, S. Siano, G. Cardini, V. Schettino, J. Raman Spectrosc. 49, 668 (2018). https://doi.org/10.1002/jrs.5334

    Article  ADS  Google Scholar 

  48. I. Osticioli, M. Pagliai, D. Comelli, V. Schettino, A. Nevin, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 222, 117273 (2019). https://doi.org/10.1016/j.saa.2019.117273

    Article  Google Scholar 

  49. M.A. Maynez-Rojas, E. Casanova-González, J.L. Ruvalcaba-Sil, Spectrochim Biomol. Spectrosc. Acta Part A Mol (2017). https://doi.org/10.1016/j.saa.2017.02.019

    Article  Google Scholar 

  50. R. S. Berns, Billmeyer and Saltzman's Principles of Color Technology, vol. 124, 3rd edn (2000).

  51. D 4303—03: Standard Test Methods for Lightfastness of Colorants Used in Artists’ Materials (2003_

  52. P. Soubayrol, G. Dana, L. D. S. Rkactionnelle, F. Bpt, U. Pierre, P. Jussieu, P.P. Man, 34, 638. https://doi.org/10.1002/(SICI)1097-458X(199608)34:8<638::AID-OMR926>3.0.CO;2-5

Download references

Acknowledgements

The work was performed within the project on Advanced Raman spectroscopy, Joint Advanced Education Project, co-financed by the Tuscany Region with the resources of the POR FSE 2014-2020—Axis A Employment, "Giovanisì" as part of the Intervention program called “CNR4C”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Striova.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2747 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocenti, S., Ricci, M., Lanterna, G. et al. Direct microextraction for red lakes detection in painting layers by Raman spectroscopy. Eur. Phys. J. Plus 136, 1081 (2021). https://doi.org/10.1140/epjp/s13360-021-02069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02069-5

Navigation