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Abstract The nuclear matrix element (NME) of neutrinoless double-β (0νββ) decay is an
essential input for determining the neutrino effective mass, if the half-life of this decay is
measured. Reliable calculation of this NME has been a long-standing problem because of the
diversity of the predicted values of the NME, which depends on the calculation method. In
this study, we focus on the shell model and the QRPA. The shell model has a rich amount of
the many-particle many-hole correlations, and the quasiparticle random-phase approximation
(QRPA) can obtain the convergence of the calculation results with respect to the extension
of the single-particle space. It is difficult for the shell model to obtain the convergence of the
0νββ NME with respect to the valence single-particle space. The many-body correlations
of the QRPA may be insufficient, depending on the nuclei. We propose a new method to
phenomenologically modify the results of the shell model and the QRPA compensating for
the insufficiencies of each method using the information of other methods in a complementary
manner. Extrapolations of the components of the 0νββ NME of the shell model are made
toward a very large valence single-particle space. We introduce a modification factor to the
components of the 0νββ NME of the QRPA. Our modification method yields similar values
of the 0νββ NME for the two methods with respect to 48Ca. The NME of the two-neutrino
double-β decay is also modified in a similar but simpler manner, and the consistency of the
two methods is improved.

1 Introduction

Neutrinoless double-β (0νββ) decay has been studied intensively by many researchers since
the prediction by Ref. [1] as one of the clues for the new physics. Finding this decay implies
that the neutrino is a Majorana particle, and the lepton number is not conserved. In addition,
if the half-life is measured, it is possible to determine the effective neutrino mass, which
is also called the Majorana mass. The neutrino was thought to be a particle that was either
massless or very light for many decades until the discovery of the neutrino oscillation [2–5],
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which has proven its massiveness. Currently, determination of the mass scale of neutrino is
one of the major subjects of neutrino physics.

The 0νββ decay can be used as one of the limited methods for determining this mass scale.
Approximately 20 large-scale experimental projects [6–23] are in progress to observe the
0νββ decay with the assumption of the Majorana nature of the neutrino. For other methods of
using nuclei, see Refs. [24–26]. With the current status, i.e., no successful report of observing
the 0νββ decay, the upper limit of the effective neutrino mass is deduced, for example, in
Ref. [16], from the performance of the detector system, the theoretically calculated nuclear
matrix element (NME), and the phase-space factor originating from the emitted electrons.
The NME is more difficult to calculate accurately than the phase-space factor because nuclear
wave functions are necessary. The lightest nucleus used for the experiments is 48Ca [6], and
some approximation is essential for the wave functions of the involved nuclei; this necessity
is obvious for heavier candidate nuclei.

It is well known that the calculated 0νββ NMEs are distributed in the range of a factor of 2
to 3, depending on the theoretical method used to calculate the nuclear wave functions [27,28].
In particular, the shell model and quasiparticle random-phase approximation (QRPA)1, which
have been used intensively and historically, have a difference of a factor of two for several
instances of the 0νββ decay [27,28]. The shell model is the diagonalization method of the
many-body Hamiltonian, and many-particle many-hole (mpmh) correlations are included in
the wave functions. We define mpmh as at least two-particle two-hole (2p2h) configuration
mixing. The QRPA is an approximation to obtain the transitions from the ground state to
excited states, and this transition is limited to two-quasiparticle creation and annihilation.
The shell model calculations are performed in many current cases with one major valence
shell defined by the harmonic oscillator for the single particles, while the QRPA can use
a much larger single-particle space with a more realistic single-particle basis. The limit of
the valence single-particle space or many-body correlations is primarily due to the technical
limits of computation. The correct 0νββ NME should be confirmed by the convergence of
the result with respect to the extension of the valence single-particle space and the mpmh
components of the nuclear wave function. Despite the remarkable development of modern
computers, it is difficult to achieve this double convergence. The physical origin of this
difficulty is the neutrino potential included in the 0νββ NME. This two-body potential has
a singularity at the origin; therefore, a very large wave function space is necessary. For the
shell model and similar calculations of the 0νββ NME for 48Ca, the two-major valence shell
is the largest valence single-particle space ever used [30,31]. For the QRPA, an extension
called the renormalized QRPA [32,33] has been investigated.

Another problem is the effective axial-vector current coupling, denoted gA, for the nuclei.
The 0νββ NME is a linear combination of the Gamow–Teller (GT), Fermi, and tensor compo-
nents, and the coefficient includes gA. The tensor component is omitted in this study because
its contribution is small, e.g., [30,34]. The gA is equal to one in the quark-lepton level, e.g.,
[35], while it is 1.27641(45)stat(33)sys [36] for the neutron. This difference indicates that gA
is affected by the many-body effects of the quarks. Thus, the corrections of the transition
operator as a result of the many-body effects of the nucleons may be necessary, if exact
nuclear wave functions are available. Approximation of the wave functions causes another
necessity for an effective gA. There is a long history of theoretically deriving the effective
gA, e.g., [37]. The method to determine the effective gA has not yet been established for the

1 Most studies with this approach use the proton-neutron QRPA, e.g., [29], which is called
the QRPA for simplicity in this paper.
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0νββ decay. For recent attempts to theoretically derive the effective transition operators of
this decay, see Refs. [38,39] and references therein.

In this article, we propose a new approach to estimate the components of the 0νββ NME
by modifying the results of the calculations of the shell model and the QRPA by compensating
for the insufficient points of the two methods. It is difficult for the shell model to obtain the
convergence of the 0νββ NME with respect to the extension of the valence single-particle
space. The many-body correlations of the QRPA may be insufficient, depending on the
nuclei. Extrapolations of the components of the 0νββ NME of the shell model are made
with respect to the energy representing the size of the valence single-particle space, referring
to the intermediate-state energy dependence of the components of the 0νββ NME of the
QRPA. In addition, we introduce a modification factor to the components of the 0νββ NME
of the QRPA by comparing the charge-change strength functions of the experiments, the shell
model, and the QRPA. This modification factor represents the mpmh effects missing in the
QRPA. 48Ca is used in this study because the shell model calculations were performed with
the one- and two-major valence single-particle spaces [30]. We discuss the GT and Fermi
components separately to avoid the involvement of the effective-gA problem.

