
Eur. Phys. J. Plus         (2021) 136:853 
https://doi.org/10.1140/epjp/s13360-021-01862-6

Regular Art icle

Bifurcation analysis of a discrete-time compartmental
model for hypertensive or diabetic patients exposed to
COVID-19

Muhammad Salman Khan1,a, Maria samreen1,b, Muhammad Ozair2,c,
Takasar Hussain2,d, J. F. Gómez-Aguilar3,e

1 Department of Mathematics, Quaid-I-Azam University, Islamabad 44230, Pakistan
2 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, Pakistan
3 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira,

C.P. 62490, Cuernavaca, Morelos, México

Received: 17 July 2021 / Accepted: 11 August 2021
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany,
part of Springer Nature 2021

Abstract In this article, a mathematical model for hypertensive or diabetic patients open
to COVID-19 is considered along with a set of first-order nonlinear differential equations.
Moreover, the method of piecewise arguments is used to discretize the continuous system.
The mathematical system is said to reveal six equilibria, namely, extinction equilibrium,
boundary equilibrium, quarantined-free equilibrium, exposure-free equilibrium, endemic
equilibrium, and the equilibrium free from susceptible population. Local stability condi-
tions are developed for our discrete-time mathematical system about each of its equilibrium
point. The existence of period-doubling bifurcation and chaos is studied in the absence of
isolated population. It is shown that our system will become unstable and experiences the
chaos when the quarantined compartment is empty, which is true in biological meanings.
The existence of Neimark–Sacker bifurcation is studied for the endemic equilibrium point.
Moreover, it is shown numerically that our discrete-time mathematical system experiences the
period-doubling bifurcation about its endemic equilibrium. To control the period-doubling
bifurcation, Neimark–Sacker bifurcation, a generalized hybrid control methodology is used.
Moreover, this model is analyzed along with generalized hybrid control in order to elimi-
nate chaos and oscillation epidemiologically presenting the significance of quarantine in the
COVID-19 environment.

1 Introduction

Mathematical models are convenient to recognize the nature of an infection when it arrives
a community and to explore under which circumstances it will be continued or wiped out
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from that community. Presently, COVID-19 is of main alarm to governments, researchers
and to all of the mankind. This is due to the high percentage of the infection range and
the very high number of deaths that happened. The very first case of infectious disease
COVID-19 is reported in Wuhan city of China. Moreover, it spread almost everywhere in
the world. On January 2020, the WHO approved its outburst as a public health disaster of
international concern. On April 2020, 47, 249 people had died and the total of 936,237
people are tested positive for COVID-19 [1]. COVID-19 ranges due to the interaction of
individuals with infected individual when they sneeze or cough. COVID-19 is a respiratory
disease with slight to temperate signs like fever, dry cough and tiredness. In severe cases, it
causes the difficulty in breathing [1]. Also, few people having mild symptoms of COVID-19
disease may recuperate themselves if they evade to contact with infected cases and maintain
good sanitization. COVID-19 is a key health warning to individuals with a previous medical
history and also to individuals who are 60 years or above in age (elderly population). This
was described by Li et al. [2] who considered the average age of 425 people infected with
COVID-19 in city Wuhan, China, and almost half of the patients were above the age of
60. Governments of every country in the world are taking numerous defensive measures to
control the spread of COVID-19. Till date, there is no effective vaccine present in the world
to fight against the COVID-19 virus. Hence, stopping the spread is the only way to fight
against this virus. Defensive actions include sanitizing hands regularly, keeping the distance
of 1 meter at least from a person coughing or sneezing, and maintaining social distance.
Numerous mathematical models have been established so far to report various challenges
in foreseeing the outburst of COVID-19 disease. The author in [3] has used the elementary
SIR-model to discover the real dimensions of the epidemic. Peng et al. [4] analyzed the
situation of COVID-19 in China by expressing the SEIR dynamical system. Furthermore, he
have foretold that the situation will be under control at the start of April. Sun et al. [5] argued
numerous parts of COVID-19 condition in China which assistances recognize the casualty
rate and spread rate of COVID-19 and control the epidemic transmission. In the situation
of COVID-19 prevalent, experience to disease plays a dynamic role in the transmission of
the COVID-19. The author in [6] has studied numerous models and determined that with
the basic reproduction number being 2 and bearing in mind the 14-day contagious period,
if an infected individual stays for 9 or more hours with others, he could infect others. If the
contact time is 18 h, the model endorses total shield with more than 70 usefulness to the
attendees of the communal gathering. The authors in [7] have discussed the importance of
travel restriction to control the COVID-19 disease. In addition, they explained that these travel
restriction delayed the progression of disease in Wuhan city of China. A related consequence
was also revealed by Kucharski et al. [8]. They exposed that with the journey limitation
in Wuhan, the daily reproduction number decayed from 2.35 to 1.05. Furthermore, there
is correspondingly a model calculated by Tang et al. [9] and Tang et al. [10] wherein they
separated the subpopulation into isolated and unisolated classes to know the spread threat of
the epidemic.

