Skip to main content
Log in

Status of the LARES and LARES 2 space experiments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

LARES and LARES 2 are two laser-ranged satellites of the Italian Space Agency (ASI) to test general relativity and gravitational physics. LARES was successfully launched on 13 February 2012 and provided a number of tests of an intriguing phenomenon predicted by General Relativity called “dragging of inertial frames”, or “frame-dragging”, with an accuracy of almost one per cent. LARES provided other tests of gravitational physics, among which a test of the equivalence principle with an accuracy of about one part in a billion, using materials never tested before and at unprecedented new ranges. LARES 2, of ASI, is ready for launch in 2022, to provide tests of dragging of inertial frames with an accuracy of almost one part in a thousand and other accurate tests of gravitational physics. In this paper, the latest results obtained with the LARES satellite are reported and a design comparison of LARES 2 with respect to the LARES satellite is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

Code availability

Not applicable.

References

  1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  2. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1975)

    MATH  Google Scholar 

  3. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, New Jersey, 1995)

    Book  Google Scholar 

  4. Y.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics Stars and Relativity, vol. I (University of Chicago Press, Chicago, 1971)

    Google Scholar 

  5. S. Weinberg, Gravitation and Crif Okosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  6. S.G. Turyshev, Experimental tests of general relativity: recent progress and future directions. Phys. Usp. 52, 1 (2009). https://doi.org/10.3367/UFNe.0179.200901a.0003

    Article  ADS  Google Scholar 

  7. C.M. Will (2014) The confrontation between general relativity and experiment. Living Rev. Relativ. 17:4. https://doi.org/10.12942/lrr-2014-4

  8. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  ADS  MathSciNet  Google Scholar 

  9. I.H. Stairs, Testing general relativity with pulsar timing. Living Rev. Relativ. (2003). https://doi.org/10.12942/Irr-2003-5

    Article  MATH  Google Scholar 

  10. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965). https://doi.org/10.1103/PhysRevLett.14.57

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499

    Article  ADS  Google Scholar 

  12. S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  MATH  Google Scholar 

  13. S. Perlmutter, Supernovae, dark energy, and the accelerating universe. Phys. Today 56, 53–60 (2003). https://doi.org/10.1063/1.1580050

    Article  Google Scholar 

  14. R.R. Caldwell, Dark energy. (Physics World, 2004), https://physicsworld.com/a/dark-energy/. Accessed 20 August 2021

  15. I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, V. Gurzadyan, R. Koenig, R. Matzner, R. Penrose, G. Sindoni, Testing general relativity and gravitational physics using the LARES satellite. Eur. Phys. J. Plus 127, 133 (2012). https://doi.org/10.1140/epjp/i2012-12133-8

    Article  Google Scholar 

  16. I. Ciufolini, E.C. Pavlis, F. Chieppa, E. Fernandes-Vieira, J. Pérez-Mercader, Test of general relativity and measurement of the Lense-Thirring effect with two Earth satellites. Science 279, 2100–2103 (1998). https://doi.org/10.1126/science.279.5359.2100

    Article  ADS  Google Scholar 

  17. I. Ciufolini, E.C. Pavlis, A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431, 958–960 (2004). https://doi.org/10.1038/nature03007

    Article  ADS  Google Scholar 

  18. I. Ciufolini, E.C. Pavlis, R. Peron, Determination of frame-dragging using Earth gravity models from CHAMP and GRACE. New Astron. 11, 527–550 (2006). https://doi.org/10.1016/j.newast.2006.02.001

    Article  ADS  Google Scholar 

  19. I. Ciufolini, E.C. Pavlis, J. Ries, R. Koenig, G. Sindoni, A. Paolozzi, H. Newmayer, in General Relativity and John Archibald Wheeler, ed. by I. Ciufolini and R. Matzner. Astrophysics and Space Science Library, vol 367, pp. 371–434. Springer, Dordrecht, 2010. https://doi.org/10.1007/978-90-481-3735-0_17

  20. C. Reigber, F. Flechtner, R. Koenig, U. Meyer, K. Neumayer, R. Schmidt, P. Schwintzer, S. Zhu, GRACE orbit and gravity field recovery at GFZ Potsdam—first experiences and perspectives. Eos. Trans. AGU 83(47), Fall Meet. Suppl. Abstract G12B–03 (2002).