This paper is organized as follows: in Sect. 2, the basic equations used in this study are
summarized. In Sect. 3, we discuss the modification of the GT component of the 0νββ NME of
the shell model. Subsequently, the modification of that component of the QRPA is discussed
in Sect. 4. Section 5 discusses the Fermi component of the 0νββ NME. The 0νββ NME is
calculated from the two components in Sect. 6. In Sect. 7, we discuss the modification of
the NME of the two-neutrino double-β (2νββ) decay. Section 8 provides a summary of the
study.

2 Basic equations

Prior to subsequent discussion, we summarize the basic equations and definitions of the
quantities relevant to the 0νββ decay. The probability of this decay, e.g., [40,41], can be
written as

P0ν =
∣
∣
∣M (0ν)

∣
∣
∣

2
G0ν

( 〈mν〉
me

)2

, (1)

where M (0ν) is the NME of the 0νββ decay, and G0ν denotes the phase-space factor [42].
The effective neutrino mass is denoted by 〈mν〉, and me is the electron mass. The half-life is
inversely proportional to P0ν . The M (0ν) discussed in this study is calculated as

M (0ν) = M (0ν)
GT −

(
gV
gA

)2

M (0ν)
F . (2)

M (0ν)
GT and M (0ν)

F denote the GT and the Fermi components, respectively. The constant gV is
the vector-current coupling. The GT component with closure approximation, e.g., [43,44],
is given by
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, (3)

where p and p′ (n and n′) denote the proton (neutron) states; c†
i is the creation operator of the

single-particle state i (p or n); and the annihilation operator is ci . V
(0ν)
GT (r; ĒB) is the double
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GT transition operator of the 0νββ decay with the two-nucleon distance r , and ĒB is the
average energy of the intermediate states |B〉, which are the virtual states between the first
and second β decays. |I 〉 and |F〉 denote the initial and final states of the decay, respectively,
and the ground states are used. V (0ν)

GT

(

r; ĒB
)

is defined as

V (0ν)
GT

(

r; ĒB
) = h+

(

r, ĒB
)

σ (1) · σ (2)τ−(1)τ−(2), (4)

where σ is the spin Pauli operator, and τ− indicates that the operator changes the neutron to
the proton. Arguments 1 and 2 distinguish the two particles operated. The function h+

(

r, ĒB
)

is the neutrino potential, whose behavior is similar to that of the Coulomb potential with a
singularity at r = 0. For the equation of h+

(

r, ĒB
)

, see Ref. [28,45]. Equation (3) is used by
the shell model.

The QRPA uses two sets of intermediate states because of the features of the approxima-
tion. One is the |BI 〉 obtained on the basis of |I 〉, and the other is the |BF 〉 based on |F〉. The
equation used for M (0ν) in the QRPA approach reads

M (0ν)
GT (QRPA) =

∑

BF BI

∑

pnp′n′
〈pp′|V (0ν)

GT

(

r; ĒB
) |nn′〉〈F |c†

pcn |BF 〉〈BF |BI 〉〈BI |c†
p′cn′ |I 〉.

(5)

Below, we refer to this as M (0ν)
GT of the QRPA. The intermediate states are explicitly

used because the QRPA is suitable for calculating the transition density matrix elements
〈F |c†

pcn |BF 〉 and 〈BI |c†
p′cn′ |I 〉. For calculation of the overlap 〈BF |BI 〉, see Refs. [46,47].

The equations for the Fermi component are the same as those in Eqs. (3)–(5), except that the
double-spin operator σ (1) · σ (2) is not used.

3 Modification of GT component of 0νββ NME of shell model

3.1 Method with the help of experimental strength function

Our study is based on the shell model results of Ref. [30] and the QRPA results of Ref. [48]
for two reasons: one is that Ref. [30] includes one- and two-major valence shell calculations.
The extension of the valence single-particle space is important in our study. The other reason
is that the energy dependences of the charge-change strength functions of the two methods
are similar in the energy region up to the GT giant resonance (see Refs. [30,48]). Thus, the
physical effects of the interactions used in the two calculations are similar. This similarity is
expected because both interactions are phenomenological. The shell model results used in
this study were obtained using the interactions GXPF1B and SDPFMU-DB [30]. For other
calculations of 48Ca using the shell model or the methods related to this model, see Refs.
[31,39,40,43,49–53] and the references cited therein. See also Refs. [34,54] for other QRPA
calculations for the nucleus.

Here, we describe the technical aspects of our QRPA calculations. The particle-hole inter-
action is the Skyrme (parameter set SkM∗ [55]), and the pairing interaction is the contact
interaction with no density dependence. The strength of the pairing interaction was deter-
mined to reproduce the pairing gap deduced from the mass data using the three-point formula
[56] with a very low cutoff occupation probability for the canonical single-particle states in the
paired case or a very high cutoff energy in the unpaired case in the Hartree–Fock–Bogoliubov
calculations. These are the pairing interactions for like-particles. The isoscalar and isovector
proton-neutron pairing interactions were also used for the QRPA calculation; for these inter-
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Fig. 1 Running sums of M(0ν)
GT and M(0ν)

F for 48Ca→48Ti obtained by the QRPA [48] as functions of

the excitation energy Eexc of the intermediate nucleus 48Sc. The actual calculations were performed up to
approximately 75 MeV. No quenching factor was used

actions, see Ref. [57] and the references therein. The calculations were performed using the
M scheme. The number of single-particle levels used for the QRPA calculation was approx-
imately 1700 for each of the protons and neutrons, that is, the valence single-particle space.
The total number of QRPA solutions was nearly 600000 for both 48Ca and 48Ti. For details
of the calculation, see Ref. [48].

