Skip to main content
Log in

SuperKEKB operation using crab waist collision scheme

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

SuperKEKB is an electron–positron asymmetric-energy double-ring collider, which was built in Japan. It has been operated to explore new phenomena in B-meson decays. Hence, extremely higher luminosity is required. A collision scheme of low emittance with a large Piwinski angle called a “nano-beam scheme” has been adopted to achieve higher luminosity by squeezing the vertical beta function at the interaction point to be smaller than the bunch length. A “crab waist collision scheme” proposed by P. Raimondi et al. has also been adopted to improve the luminosity performance. The article presents an overview of the operation of the nano-beam and crab waist collision schemes at SuperKEKB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon requested by contacting with the corresponding author and the SuperKEKB collaboration at https://www-superkekb.kek.jp.]

References

  1. Y. Ohnishi et al., Prog. Theor. Exp. Phys. 2013, 03A011 (2013)

    Article  Google Scholar 

  2. K. Akai et al., Nucl. Instrum. Methods A907, 188 (2018)

    Article  ADS  Google Scholar 

  3. Belle II, Technical Design Report (2010). arXiv:1011.0352

  4. T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013)

    Google Scholar 

  5. M.A. Furman, LBL-30833, ESG-137 (1991)

  6. P. Raimondi, in Presented at the 2nd Workshop on Super B-Factory, Frascati (2006)

  7. SuperB Conceptual Design Report, INFN/AE-07/2, SLAC-R-856,LAL 07-15 March (2007)

  8. K. Watanabe et al., in Proceedings of IPAC’19, Melbourne, Australia, May 19–24 (2019)

  9. Y. Suetsugu et al., in Proceedings of IPAC’16, Busan, Korea, May 8–13 (2016)

  10. Y. Funakoshi et al., in Proceedings of IPAC’16, Busan, Korea, May 8–13 (2016)

  11. N. Ohuchi et al., in Proceedings of IPAC’18, Vancouver, Canada, April 29–May 4 (2018)

  12. D. Zhou et al., in Proceedings of IPAC’10, Kyoto, Japan, May 23–28 (2010)

  13. M. Masuzawa et al., in Proceedings of IPAC’16, Busan, Korea, May 8–13 (2016)

  14. Y. Ohnishi. arXiv:1904.10236 (2019)

  15. M. Zobov et al., Phys. Rev. Lett. 104, 174801 (2010)

    Article  ADS  Google Scholar 

  16. M. Hostettler, Ph.D Thesis, CERN-THESIS-2018-051, June 21 (2018)

  17. A. Abada et al., Eur. Phys. J. Special Top. 228, 261–623 (2019)

    Article  ADS  Google Scholar 

  18. CEPC Conceptual Design Report. arXiv:1809.00285 September (2018)

  19. Q. Luo et al., in Proceedings of IPAC’19, Melbourne, Australia, May 19–24 (2019)

  20. A. Bondar et al., Phys. Atom. Nucl. 76, 1072–108 (2013)

    Article  ADS  Google Scholar 

  21. P. Raimondi et al., LNF-07-003-IR (2007)

  22. D. Shatilov et al., Phys. Rev. ST Accel. Beams 14, 014001 (2011)

    Article  ADS  Google Scholar 

  23. K. Oide et al., Pys. Rev. Accel. Beams 19, 111005 (2016)

    Article  ADS  Google Scholar 

  24. K. Furukawa et al., in Proceedings of IPAC’18, Vancouver, Canada, April 29–May 4 (2018)

  25. T. Ishibashi et al., Phys. Rev. Accel. Beams 23, 053501 (2020)

    Article  ADS  Google Scholar 

  26. H. Sugimoto et al., in Proceedings of IPAC’19, Melbourne, Australia, May 19–24 (2019)

  27. Y. Ohnishi et al., Phys. Rev. ST Accel. Beams 12, 091002 (2009)

    Article  ADS  Google Scholar 

  28. R. Sugahara et al., IEEE Trans. Appl. Supercond. 26(2016)

Download references

Acknowledgements

We thank the MDI group of the Belle II collaboration for helping with the machine tuning and physics operation. Further, we thank all members of the INFN(LNF)-KEK collaboration for the fruitful discussions on the crab waist collision scheme. This work is supported by KEK and Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ohnishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohnishi, Y., Abe, T., Akai, K. et al. SuperKEKB operation using crab waist collision scheme. Eur. Phys. J. Plus 136, 1023 (2021). https://doi.org/10.1140/epjp/s13360-021-01979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01979-8

Navigation