Khan et al. [11] have studied the dynamics of COVID-19 with quarantined and isolation
by considering the number of real statistical cases reported in China. The authors in [12]
have studied the dynamics of a mathematical model by using classical Caputo fractional
derivative. Oud et al. [13] have studied a fractional order mathematical model for COVID-19
dynamics with isolation, quarantine, and environmental viral load. For the study of some
interesting models related to COVID-19 pandemic, we refer a reader to [14–17]. From the
evaluations so far, we have noticed that isolation plays a huge role in controlling the disease
spread. Here, we have considered a mathematically compartmental model for the persons
already anguish from hypertension or diabetes who are at a greater chance of getting infected
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Table 1 Definitions of parameters and their respective values

Notations Clarification Values of parameters

B Birth rate +ve Assumed

β1 Transmission rate of individuals from S −→ E 0.9 Calculated

β2 Infection rate 0.001 Assumed

β3 Rate at which exposed persons get quarantined 0.80 Calculated

β4 Rate at which susceptible persons get quarantined 0.60 Calculated

a, b, d Half-saturation constants 2, 10, 0.4 Assumed

c1, c2 Conversion efficiency 1, 2 Assumed

Fig. 1 Flow diagram representing the shifting of any individual from one class to other class

with COVID-19 (see [1]). Moreover, the authors in [1] have considered a model by means
of Z-control applied to the isolated class to get the essential exposure state in command to
make the system free of chaos.

Limited number of basic models related to the Z-control contains wide-ranging model
by Samanta [18] and prey-predator model by Alzahrani et al. [19]. With three conjointly
exclusive classes, namely, susceptible class, tested for hypertension or diabetes (S); exposed
or unprotected class (E); and quarantine class (Q). Values of parameters considered in the
preparation of our mathematical system are provided in Table 1. In our model, the susceptible
class is considered as a population tested for hypertension or suffering from diabetes. Here,
the birth rate for new individuals is represented by B, and all the population in their particular
sections undergo death at the uniform rate μ. Let us represent the saturated rate by β2SE

a+S ,
where a is the constant of saturation and β2 is the infection force as shown in Fig. 1. With
the help of Fig. 1, we get the following system of nonlinear differential equations [1]:

dS

dt
= BS − β1SE − β2SE

a + S
− β4SQ

b + S
− μS2,

dE

dt
= β1SE + β2SE

a + S
− β3EQ

d + E
− μE,

dQ

dt
= c1β3QE

d + E
+ c2β4SQ

b + S
− μQ,

(1)

where, S ≥ 0, E ≥ 0, Q ≥ 0.
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In [20], Singh et al. show that the discretization by using Euler’s scheme is not appropriate
for every continuous-time dynamical. Furthermore, it violates accuracy of the numerical
method and bifurcations occur for larger values of step size used in Euler’s scheme. In
order to eliminate this lack, a different discretization technique can be applied as follows:
Supposing that the ordinary evolution rates in each of the compartments vary at the fixed
pause of time. Then by using the technique of piecewise constant arguments(see [21]) for
differential equations, system (1) can be written as:

1

S(t)

dS(t)

dt
= B − β1E[(t)] − β2E[(t)]

a + S[(t)] − β4Q[(t)]
b + S[(t)] − μS[(t)],

1

E(t)

dE(t)

dt
= β1S[(t)] + β2S[(t)]

a + S[(t)] − β3Q[(t)]
d + E[(t)] − μ,

1

Q(t)

dQ(t)

dt
= c1β3E[(t)]

d + E[(t)] + c2β4S[(t)]
b + S[(t)] − μ,

(2)

where 0 < t < ∞ and [t] represents the integer part of t . Furthermore, on an interval [n, n+1)

with n ∈ W one can get the next system by integrating system (2) for t ∈ [n, n+1), n ∈ W.