  21. B.D. Tapley, The GRACE mission: status and performance assessment. Eos. Trans. AGU 83(47), Fall Meet. Suppl. Abstract G12B–01 (2002)

  22. I. Ciufolini, On a new method to measure the gravitomagnetic field using two orbiting satellites. Nuovo Cimento A 109, 1709–1720 (1996). https://doi.org/10.1007/BF02773551

    Article  ADS  Google Scholar 

  23. C.W. Everitt et al., Gravity Probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 22110 (2011). https://doi.org/10.1103/PhysRevLett.106.221101

    Article  Google Scholar 

  24. I. Ciufolini, A. Paolozzi, E.C. Pavlis, J. Ries, R. Koenig, R. Matzner, G. Sindoni, The LARES space experiment: LARES orbit, error analysis and satellite structure, in General relativity and John Archibald Wheeler, ed. by I. Ciufolini, R. Matzner, Astrophysics and Space Science Library, vol 367, (Springer, Dordrecht, 2010), pp. 467–492. https://doi.org/10.1007/978-90-481-3735-0_19

  25. I. Ciufolini, A. Paolozzi, E.C. Pavlis, R. Koenig, J. Ries, V. Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris, H. Khachatryan, S. Mirzoyan, A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Eur. Phys. J. C 76, 120 (2016). https://doi.org/10.1140/epjc/s10052-016-3961-8

    Article  ADS  Google Scholar 

  26. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, J. Ries, R. Matzner, R. Koenig, C. Paris, V. Gurzadyan, R. Penrose, An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites. Eur. Phys. J. C 79, 872 (2019). https://doi.org/10.1140/epjc/s10052-019-7386-z

    Article  ADS  Google Scholar 

  27. D. Lucchesi et al., A 1% measurement of the gravitomagnetic field of the earth with laser-tracked satellites. Universe 6(9), 139 (2020). https://doi.org/10.3390/universe6090139

    Article  ADS  Google Scholar 

  28. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, J. Ries, V. Gurzadyan, R. Koenig, Satellite laser-ranging as a probe of fundamental physics. Sci. Rep. 9, 15881 (2019). https://doi.org/10.1038/s41598-019-52183-9

    Article  ADS  Google Scholar 

  29. M.R. Pearlman, C.E. Noll, E.C. Pavlis, F.G. Lemoine, L. Combrink, J.J. Degnan, G. Kirchner, Ulrich Schreiber, The ILRS: approaching 20 years and planning for the future. J. Geodesy 93, 2161–2180 (2019). https://doi.org/10.1007/s00190-019-01241-1

    Article  ADS  Google Scholar 

  30. W.J. Bencze, D.B. DeBra, L. Herman, T. Holmes, M. Adams, G.M. Keiser, C.W.F. Everitt, On-orbit performance of the Gravity Probe B drag-free translation control system. in Advances In The Astronautical Sciences, vol. 125, Guidance & Control 2006, ed. By S.D. Jolly and R.D. Culp, pp. 425–440 (Univelt, Inc. 2006)

  31. J.G. Marsh, F.J. Lerch, R.G. Williamson, Precision geodesy and geodynamics using Starlette laser ranging. J. Geophys. Res. 90(B11), 9335–9345 (1985). https://doi.org/10.1029/JB090iB11p09335

    Article  ADS  Google Scholar 

  32. E.C. Pavlis, S.G. Poulose, S.C. Rowton, J.J. McCarthy, S.B. Luthcke, GEODYN operations manuals (Contractor Report, Raytheon, ITSS, Landover MD, 1998).

  33. C.F. Martin, D.P. Rubincam, Effects of earth albedo on the LAGEOS I satellite. J. Geophys. Res. 101(B2), 3215–3226 (1996). https://doi.org/10.1029/95JB02810

    Article  ADS  Google Scholar 

  34. D.P. Rubincam, On the secular decrease in the semimajor axis of LAGEOS’s orbit. Celest. Mech. 26, 361–382 (1982). https://doi.org/10.1007/BF01230417

    Article  ADS  MATH  Google Scholar 

  35. A. Paolozzi, I. Ciufolini, C. Vendittozzi, Engineering and scientific aspects of LARES satellite. Acta Astronaut. 69, 127–134 (2011). https://doi.org/10.1016/j.actaastro.2011.03.005

    Article  ADS  Google Scholar 

  36. T.L. Smith, A.L. Erickcek, R.R. Caldwell, M. Kamionkowski, Effects of Chern-Simons gravity on bodies orbiting the Earth. Phys. Rev. D 77, 024015 (2008). https://doi.org/10.1103/PhysRevD.77.024015

    Article  ADS  Google Scholar 

  37. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment. Eur. Phys. J. Plus 132, 336 (2017). https://doi.org/10.1140/epjp/i2017-11635-1

    Article  Google Scholar 

  38. I. Ciufolini, E.C. Pavlis, G. Sindoni, J. Ries, A. Paolozzi, R. Matzner, R. Koenig, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur. Phys. J. Plus 132, 337 (2017). https://doi.org/10.1140/epjp/i2017-11636-0

    Article  Google Scholar 

  39. I. Ciufolini, R. Matzner, V. Gurzadyan, R. Penrose, A new laser-ranged satellite for General Relativity and space geodesy: III. De Sitter effect and the LARES 2 space experiment. Eur. Phys. J. C 77, 819 (2017). https://doi.org/10.1140/epjc/s10052-017-5339-y

    Article  ADS  Google Scholar 

  40. I. Ciufolini, R. Matzner, J. Feng, D.P. Rubincam, E.C. Pavlis, J.C. Ries, G. Sindoni, A. Paolozzi, C. Paris, A new laser-ranged satellite for General Relativity and space geodesy: IV. Thermal drag and the LARES 2 space experiment. Eur. Phys. J. Plus 133, 333 (2018). https://doi.org/10.1140/epjp/i2018-12174-y

    Article  Google Scholar 

  41. I. Ciufolini, Theory and Experiments in General Relativity and other Metric Theories, PhD Dissertation, Univ. of Texas, Austin (Pub. Ann Arbor, Michigan, 1984).