We obtained the running sums (cumulation) of M (0ν)
GT and M (0ν)

F from the QRPA solutions
for 48Ca→48Ti [48], as shown in Fig. 1. The horizontal axis indicates the excitation energy
Eexc of the intermediate nucleus 48Sc. The two NME components converge around Eexc

= 50 MeV. The first step of our approach is to compare the energy dependence of this
running sum with the results of the shell model calculation using the truncated valence single-
particle spaces. The shell model is usually applied to the 0νββ-NME calculation without the
intermediate states. It is necessary to consider the effective maximum Eexc of the shell model
calculations. Let us consider a simple example that only two single-particle levels are involved
in the shell model. If the one-particle one-hole (1p1h) energy is 5 MeV, and the two single-
particle levels have a ten-fold degeneracy, the 10p10h energy is 50 MeV under the assumption
that the low level is fully occupied in the lowest-energy configuration. Comparison of the
NME of this shell model and the QRPA running NME at Eexc = 50 MeV would not be useful
because the low-order particle-hole excitations of 50 MeV are not included in the shell model
calculation. Thus, the energy of the shell model corresponding to the Eexc of the QRPA is
not a trivial question. One method to address this question is to refer to the charge-change
transition strength with the angular momentum and the parity of Jπ = 1+ of the shell model
and the experimental data.

For the shell model, as shown in Fig. 2, the authors of Ref. [58] fitted the experimental
charge-change strength function of 48Ca and 48Ti by a quenching factor of 0.77 to the GT
operator in the pf valence shell calculation; the quenching factor to the strength function
is 0.59. In our observation, their fitting is good up to 13 MeV for 48Ca and 7.5 MeV for
48Ti. The NME of the double-β decay requires the products of the transition densities of
48Ca→48Sc and 48Ti→48Sc. Thus, it is inferred that the shell model with the pf valence
shell is reliable for the components of M (0ν)

GT of 48Ca up to Eexc = 7.5 MeV. Because the
valence single-particle space is essential for determination of the reliable energy region, we
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Fig. 2 Charge-change strength function dB/dE with Jπ = 1+ based on a shell model calculation (blue
curves) accounting for the pf valence shell (interaction GXPF1B) and experimental data (red bars) [59] as
functions of excitation energy of 48Sc. The left (right) figure shows the strength function from 48Ca (48Ti) to
48Sc. For the calculation, the GT− (GT+) operator σ τ− (σ τ−†) with a quenching factor 0.77 was used for the
left (right) figure. For the experimental data, the possibility is pointed out [59] that the isovector spin monopole
operator is involved in addition to the GT operator. The Gaussian function is applied to the calculation with
its square root of the variance: σ = 0.510 MeV. The experimental data have full widths at half maximum of
energy resolution of 0.2 MeV, corresponding to σ = 0.085 MeV, in the left figure, and 0.4 MeV, corresponding
to σ = 0.170 MeV, in the right figure

assume that this region does not change appreciably for other not-very-high angular momenta
and parity, as long as the same valence single-particle space is used.

A question arises as to why the quenching factor is necessary if the shell model is reliable.
One of the reasons is the necessity to add the isovector spin monopole (IVSM) operator, i.e.,
the GT operator multiplied by r2

1 (r1 is the radial variable of a nucleon), to the transition
operator, as pointed out in Ref. [59]. The discussion in this section is not affected by the
IVSM operator. However, the following point is worth noting: if the IVSM operator is used,
the missing transition strength in Eexc > 7.5 MeV in 48Ti→48Sc would not be reproduced in
the present shell model calculations with the sdpf valence shell. The two-major-shell jump is
necessary for activating the high-energy components of the IVSM operator [48,60]; thus, the
sdpf valence shell is not sufficient. An analogous discussion is applied to the tail region of
the strength function of 48Ca→48Sc. It is possible that the transition operator should be also
modified by many-body effects, as mentioned in the introduction in relation to the effective
gA.

The M (0ν)
GT of the QRPA is 1.14 at Eexc = 7.5 MeV, and the converged value is 1.88; these

values are summarized in Table 1. The shell model should include the 1p1h correlations of
the QRPA in any energy region, if the valence single-particle space is sufficiently large. Thus,
the increasing behavior of M (0ν)

GT and M (0ν)
F of the QRPA should be included in the very large

shell model calculations. We estimate the effect of the missing valence single-particle space
in the current shell model based on the ratio of the converged M (0ν)

GT of the QRPA to the
running sum up to Eexc = 7.5 MeV. The components of the 0νββ NME of the shell model
are listed in Table 2. We use the average values of the two short-range correlations (SRC):
CD-Bonn and Argonne. The average M (0ν)

GT of the pf valence-shell calculation is 0.77, and

that for the sdp f valence shell is 1.00. The converged M (0ν)
GT of the shell model is estimated

to be the shell model value multiplied by the increasing ratio of the QRPA, that is,

0.77 · (1.88/1.14) = 1.27. (6)
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Table 1 Partial M(0ν)
GT of the

QRPA at Eexc = 7.5 MeV in the
running sum and the converged
value for 48Ca

Eexc (MeV) M(0ν)
GT (QRPA)

7.5 1.14

∼ 70 1.88

Table 2 Components of M(0ν)
GT and M(0ν)

F of the shell model for 48Ca [30]. We show the results with the
interactions GXPF1B for the pf valence shell and SDPFMU-DB for the sdpf valence shell. Only the results
necessary for our discussion are referred to. SRC denotes the short-range correlation, and CD-Bonn and
Argonne are used. No quenching factor was used

SRC pf sdpf

M(0ν)
GT M(0ν)

F M(0ν)
GT M(0ν)

F

None 0.776 − 0.216 0.997 − 0.304

CD-Bonn 0.809 − 0.233 1.045 − 0.327

Argonne 0.743 − 0.213 0.953 − 0.300

The underlying assumption for this estimation is that the effects of the mpmh correlations
increase with the same ratio as the 1p1h effects. This assumption is justified by the method
discussed in the next section.