S(t) = Sne
[B−β1En− β2En

a+Sn
− β4Qn

b+Sn
−μSn ](t−n)

,

E(t) = Ene
[β1Sn+ β2Sn

a+Sn
− β3Qn

d+En
−μ](t−n)

,

Q(t) = Qne
[ c1β3En

d+En
+ c2β4Sn

b+Sn
−μ](t−n)

.

(3)

by letting t −→ n+ 1 , we get the following discrete-time mathematical model from system
(3):

Sn+1 = Sne
B−β1En− β2En

a+Sn
− β4Qn

b+Sn
−μSn ,

En+1 = Ene
β1Sn+ β2Sn

a+Sn
− β3Qn

d+En
−μ

,

Qn+1 = Qne
c1β3En
d+En

+ c2β4Sn
b+Sn

−μ
.

(4)

The aim of our study in this article is to explain the boundedness of every solution of the system
(4). To discuss the local stability of system (4) about each of its equilibrium point. Moreover,
the existence of Neimark–Sacker bifurcation and chaos for one and only equilibrium point
of system (4) is scrutinized. In concern to control the Neimark–Sacker bifurcation and, a
modified hybrid control technique is implemented [22] in Sect. 6. In final section, some
numerical examples are provided.

2 Boundedness of system (4)

In this section, the boundedness of every positive solution (Sn, En, Qn) is proved. For this
purpose, the next lemma is presented.

Lemma 2.1 [23] Assume that λn fulfills λn+1 ≤ λnexp(a(1 − bλn)) for every n ∈ [n1,∞)

with λ0 > 0, where a, b > 0. Then,

lim
n−→∞ supλn ≤ 1

ab
exp(a − 1).
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Lemma 2.2 Every solution (Sn, En, Qn) of system (4) is bounded uniformly if for a finite
N ∈ �, we have

lim
n−→∞ supEn ≤ N .

Proof Assume that S0 > 0, E0 > 0 and Q0 > 0 then each solution (Sn, En, Qn) of system
(4) satisfies Sn > 0, En > 0 and Qn > 0 for each n ≥ 0. Firstly, by taking into account the
positivity of solutions of (4) and from first equation of system (4) it can be seen that

Sn+1 = Snexp

(
B − β1En − β2En

a + Sn
− β4Qn

b + Sn
− μSn

)

≤ Snexp

(
B − β1En − β2En

a + Sn
− μSn

)

≤ Snexp(B − μSn)

= Snexp
(
B(1 − μ

B
Sn)

)
.

Next, by applying Lemma 2.3 we get

lim
n−→∞ supSn ≤ 1

μ
exp(B − 1) = �(say).

Now, from third equation of system (4) it can be seen that

Qn+1 = Qnexp

(
c1β3En

d + En
+ c2β4Sn

b + Sn
− μ

)

≤ Qnexp

(
c1β3N

d + N
+ c2β4(B − β1N − β2N

a+�
− β4Qn

b+�
)

μb

)

≤ Qnexp

(
c1β3N

d + N
+ c2β4B

μb
− c2β

2
4 B

μb(b + �)
Qn

)

= Qnexp

(
(μNbc1β3 + c2β4B(d + N ))

μb(d + N )

(
1 − c2β

2
4 B(d + N )Qn

(b + �)(μNbc1β3 + c2β4B(d + N ))

))
.

Hence, by applying Lemma 2.3 we get

lim
n−→∞ supQn ≤ 1

c2β2
4 B

μb(b+�)

exp

(
(μNbc1β3 + c2β4B(d + N ))

μb(d + N )
− 1

)
.

�	

By using the method of mathematical induction, one can prove the next result.