  42. I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278 (1986). https://doi.org/10.1103/PhysRevLett.56.278

    Article  ADS  Google Scholar 

  43. B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins, NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89–3, Austin, Texas (1989).

  44. I. Ciufolini, P. Farinella, A.M. Nobili, D. Lucchesi, L. Anselmo, ASI-NASA Study on LAGEOS III, CNR, Rome, Italy (1989).

  45. I. Ciufolini, A comprehensive introduction to the LAGEOS gravitomagnetic experiment: from the importance of the gravitomagnetic field in physics to preliminary error analysis and error budget. Int. J. of Mod. Phys. A 04, 13 (1989). https://doi.org/10.1142/S0217751X89001266

    Article  Google Scholar 

  46. J.C. Ries, Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, PhD Dissertation, Univ. of Texas, Austin (1989).

  47. R. Matzner et al., LARES satellite thermal forces and a test of general relativity. Proc. MetroAeroSpace (2016). https://doi.org/10.1109/MetroAeroSpace.2016.7573269

    Article  Google Scholar 

  48. A. Brotzu, F. Felli, D. Pilone, A. Paolozzi, I. Ciufolini, Toughness evaluation of LARES satellite tungsten alloy. Procedia Eng. 109, 517–524 (2015). https://doi.org/10.1016/j.proeng.2015.06.259

    Article  Google Scholar 

  49. A. Paolozzi, I. Ciufolini, G. Sindoni, C. Paris, The LARES 2 satellite: new challenges for design and ground test. Aerotec. Missili Spaz. 97, 135–144 (2018). https://doi.org/10.1007/BF03404767

    Article  ADS  Google Scholar 

  50. A. Paolozzi, G. Sindoni, F. Felli, D. Pilone, A. Brotzu, I. Ciufolini, E.C. Pavlis, C. Paris, Studies on the materials of LARES 2 satellite. J. Geod. 93, 2437–2446 (2019). https://doi.org/10.1007/s00190-019-01316-z

    Article  ADS  Google Scholar 

  51. A. Paolozzi, F. Felli, D. Pilone, A. Brotzu, I. Ciufolini, Development and analysis of a new alloy candidate for LARES 2 satellite. in Proceedings of 69th International Astronautical Congress (IAC), 1–5 October 2018 (Bremen, Germany)

  52. A. Brotzu, F. Felli, D. Pilone, A. Paolozzi, C. Paris, F. Iacoviello, C. Bellini, V. Di Cocco, Study of the fracture behavior of a CuCrZr alloy. Mat. Design Process. Comm. 2, e113 (2020). https://doi.org/10.1002/mdp2.113

    Article  Google Scholar 

  53. J.J. Degnan, Millimeter accuracy satellite laser ranging: a review. in Contributions of Space Geodesy to Geodynamics: Technology, ed. by D.E. Smith and D.L. Turcotte (1993) https://doi.org/10.1029/GD025p0133

  54. T. Otsubo, R.A. Sherwood, G.M. Appleby, R. Neubert, Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette. Stella and LARES. J. Geod. 89, 303–312 (2015). https://doi.org/10.1007/s00190-014-0776-y

    Article  Google Scholar 

  55. B.W. Clare, D.L. Kepert, The closest packing of equal circles on a sphere. Proc. R. Soc. Lond. A 405, 329–344 (1986). https://doi.org/10.1098/rspa.1986.0056

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. G. Sindoni, C. Paris, I. Ciufolini, Vibration tests of a cube corner reflector assembly of LARES2 satellite, in Proceedings of the AIDAA 2019 International Conference, pp 1627–1633 (2019).

Download references

Acknowledgements

The authors are grateful to the Italian Space Agency (ASI) for supporting LARES mission under Agreement No. 2020-7-H.H.0 and LARES 2 mission under Agreement No. 2017-23-H.0. The authors acknowledge the International Laser Ranging Service (ILRS) for tracking the two LAGEOS and the LARES satellite, for agreeing to track LARES 2 after its launch and for providing the Normal Points of their orbits.

Funding

The authors did not receive any additional founding for writing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Paris.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciufolini, I., Paris, C. Status of the LARES and LARES 2 space experiments. Eur. Phys. J. Plus 136, 1030 (2021). https://doi.org/10.1140/epjp/s13360-021-01980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01980-1

Navigation