3.2 Method with the help of single-particle energy

Another simple way to compare the shell model and QRPA calculations is to identify the
largest 1p1h energy of the truncated valence single-particle space with Eexc in Fig. 1. The
single-particle energies of 48Ca are shown in Table 3 obtained using an updated Woods–Saxon
potential [61]. We use this potential because it is a very realistic single-particle potential. The
largest 1p1h energy in the neutron pf valence shell is 8.8 MeV (1 f5/2–1 f7/2), and that of
the sdpf valence shell is 14.4 MeV (1 f5/2–1d5/2). The corresponding largest 1p1h energies
of the proton are 4.71 MeV (2p1/2–1f 7/2) and 16.83 MeV (2p1/2–1d5/2), respectively. The
largest 1p1h energy in the neutron p f valence shell is similar to the Eexc = 7.5 MeV of the p f
valence-shell calculation discussed above. Thus, the two methods used to derive the effective
Eexc of the shell model are approximately consistent. We assume that the single-particle
energies are not appreciably different for 48Ca and 48Sc.

The M (0ν)
GT values of the shell model are summarized in Table 4, and M (0ν)

GT values of the
QRPA at Eexc corresponding to the largest 1p1h energies of the truncated valence single-
particle space are summarized in Table 5. In the application of the pf valence shell model to
48Ca, the role of the protons is either small or none. Thus, we refer to the neutron excitation
energy to compare the shell model and QRPA calculations. The ratio of two M (0ν)

GT (sdp f to
p f ) of the QRPA, 1.31, shown in Table 5 is consistent with the corresponding ratio of the
shell model (1.30), as shown in Table 4. This implies that the relative energy dependence of
the mpmh effects beyond 1p1h is close to that of the 1p1h effects. In addition, the components
of the NME of the QRPA order should be included in the very large valence shell model, as
mentioned before. These two points justify our approach.

Now, we can estimate the converged value of M (0ν)
GT of the shell model two ways (see

Tables 4 and 5) as

0.77 · (1.88/1.15) = 1.26, extension from the pf shell (7)
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Table 3 Neutron (left) and proton (right) single-particle energies associated with 48Ca obtained from the
Woods–Saxon potential [61]

Orbital Single-particle energy (MeV) Orbital Single-particle energy (MeV)

Neutron hole Proton hole

1d5/2 −15.61 1d5/2 −21.47

2s1/2 −12.55 1d3/2 −16.18

1d3/2 −12.53 2s1/2 −16.10

1f 7/2 −10.00

Neutron particle Proton particle

2p3/2 −4.60 1f 7/2 −9.35

2p1/2 −2.86 2p3/2 −6.44

1f 5/2 −1.20 2p1/2 −4.64

1g9/2 0.130

Table 4 M(0ν)
GT of the shell

model with two different valence
single-particle spaces and the

ratio of M(0ν)
GT to that of the pf

valence-shell calculation

Shell M(0ν)
GT , shell model Ratio to M(0ν)

GT (p f )

pf 0.77 1.0

sdpf 1.00 1.30

Table 5 M(0ν)
GT of the QRPA at Eexc corresponding to the largest 1p1h energy of the truncated valence single-

particle space (maximum Eexc). The ratio of M(0ν)
GT to that of the pf valence-shell equivalent calculation is

also shown. The last row shows the converged result

Equivalent shell Max Eexc (MeV), neutrons M(0ν)
GT , QRPA Ratio of M(0ν)

GT to M(0ν)
GT (pf )

pf 8.8 1.15 1.0

sdpf 14.4 1.51 1.31

∼ 70 1.88 1.63

Table 6 Original M(0ν)
GT of the shell model and estimated values corresponding to a very large valence

single-particle space

Original shell Original M(0ν)
GT , shell model Estimate of converged M(0ν)

GT

pf 0.77 1.26

sdpf 1.00 1.25

1.00 · (1.88/1.51) = 1.25, extension from the sdpf shell. (8)

The two estimated values and the value of Eq. (6) are distributed within a narrow region. The
results of the second method are summarized in Table 6. The estimated converged value is
64% larger than the pf valence-shell value and 25% larger than the sdpf valence-shell value.
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4 Modification of GT component of 0νββ NME of QRPA

Next, we estimate the mpmh effects and modify the QRPA NME. In this section, M (0ν)
GT

indicates that of the QRPA. In principle, the best method is to compare experimental data
involving the charge-change transition density and the result of the QRPA, and one possible
candidate is the data of the charge-change strength functions of the 1+ states in Fig. 2.
However, this scheme is not straightforward because the transition operator causing the data
of the strength functions is not clearly known. This complexity is not surprising because the
charge exchange reaction occurs as a result of the nuclear force. As mentioned previously,
this transition operator has an IVSM component. The mixing ratio of the GT and IVSM
operators is not known a priori.

In this study, we use a simple method to evaluate the mpmh effect. This refers to the
quenching factor previously known for the strength function of the shell model with the GT
operator to reproduce the data. In Ref. [58], a quenching factor of 0.77 is applied to the GT
operator for both pf and sdpf valence-shell calculations, as mentioned before. Conversely,
the quenching factors of the QRPA calculation for the GT strength function are 0.5 for
48Ca→48Sc and 0.38 for 48Ti→48Sc [48]. These factors were then determined in low-energy
regions similar to those discussed for the shell model. There are two origins of the quenching
factor in the QRPA transition strength. One is the effect of the mpmh correlations missing in
the QRPA nuclear wave functions, and the other is the modification of the transition operator,
e.g., the IVSM components and vertex corrections. It is known that the mpmh correlations
reduce the charge-change transition strength in low-energy regions [62–64] and the NME
[65]. The shell model requires only the quenching factor caused by the operator modification.
The quenching factor for the QRPA is the product of the factors from the two origins, and
the one caused by the operator modification is shared by the two methods. For 48Ca, this idea
leads to a relation between the quenching factors in the strength functions

0.5 = 0.772x, (9)

where x is the quenching factor related to the mpmh correlations of the nuclear wave func-
tions; for 48Ti, we have

0.38 = 0.772x ′, (10)

where x ′ is the same as x but for 48Ti. Thus, we obtain x = 0.847 and x ′ = 0.644. The difference
between these two values indicates that the mpmh effect is larger in 48Ti than it is in 48Ca.
The QRPA is a reasonable approximation to the doubly magic 48Ca; however, the quality of
approximation deteriorates for 48Ti. Thus, the 0νββ NME is affected. The quenching factors
are applied in the low-energy regions where the shell model is reliable.