Lemma 2.3 Assume that 0 < S0 < 1
μ

exp(B − 1), 0 < E0 < N and

0 < Q0 <
1

c2β2
4 B

μb(b+�)

exp

(
(μNbc1β3 + c2β4B(d + N ))

μb(d + N )
− 1

)
,
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then the set [0, 1
μ

exp(B−1)]×[0, N ]×[0, 1
c2β2

4 B
μb(b+�)

exp
(

(μNbc1β3+c2β4B(d+N ))
μb(d+N )

− 1
)
] remains

invariant for every solution (Sn, En, Qn) of the system (4).

3 Existence of equilibrium points and local stability of system (4)

In this section, we contemplate probable equilibrium points (S, E, Q) of system (4), which
can be acquired by considering the next system:

S∗ = S∗eB−β1E∗− β2E
∗

a+S∗ − β4Q
∗

b+S∗ −μS∗
,

E∗ = E∗eβ1S∗+ β2S
∗

a+S∗ − β3Q
∗

d+E∗ −μ
,

Q∗ = Q∗e
c1β3E

∗
d+E∗ + c2β4S

∗
b+S∗ −μ

.

(5)

On solving system (5), one can obtain six equilibrium points (0, 0, 0), ( B
μ

, 0, 0), (0,
dμ

c1β3−μ
,

dμc1
μ−c1β3

), (
μb

(c2β4−μ)
, 0,

bc2(Bc2β4−bμ2−Bμ)

(c2β4−μ)2 ), (S̄, Ē, 0), and the unique positive equilibrium

point (S∗, E∗, Q∗).

Remark 3.1 The equilibrium point (0,
dμ

c1β3−μ
,

dμc1
μ−c1β3

) ceased to exist as one of the compo-

nents from dμ
c1β3−μ

or dμc1
μ−c1β3

remains negative for every c1, β3, μ > 0.

Let

FJ =
⎡
⎣ j11 j12 j13

j21 j22 j23

j31 j32 j33

⎤
⎦

be the variational matrix evaluated at (S∗, E∗, Q∗). Then, characteristic polynomial H(ω)

of matrix FJ is:

H(ω) = ω3 − A1ω
2 + A2ω − A3, (6)

where

A1 = ( j11 + j22 + j33),

A2 = J11 + J22 + J33,

and

A3 = det (FJ ).

Where J11, J22 and J33 are minor determinants of Jacobian matrix FJ . Firstly, we explore the
stability analysis of the trivial fixed point (0, 0, 0). The Jacobian matrix FJ1 about equilibrium
point (0, 0, 0), is given by;

FJ1 =
⎛
⎝ eB 0 0

0 e−μ 0
0 0 e−μ

⎞
⎠ .

In addition, FJ1 has three eigenvalues, namely τ1 = eB , τ2 = e−μ and τ3 = e−μ, such that
|τ1| > 1 and |τ2| = |τ3| < 1 remains true for all parametric values. Hence, we conclude the
following proposition about the local stability of (4) about (0, 0, 0).
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Fig. 2 Stable region for ( Bμ , 0, 0) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 , 0 < B < 1, 0 < μ < 2 and S0 = 0.995, E0 = 0.38855, Q0 = 0.3455

Proposition 3.1 Let (0, 0, 0) be a equilibrium point of (4), then (0, 0, 0) remains unstable
for every B, μ > 0.

From Proposition 3.1, one can observe that the extinction equilibrium point is mathemati-
cally unstable and biologically it is not possible to hold whenever any one of the three classes
from (4) exists. Next, our goal is to explore the local stability of system (4) about ( B

μ
, 0, 0).

The matrix of variation FJ2 evaluated about ( B
μ

, 0, 0) can be calculated as:

FJ2 =

⎛
⎜⎜⎝

1 − B − Bβ1
μ

− Bβ2
B+aμ

− Bβ4
B+bμ

0 e−μ+ Bβ1
μ

+ Bβ2
B+aμ 0

0 0 e−μ− Bc2β4
B+bμ

⎞
⎟⎟⎠ .

Let us assume that H(τ ) is characteristic polynomial of Jacobian matrix FJ2 . Then, char-
acteristic roots of H(τ ) = 0 are given by τ1 = 1− B, τ2 = 1

e
μ− Bβ1

μ − Bβ2
B+aμ

and τ3 = 1

e
μ+ Bc2β4

B+bμ

.

Hence, we have the following proposition related to the local stability of (4) about ( B
μ

, 0, 0)

(Fig. 2, 3).

Proposition 3.2 Let ( B
μ

, 0, 0) be a equilibrium point of (4) then;

(i) ( B
μ

, 0, 0) is a stable equilibrium point if |τ1|, |τ2|, |τ3| < 1 if and only if

0 < B < 2 and μ2(B + aμ) > B(β1(B + aμ) + μβ2).
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Fig. 3 Stable and unstable regions for
(

bμ
c2β4−μ , 0,

bc2(Bc2β4−μ(B+bμ))

(μ−c2β4)2

)
for a = 2, b = 10, β1 =

0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , 0 < B < 5, 0 < μ < 1 and
S0 = 0.995, E0 = 0.38855, Q0 = 0.3455

(ii) ( B
μ

, 0, 0) is a unstable equilibrium point if

B > 2.

Consider the equilibrium point
(

bμ
c2β4−μ

, 0,
bc2(Bc2β4−μ(B+bμ))

(μ−c2β4)2

)
of system (4) and sup-

pose FJ3 be the matrix of variation for system (4) about
(

bμ
c2β4−μ

, 0,
bc2(Bc2β4−μ(B+bμ))

(μ−c2β4)2

)
.

Then, FJ3 has the following mathematical form:

FJ3 =

⎛
⎜⎜⎜⎝

1 + μ(B+bμ)
c2β4

+ 2bμ2

μ−c2β4
bμ

(
β1

μ−c2β4
+ β2

aμ−bμ−ac2β4

)
− μ

c2

0 e
−μ+ bμβ1−μ+c2β4

+ bμβ2
(−a+b)μ+ac2β4

+ bc2β3(μ(B+bμ)−Bc2β4)
d(μ−c2β4)

2 0
e−2μ(μ(B+bμ)−Bc2β4)

β4
− be−2μc1c2β3(μ(B+bμ)−Bc2β4)

d(μ−c2β4)2 e−2μ

⎞
⎟⎟⎟⎠ .

Assume that H(ψ) is characteristic polynomial of Jacobian matrix FJ3 . Then, characteristic
roots of H(ψ) = 0 are given by

ψ1 = 1

e
μ− bμβ1

c2β4−μ
− bμβ2

(b−a)μ+ac2β4
− bc2β3(μ(B+bμ)−Bc2β4)

d(μ−c2β4)
2

,

ψ2, ψ3 =
(
a11 ± √

a12 + a13
)

e2μ2c2β4 (μ − c2β4)
,
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where
⎧⎪⎪⎨
⎪⎪⎩

a11 =e2μμ2(B+bμ)+μ
(
1+e2μ(1−B+bμ)

)
c2β4−(

1+e2μ
)
c2

2β2
4 ,

a12 =(
e2μμ2(B+bμ)+c2β4

(
μ+e2μμ(1−B+bμ)−(

1+e2μ
)
c2β4

))
2,

and
a13 =4e2μc2β4 (c2β4−μ)

(
μ2(1+μ)(B + bμ)−c2β4 (μ(B−1+2Bμ+b(μ−1)μ)+(Bμ−1)c2β4)

)
.

(7)

Proposition 3.3 Let
(

bμ
c2β4−μ

, 0,
bc2(Bc2β4−μ(B+bμ))

(μ−c2β4)2

)
be a equilibrium point of (4) and ψ1,

ψ2 and ψ3 are characteristic roots for FJ3 , then
(

bμ
c2β4−μ

, 0,
bc2(Bc2β4−μ(B+bμ))

(μ−c2β4)2

)
remains

stable if

μ >
bμβ1

c2β4 − μ
+ bμβ2

(b − a)μ + ac2β4
+ bc2β3 (μ(B + bμ) − Bc2β4)

d (μ − c2β4) 2

and

| (a11 ± √
a12 + a13

) | < e2μ2c2β4 (μ − c2β4)

with μ > c2β4 and a11, a12, a13 are given in (7).