We introduce four modification factors to 〈F |c†
pcn |BF 〉 and 〈BI |c†

p′cn′ |I 〉 when they are
used with the GT operator [see Eq. (5)]:

• the quenching factor qF
l multiplied by 〈F |c†

pcn |BF 〉 with |BF 〉 in the low-energy region
corresponding to the reliable region of the shell model with the one major valence shell,

• the enhancing factor qF
h multiplied by the same transition density matrix element but for

the high-energy region above the low-energy region, and
• q I

l and q I
h which are the same as qF

l and qF
h but for 〈BI |c†

p′cn′ |I 〉, respectively.

Enhancing factors are introduced for the high-energy region because of the sum rule of the
transition strength. The modification of the transition density matrix is shared by the strength
function associated with the charge exchange reaction and the NME of the double-β decay
involving the spin transition operator.
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The partitioning of the energy region and the quenching factor in the low-energy region
were determined based on the smoothed strength functions. Therefore, the effects of mpmh
on the 0νββ NME should be simulated in the same manner. With these modification factors,
smoothening the intermediate-state energy dependence by the Lorentzian function, and trun-
cation up to the first order with respect to (1 − q) (q is any of the four modification factors),
the following equation for the modified M (0ν)

GT is obtained:

M (0ν)
GT (modified) = M (0ν)

GT + M (0ν)
GT-1l + M (0ν)

GT-1h, (11)

M (0ν)
GT-1l = −(1 − qF

l )
1

π

∫ EF
c

−∞
dE

∑

EBF

εPF (EBF )

(EBF − E)2 + ε2

−(1 − q I
l )

1

π

∫ E I
c

−∞
dE

∑

EBI

εPI (EBI )

(EBI − E)2 + ε2 , (12)

M (0ν)
GT-1h = −(1 − qF

h )
1

π

∫ ∞

EF
c

dE
∑

EBF

εPF (EBF )

(EBF − E)2 + ε2

−(1 − q I
h )

1

π

∫ ∞

E I
c

dE
∑

EBI

εPI (EBI )

(EBI − E)2 + ε2 , (13)

PF (EBF ) =
∑

BI

∑

pnp′n′
〈pp′|V (0ν)

GT (r; ĒB)|nn′〉〈F |c†
pcn |BF 〉〈BF |BI 〉〈BI |c†

p′cn′ |I 〉,

(14)

PI (EBI ) =
∑

BF

∑

pnp′n′
〈pp′|V (0ν)

GT (r; ĒB)|nn′〉〈F |c†
pcn |BF 〉〈BF |BI 〉〈BI |c†

p′cn′ |I 〉,(15)

where EBI and EBF are the QRPA eigenenergies of the |BI 〉 and |BF 〉, respectively. The
parameter ε > 0 is a constant chosen to reproduce the width of the experimental strength
function. E I

c and EF
c are the QRPA energies distinguishing the low- and high-energy regions

associated with the initial and final states, respectively. The lowest QRPA energy of the
transition to the intermediate nucleus is identified with the transition energy to the ground
state of the intermediate nucleus. E I

c and EF
c are obtained by adding these lowest QRPA

energies to the boundary excitation energies discussed above. E I
c = 12.053 MeV and EF

c =
17.387 MeV were obtained from our numerical calculations. The deviation of the modification
factors from unity represents the modification effects. Thus, if there is no modification, the
modification terms vanish. Because the quenching factors are less than one, these factors
decrease the NME in the low-energy region. The enhancing factors increase the NME in the
high-energy region.

We use

q I
l = √

x = 0.92, and (16)

qF
l = √

x ′ = 0.80. (17)

The transition strength up to Eexc = 13 MeV is 19.575 for 48Ca → 48Sc (the integral of the
QRPA strength function). The redundant transition strength in Eexc < 13 MeV due to the
insufficiency of the mpmh correlations is estimated as

19.575(1 − x) = 2.99. (18)
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The transition strength in the high-energy region is 4.96. The enhancing factor is calculated
as

q I
h = √

(2.99 + 4.96)/4.96 = 1.27. (19)

In the same manner, we obtain qF
h = 1.44 for 48Ti.

We discuss the uncertainty of our approach and further modifications of the equation for
the QRPA NME. The mpmh correlation has two effects. One is to modify the QRPA states,
and the other is to create mpmh states that are not included in the QRPA. When the GT
strength in the low-energy region is reduced by the mpmh correlations, the absolute values of
the major transition density matrix elements of the QRPA states must decrease sufficiently,
overwhelming the effect of the mpmh states of increasing the strength. Thus, the reduction
in the contribution of the QRPA states to the NME is the main effect of the modification
in the low-energy region. The sum rule implies that a shift in the strength of the transition
density matrix elements occurs from the low- to the high-energy region. This shift enhances
the contribution of the QRPA states to the 0νββ-decay NME in that region, if the change
occurs uniformly with respect to the matrix elements. Equation (11) expresses this effect.

The effect of the mpmh states is not negligible in the high-energy region. In the contin-
uum region, it is known as the spreading width, e.g., [66]. In reality, the importance of the
mpmh-state effects increases gradually as the excitation energy increases. We introduce a
simplification wherein this effect is significant only in the high-energy region. The contri-
bution of the mpmh states to the NME of the double-β decay cannot be estimated by our
approach because this specific effect may reduce or enhance the NME. The sign of the con-
tribution is unknown without the calculations including the mpmh effects in the high-energy
regions.