It is prominent that the equilibrium points of mathematical system (4), that is, the solution
of system (5) cannot be unique, however, for biological aims; we are concerned to the positive
results of (5). Hence, we do not care about exactly how many results are there of system (5).
From the system (5), we get

E∗ = −d

(
1 + c1β3(b + S∗)

μ(b + S∗) + c2β4 + S∗ − c1β3(b + S∗)

)

and

Q∗ = −(d + E∗)
β3

(
μ −

(
β1 + β2

(a + S∗)

)
S∗

)
,

where S∗ is one of the roots of cubic polynomial:

g(t) = A11t
3 + B11t

2 + C11t + D11, (8)

where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A11 = μ(c1β3 + c2β4 − μ),

B11 = (B − (a + b)μ)(μ − c1β3) − (B − aμ)c2β4 + dβ1(μ + (c1 − c2)β4),

C11 = ((a + b)B − abμ)(μ − c1β3) − (dμc1 + aBc2)β4 + (μ + (c1 − c2)β4)dβ2

+((a + b)μ + a(c1 − c2)β4)dβ1,

D11 = (ab(B + dβ1) + dbβ3)μ − ac1(bBβ3 + dμβ4).

(9)

We are looking for the unique positive equilibrium point of system (5). For this, we have the
following Descartes rule of signs (see [24]).

Lemma 3.1 [24]Let f1(x) = bnxn+bn−1xn−1+bn−2xn−2+.....+b1x+b0 be a polynomial
function with real coefficients. Then, the number of positive real roots of f1 is either the same
as the number of sign changes for f1(x) or less than by a positive even integer. Moreover, if
f (x) has only one variation in sign, then f1 has exactly one positive real root.
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Using Lemma 3.1, we have the following result for existence of unique positive real root
of polynomial g(t) given in (8).

Lemma 3.2 Polynomial g(t) in (8) has unique positive real root if one of the following
conditions hold:

i. A1 < 0, B11 < 0,C11 < 0, D11 > 0.

i i. A11 < 0, B11 > 0,C11 > 0, D11 > 0.

Lemma 3.3 Let S∗ is one of the roots of cubic polynomial (8). Then, under the conditions
of lemma 3.2, system (1) has one and only positive fixed point if the following conditions are
satisfied:

c1β3 + c2β4 < μ < (c2 − c1)β4

and

B < μ.

Proof Positive equilibrium point of (4) fulfills algebraic equations same to its continuous
counterpart (1). In case of system (1), the evidence is specified in [1]. �	

4 Local stability analysis of system (4) about its endemic equilibrium

We consider the Jacobian matrix FJ4 of system (4) about unique positive equilibrium point
(S∗, E∗, Q∗).

FJ4 =

⎛
⎜⎜⎜⎜⎜⎝

1 + S∗
(

β2E∗
(a+S∗)2−μ

+ β4Q∗
(b+S∗)2

)
−S∗

(
β1 + β2

a+S∗
)

− β4S∗
b+S∗

E∗
(
aβ2+β1(a+S∗)2

)
(a+S∗)2

(d+E∗)2+β3E∗Q∗
(d+E∗)2 − β3E∗

d+E∗

− bc2β4Q∗
(b+S∗)2

dc1β3Q∗
(d+E∗)2 1

⎞
⎟⎟⎟⎟⎟⎠

. (10)

Moreover, assume that (14) be the characteristic equation of (10). Then, in direction to study
the stability analysis of one and only positive equilibrium point, we have the next theorem,
which provides us freely confirmable necessary and sufficient situations for all the roots of
real polynomial of degree 3 to have magnitude smaller than one (see, Theorem 5 from [25]).

Theorem 4.1 Assume the next third-degree polynomial equation

H(ω) = ω3 − A1ω
2 + A2ω − A3, (11)

where A1, A2, A3 ∈ �. Then, necessary and sufficient conditions that all roots of (11) lie
inside an open disk are given as follows:

⎧⎨
⎩

|A1 + A3| < 1 + A2,

|A1 − 3A3| < 3 − A2,

A3
2 + A2 − A1A3 < 1.

(12)

Theorem 4.2 The unique positive equilibrium point (S∗, E∗, Q∗) of system (4) is locally
asymptotically stable if the following conditions are satisfied:
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⎧⎨
⎩

|A1 + A3| < 1 + A2,

|A1 − 3A3| < 3 − A2,

A3
2 + A2 − A1A3 < 1.

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = 3 + β3E∗Q∗
τ 2 +

(
−μ + β2E∗

ρ2 + β4Q∗
σ 2

)
S∗,

A2 = 3 + dc1β2
3 E

∗Q∗
τ 3 + S∗

( (
ρ3β2

1 +ρ(2+(a+ρ)β1)β2+aβ2
2

)
E∗

ρ3 − 2μ + β4Q∗
(

σ−bc2β4
σ 3 + 1

(σ ∗)2

))

+ β3E∗Q∗
(
ρ2β4Q∗S∗+(

2ρ2+(−μρ2+β2E∗)
S∗)

(σ ∗)2
)

ρ2τ 2(σ ∗)2 ,

A3 = 1
ρ3σ 3τ 3

(
ρ3σ 3

(
τ 3 + β3 (τ + dc1β3) E∗Q∗) + (

σ 3τ 3
(
ρ3β2

1 + ρ (1 + (a + ρ)β1) β2 + aβ2
2

)
E∗ − μρ3

))
− ρ

ρ3σ 3τ 3

(
bρ2τ 3c2β

2
4 + σ 3β3 (τ + dc1β3) E∗ (

μρ2 − β2E∗))
+ 1

ρ3σ 3τ 3

(
στβ4

(−ρ2τ 2 + (
bρτc2 (ρβ1 + β2) + dσc1

(
ρ2β1 + aβ2

))
β3E∗) Q∗)

+ ρ3β3β4
ρ3σ 3τ 3 (dσc1β3 + τ (σ − bc2β4)) E∗ (Q∗)2 S∗,

a + S∗ = ρ,

b + S∗ = σ,

and
d + E∗ = τ.

(13)

Proof The Jacobian matrix for system (4) evaluated at unique positive fixed point
(S∗, E∗, Q∗) is given by

FJ4 =

⎛
⎜⎜⎜⎜⎜⎝

1 + S∗
(

β2E∗
(a+S∗)2−μ

+ β4Q∗
(b+S∗)2

)
−S∗

(
β1 + β2

a+S∗
)

− β4S∗
b+S∗

E∗
(
aβ2+β1(a+S∗)2

)
(a+S∗)2

(d+E∗)2+β3E∗Q∗
(d+E∗)2 − β3E∗

d+E∗

− bc2β4Q∗
(b+S∗)2

dc1β3Q∗
(d+E∗)2 1

⎞
⎟⎟⎟⎟⎟⎠

.

Then, characteristic polynomial H(ω) from matrix FJ4 is given by:

H(ω) = ω3 − A1ω
2 + A2ω − A3, (14)

where A1, A2 and A3 are given in (13). Now, by using Theorem 4.1, the one and only positive
equilibrium point (S∗, E∗, Q∗) is locally asymptotically stable if the following inequalities
are satisfied: ⎧⎨

⎩
|A1 + A3| < 1 + A2,

|A1 − 3A3| < 3 − A2,

A3
2 + A2 − A1A3 < 1.

�	

5 Period-doubling bifurcation

In this part of article, we examine that quarantined free fixed point of system (4) experience
period-doubling bifurcation. For this bifurcation concept, center manifold theorem is applied
after the application of normal forms to show the existence and direction of such kind of
bifurcation. Freshly, period-doubling bifurcation associated with discrete-time models has
been explored by many authors [26–30]
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Under the suppositions that B > μ and Qn → 0,∀n, we study the following set:

	1 = {a, B, d, β1, β2 ∈ �+ : μ = f (S, E, a, B, d, β1, β2)},
Then, the quarantined free fixed point (S, E, 0) of system (4) experiences period-doubling

bifurcation such that μ is taken as bifurcation parameter, and it varies in a slight neighborhood
of μ̂, which is given as

μ̂ = f (S, E, a, B, d, β1, β2).