Equation (11) expresses an extreme case in which the mpmh corrections in the high-energy
region arise entirely through the modification of the QRPA states; we call this case extreme
case I. It is possible to consider another extreme case in which the mpmh corrections in the
high-energy region are entirely carried by the new states beyond the QRPA; we call this case
extreme case II. Three sub-extreme cases belonging to extreme case II can be discussed as
follows.

i. The mpmh-state corrections are maximally coherent with M (0ν)
GT . Usually, the effects

of the mpmh states are smaller than those of the 1p1h states, e.g., for the transition
strength. Thus, M (0ν)

GT in this extreme case may not exceed M (0ν)
GT (modified) of Eq. (11)

derived in extreme case I. Thus, Eq. (11) gives the upper limit for extreme case II.
ii. The mpmh-state corrections are maximally anticoherent to M (0ν)

GT . In this case, the

lower limit of M (0ν)
GT (modified) is estimated

M (0ν)
GT + M (0ν)

GT−1l − M (0ν)
GT−1h . (20)

iii. The mpmh-state corrections are accompanied by strong randomness, and the correc-
tions are canceled. In this extreme case, M (0ν)

GT (modified) is given by

M (0ν)
GT + M (0ν)

GT−1l . (21)

Thus, we can evaluate the uncertainty range of M (0ν)
GT (modified) as

M (0ν)
GT + M (0ν)

GT-1l − M (0ν)
GT−1h < M (0ν)

GT (modified) < M (0ν)
GT + M (0ν)

GT−1l + M (0ν)
GT−1h . (22)

The M (0ν)
GT (modified) of extreme case I is equal to the upper limit of extreme case II. It is

speculated that the upper limit in the mixing case between the two extreme cases does not
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Fig. 3 Values of M(0ν)
GT of the shell model and QRPA, labeled “Original”, and the modified M(0ν)

GT , labeled
“Modified”. The shell model, denoted by SM, and QRPA are distinguished by different symbols. The modified
shell model value is the average of 1.25, 1.26, and 1.27 obtained in Sect. 3. The error bar of the modified
QRPA shows the uncertainty range, and the mean value is interpreted as the value in the randomness limit (see
text)

significantly exceed the upper limit of Eq. (22). If one effect is weakened, and another effect
appears, the total may not change significantly. The total effect in the high-energy region is
restricted because the change in the transition density is restricted by the sum rule. A similar
discussion is possible for the lower limit in the mixing case. M (0ν)

GT−1l = −0.394 and M (0ν)
GT−1h

= 0.374 are obtained numerically; consequently, the uncertainty range is obtained as

1.112 < M (0ν)
GT (modified) < 1.860, (23)

by referring to the value of M (0ν)
GT of the QRPA in Sect. 3. M (0ν)

GT (modified) in the limit of
randomness of case iii is 1.486. The results are summarized in Fig. 3. The modified QRPA
value in the randomness limit and the converged value of the shell model based on our
estimation are much close compared with the original values of the two models. The mpmh
correlations are generally accompanied by randomness in the high-energy regions. This
tendency is indicated by, e.g., the success of the random matrix theory [56,67]. Therefore,
we speculate that the best modified value of the QRPA is closer to the randomness limit
than the edge values of the coherent limit. Our results show that the consistency of the shell
model and the QRPA can be obtained by taking into account the sufficiently large valence
single-particle space and the mpmh correlations.

5 Fermi component of 0νββ NME

According to Ref. [30], the M (0ν)
F of the pf valence-shell calculation averaged for the two

SRC methods is –0.223, and that of the sdpf valence-shell calculation is –0.314, where no
quenching factor is used. The latter is 41% larger than the former in terms of the absolute
value. The corresponding increasing ratio of the QRPA read from Fig. 1 is 21%; the M (0ν)

F
value is –0.19 at Eexc = 8.8 MeV, corresponding to the pf valence shell, and –0.23 at Eexc =
14.4 MeV, corresponding to the sdpf valence shell. These equivalent Eexc values are listed in
Table 5. There is a non-negligible difference in the increasing ratios of the two methods. The
converged value of M (0ν)

F of the QRPA is –0.35, of which the absolute value is increased from
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Table 7 M(0ν)
F of the shell model for two different valence shells and those of the QRPA for the equivalent

Eexc’s and a very large Eexc

Shell Equivalent maxEexc (MeV) M(0ν)
F (shell model) M(0ν)

F (QRPA)

pf 8.8 − 0.223 − 0.19

sdpf 14.4 − 0.314 − 0.23

Large-space limit − 0.35

the value at 14.4 MeV by 52%. The M (0ν)
F values are listed in Table 7. The absolute value of

M (0ν)
F of the shell model is larger than that of the QRPA with the same Eexc. This relation of

magnitude is inverted in comparison with that for M (0ν)
GT (see Tables 5 and 6). According to

the method applied to M (0ν)
GT in Sect. 3, we obtain two estimates for the extrapolated M (0ν)

F
of the shell model:

−0.223 · (0.35/0.19) = −0.411, and

−0.314 · (0.35/0.23) = −0.478, (24)

(see Table 7).
To consider M (0ν)

F of the QRPA, we discuss the transition operator dependence of the
modification factor from a general viewpoint. To our knowledge, this dependence can be
summarized as follows:

• Appreciable quenching is necessary for the GT transition, whether it is caused by the
strong or weak interaction, at least for the transitions with non-high transition energies
corresponding to a one major valence shell (see Sect. 4) or spin-orbit splitting. Both the
QRPA and shell model require the quenching factor; the appropriate value depends on
method.

• The isobaric-analog transition does not require a quenching factor at least for the QRPA.
This is not surprising because the Fermi transition strength concentrates on the isobaric-
analog state, e.g., [68], and the QRPA satisfies the Fermi sum rule.

• For the electric transitions, the necessity of the effective charge is much lower than that of
the quenching factor for the GT operator except for maintaining the center of mass, e.g.,
[69]. This is particularly clear for the nuclei to which the QRPA is a good approximation.

• Magnetic transition requires an effective g factor, e.g., [37,70]. Significant adjustment
of the spin g factor is necessary.

When these features are stated for the QRPA, sufficiently large single-particle spaces are
assumed. From this observation, we obtain the idea that the transition operator is essential
for the modification factors rather than the difference in the interactions, that is,

• the spin operator has a high necessity for the quenching factor at least for transitions with
non-high energies.

• Coordinate operators do not have that necessity at least for the nuclei to which the QRPA
is a good approximation.

• The operator only changing the charge does not require quenching.

Based on the last two items, we do not quench the M (0ν)
F of the QRPA.
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Table 8 Estimated M(0ν)
GT and M(0ν)

F from the shell model and the QRPA

Component Estimate from shell model Estimate from QRPA

M(0ν)
GT 1.26 1.49

−M(0ν)
F 0.41–0.48 0.35

6 Estimated 0νββ NME

M (0ν) can be calculated using the modified components. We did not pinpoint the modified
components of M (0ν) of the QRPA because of the uncertainty of our estimation. In this
section, we make a choice to simplify the comparison. We use the QRPA M (0ν)

GT (modified)
obtained with the complete randomness of the mpmh correlations in the high-energy region
(see Sect. 4). For the Fermi component of the shell model, we do not have a speculation on
what value is more likely than others in the range of −M (0ν)

F = 0.411−0.478. The modified
NME components of the shell model and the QRPA are summarized in Table 8.

By using gV = 1.0, and tentatively the bare value of gA = 1.276 [36], the estimated M (0ν)

based on the shell model for 48Ca is found to be 1.512–1.554, and that from the QRPA is
1.705. A partial cancelation occurs between the difference in M (0ν)

GT of the two methods and

that in M (0ν)
F of these methods, as shown in Table 8. The values of 1.5–1.7 are situated in the

middle of the distribution of M (0ν) using various methods; see Ref. [28], in which the M (0ν)

values are in the range of 0.6 to 3.0 for 48Ca.

7 NME of 2νββ decay

Next, the physical quantities to be examined are the components of the 2νββ NME M (2ν)
GT and

M (2ν)
F ; the former is the GT component, and the latter is the Fermi component. The former

is defined by

M (2ν)
GT =

∑

B

1

EB − M̄
〈F |στ−|B〉 · 〈B|στ−|I 〉, (25)

where M̄ denotes the mean value of the masses of the initial and final nuclei. The closure
approximation is not applied to the NME of the 2νββ decay. M (2ν)

GT of the QRPA is written
using the two sets of the intermediate states as

M (2ν)
GT (QRPA) =

∑

BI BF

1

EB − M̄
〈F |στ−|BF 〉 · 〈BF |BI 〉〈BI |στ−|I 〉. (26)

EB is the energy of the intermediate state. We use EBI , with an energy calibration, for EB

because the QRPA is better for 48Ca than it is for 48Ti. The equation for M (2ν)
F can be obtained

by removing the spin operators in Eqs. (25) and (26). The intermediate states that contribute
to M (2ν)

GT and M (2ν)
F are different. The 2νββ NME is calculated as

M (2ν) = M (2ν)
GT −

(
gV
gA

)2

M (2ν)
F . (27)
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Fig. 4 M(2ν)
GT and M(2ν)

F of the QRPA as functions of Eexc of the intermediate nucleus 48Sc. Eexc is obtained
from the QRPA energy of the calculation based on the initial state with a calibration energy adjusted to the
1+ state of the lowest energy peak of the experimental GT strength function. No quenching factor was used

The running sums of the components of the QRPA are shown in Fig. 4. The horizontal
axis indicates the excitation energy of the intermediate state. M (2ν)

GT and M (2ν)
F of the QRPA

are 0.139 MeV−1 and −0.0048 MeV−1, respectively. M (2ν)
F is very small compared with

M (2ν)
GT because of the approximate isospin invariance. The lowest-energy contributions occupy

nearly 85% of M (2ν)
GT , and the second largest contribution around Eexc = 11 MeV is the giant

resonance of 48Ca→48Sc (see Fig. 2). For M (2ν)
F , almost 100% is occupied by the lowest

energy contribution. The running sum of Fig. 4 indicates that a relatively small valence single-
particle space is sufficient for the convergence of M (2ν)

GT and M (2ν)
F . M (2ν) of 0.142 MeV−1 is

obtained with the bare values of gA = 1.276 and gV = 1.0. This is a result with no quenching
factor.

The authors of Ref. [30] derived the quenching factors for the GT operator of 0.74
(the pf valence shell) and 0.71 (the sdpf valence shell) from the experimental data of the
GT+ and GT− strengths. They calculated M (2ν) with these quenching factors and obtained
0.052 MeV−1 (the pf valence shell, GXPF1B interaction) and 0.051 MeV−1 (the sdpf valence
shell, SDPFMU-DB interaction). The similarity of these two values also indicates the suf-
ficiency of the relatively small valence single-particle space. Their results are similar to
the early experimental value of 0.046 ± 0.004 MeV−1 [71]. It is noted, however, that the
experimental half-life of 48Ca with respect to the 2νββ decay was recently updated [72] and
increased in comparison with the previous one. By using the new data and the method used
in Ref. [30], a revised experimental M (2ν) of 0.042 ± 0.004 MeV−1 is obtained.

Let us adjust M (2ν) of the QRPA for comparison using the method in Ref. [30]. We apply
the quenching factors of 0.74 and 0.71 of the GT operator to the QRPA result; M (2ν)

GT of the
QRPA is reduced by factors of 0.55 and 0.50, respectively. The M (2ν) of the QRPA becomes
0.0745 MeV−1 (the average of the results with the different quenching factors), which is
45% larger than the shell model value. It is stressed that this difference is much smaller than
the corresponding difference in M (0ν), which is nearly a factor of two (see Fig. 3). This
is because the relatively small energy region is sufficient for the intermediate states, as the
neutrino potential is not used.

Next, we introduce our modification method. The modification of M (2ν) of the QRPA is
similar to that of M (0ν) but simpler. In the previous discussion on M (0ν)

GT , the NME of the
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Table 9 M(2ν) of the shell model and the QRPA with the shell model quenching factor multiplied (original)
and those modified by our method (modified). The modification method depends on the model (see text)

M2ν of shell model (MeV−1) M2ν of QRPA (MeV−1)

Original 0.0515 0.0745

Modified 0.0608 0.0666

QRPA was reduced in the low-energy region by 26% (1 −√
xx ′) by referring to the ratios of

the quenching factors of the shell model and QRPA to simulate the mpmh effects. For M (2ν),
we refer to the GT− strength of the first 1+ state at Eexc = 2.5173 MeV (experimental value)
[73] because this state is exclusively important for the 2νββ decay of 48Ca. The ratio of the
GT− strength of the shell model to the corresponding value of the QRPA is 0.894, which is
used as an extra quenching factor for the QRPA M (2ν)

GT in our modification method. As M (0ν)
F

discussed in Sect. 5, we do not modify M (2ν)
F . We also do not consider modifications in the

high-energy region. The modified result of M (2ν) of the QRPA is 0.0666 MeV−1 (again the
average). This value is 29% larger than the average shell model value of 0.0515 MeV−1.

The modification of M (2ν) of the shell model is made because of the giant resonance. In
the QRPA, its contribution to M (2ν)

GT is seen around Eexc = 11 MeV (see Fig. 4), which is in
the region where the strength function of the shell model for 48Ti→48Sc with the one major
valence shell does not have any strength (see Fig. 2). Thus, the shell model calculation of
the double-β decay does not have contribution of the giant resonance. Its contribution in the
QRPA calculation without quenching is 0.0198 MeV−1 (see Fig. 4). We add the value with
the quenching corrections

0.0198 · 0.525 · 0.894 MeV−1 = 0.0093 MeV−1, (28)

to the shell model value of 0.0515 MeV−1 and obtain 0.0608 MeV−1, which is only 9%
smaller than the modified QRPA value of 0.0666 MeV−1. Therefore, consistency between
the two models can be obtained using our modification method. The results of this discussion
are summarized in Table 9.

If (i) the relevant energy region is low, (ii) the many-body correlations in the initial and
final states are small, and (iii) the configuration mixing by the transition operator is small, the
two models are approximately consistent. The first condition is fulfilled for M (2ν) because
the neutrino potential is not used. The second condition affects the applicability of the QRPA,
which depends on the nucleus. The third condition is better satisfied for M (2ν) than for M (0ν)

again because the neutrino potential is not used.

8 Summary

We have proposed a new method to estimate the NME components of the double-β decays
from the information already available and demonstrated that similar results can be obtained
for the 0νββ NME of 48Ca → 48Ti of the shell model and the QRPA with modifications.
The extrapolated M (0ν)

GT of the shell model is 1.26, which is the average of three very close
values, and the modified result of the QRPA is expressed in the range of 1.112–1.860. We
speculate that the likely value is close to the mean value of 1.486 rather than the edge values.
The difference between the two methods was a factor of two before our modifications.
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The current shell model with the one major valence shell is not sufficient for the 0νββ

decay, and the QRPA does not have as many mpmh effects as the shell model has. The result
of the shell model was modified by speculating regarding the dependence on the particle-hole
energy representing the valence shells based on the intermediate-state energy dependence
of the running sum of the QRPA NME. This speculation is justified in two ways. One is
the fact that the increasing rate of the 0νββ GT NME with respect to that representative, or
intermediate state, energy is the same between the shell model and QRPA in the discussed
range. The other is that the NME of the shell model with a very large valence space should
include the NME of the QRPA. The experimental data of the charge-change strength functions
were used to clarify the reliable energy region of the shell model. The necessary energy region
for the 0νββ NME is rather large because of the neutrino potential. The QRPA calculation
can be performed up to the convergence of the result with respect to the single-particle as well
as intermediate-state energies. Thus, the QRPA was used to modify the shell model result.

The insufficiency of the QRPA was evaluated from the experimental data of the strength
function and the shell model calculation in the low-energy region, in which the shell model is
very reliable. The mpmh effects seem more important for 48Ti than for 48Ca. This analysis was
applied to the modification of the QRPA results of the double-β NMEs. This application is
enabled by the transition density matrix shared by the different phenomena. This modification
method for the QRPA has uncertainty in the high-energy region; thus, we considered multiple
extreme cases.

The key point of our approach is to combine the information of the different methods in a
complementary way, paying attention to the running sums of the NMEs with respect to the
intermediate-state energy. In this study, we concentrated on 48Ca→48Ti because sufficient
information for our approach is currently available only for this decay instance, i.e., the shell
model calculations with different valence single-particle spaces and the data of the strength
functions. The GT and Fermi components were investigated separately for the 0νββ decay.
The modified 0νββ NME was in the middle of the distribution of the NME in many other
calculations.

The 2νββ NME was also studied. The NMEs of the shell model and the QRPA were
0.0515 MeV−1 and 0.0745 MeV−1, respectively. Both values were obtained using the com-
mon quenching factors for the GT operators at approximately 0.73, which is not the fitting
parameter for the corresponding experimental value of 0.042 ± 0.004 MeV−1. We obtained
a modified shell model result of 0.0608 MeV−1 by taking into account the contribution of the
giant resonance. We also obtained a modified QRPA result of 0.0666 MeV−1 by including an
extra quenching factor of 0.894 for the 2νββ NME reflecting the insufficient mpmh effects
of the QRPA. If the relevant region of the intermediate-state energy is small, i.e., there is no
singularity of the transition operator, and the mpmh correlations are not significant compared
with the 1p1h correlations, the consistency of the two models can be obtained using simple
modifications.

Our approach is important for two reasons. First, the discrepancy problem of the 0νββ

NME using these methods has been unsolved for more than 30 years; it is necessary to clarify
the causes. Second, the true values of the 0νββ NME are required regardless of the method
used; there is no precondition for which method to use. Thus, we can use as much information
as possible. Finally, by extending the wave functions, the improvement in each method, i.e.,
the shell model, QRPA, and others, should eventually confirm the correct 0νββ NME by the
double convergence mentioned in the introduction.
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