In addition, system (4) is characterized evenly with the next two-dimensional map:

(
S
E

)
→

(
SeB−β1E− β2E

a+S −μS

Eeβ1S+ β2S
a+S −μ

)
. (15)

To discuss and analyze the period-doubling bifurcation for steady state (S, E, 0) of (15),
we suppose that a, B, d, β1, β2, μ̂ ∈ 	1. Then, it follows that

(
S
E

)
→

(
SeB−β1E− β2E

a+S −μ̂S

Eeβ1S+ β2S
a+S −μ̂

)
. (16)

Taking μ̄ as small parameter for bifurcation, then the perturbation of mapping (15) can
be described by the next map:

(
S
E

)
→

(
SeB−β1E− β2E

a+S −(μ̂+μ̄)S

Eeβ1S+ β2S
a+S −(μ̂+μ̄)

)
(17)

where |μ̄|  1, is a small parameter for perturbation.
Taking x = S− S and y = E − E . Then, from (17)we obtained the next map whose fixed

point is at (0, 0) ; (
x
y

)
→

(
θ11 θ12

φ21 φ22

) (
x
y

)
+

(
f1(x, y, μ̄)

f2(x, y, μ̄)

)
, (18)

where

f1(x, y, μ̄) = θ13x
2 + θ14xy + θ15xμ̄ + θ16y

2 + θ17μ̄y + θ18μ̄
2 + θ19x

3 + θ20x
2y

+θ21μ̄x2 + θ22xy
2 + θ23xyμ̄ + θ24xμ̄

2 + θ25yμ̄
2 + θ26μ̄

3 + O
(
(|x | + |y| + |μ̄|)4

)
,

f2(x, y, η̄) = φ13x
2 + φ14xy + φ15yμ̄ + φ16μ̄

2 + φ17x
3 + φ18x

2y + φ19μ̄x2 + φ20μ̄xy

+φ21μ̄
2x + φ22yμ̄

2 + φ23μ̄
3 + O

(
(|x | + |y| + |μ̄|)4

)
,
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ11 = S
(

Eβ2

(a+S)2 − μ̄
)

, θ12 = −S
(
β1 + β2

a+S

)
, θ13 = 1

2

(
μ̄(Sμ̄ − 2) + Eβ2

(
2(a+S)(a−S(a+S)μ̄)+ESβ2

)
(a+S)4

)
,

θ14 =
(
−β1 − β2

a+S

)
+ Sβ2

(a+S)2 + S
(

β2E
(a+S)2 − μ̄

) (
−β1 − β2

a+S

)
, θ15 = S

(
Sμ̄ − 2 − ESβ2

(a+S)2

)
,

θ16 = S
(
(a+S)β1+β2

)
2

2(a+S)2 , θ17 = S
2(

(a+S)β1+β2
)

a+S
, θ18 = S

3

2 ,

θ19 = 1
6

(
μ̄2(3 − Sμ̄) + Eβ2

(
3(a+S)2

(−2a−2a(a+S)μ̄+S(a+S)2μ̄2
)+Eβ2

(−3(a+S)(−a+S+S(a+S)μ̄)+ESβ2
))

(a+S)6

)
,

θ20 = β2

(a+S)2 +
(

β2E
(a+S)2 − μ̄

) (
−β1 − β2

a+S

)
− Sβ2

(a+S)3 − Sβ2E
(
−β1− β2

a+S

)
(a+S)3 +

S

(
β2E

(a+S)2
−μ̄

)
β2

(a+S)2

+ 1
2 S

(
β2E

(a+S)2 − μ̄
)

2
(
−β1 − β2

a+S

)
, θ21 = −1 + ES2β2

(a+S)3 + 2S
(
μ̄ − eβ2

(a+S)2

)
− 1

2 S
2
(
μ̄ − Eβ2

(a+S)2

)
2,

θ22 = −
(
(a+S)β1+β2

)(
(a+S)3(−1+Sμ̄)β1+(a+S)

(−a+S+S(a+S)μ̄−ESβ1
)
β2−ESβ2

2

)
2(a+S)4 ,

θ23 = 2S
(
β1 + β2

a+S

)
− S

2

(a+S)2 + S
2
(

β2E
(a+S)2 − μ̄

) (
β1 + β2

a+S

)
, θ24 = 1

2 S
2
(

3 − Sμ̄ + ESβ2

(a+S)2

)
,

θ25 = − S
3(

(a+S)β1+β2
)

2(a+S)
, θ26 = − S

4

6 ,

φ11 = E
(
β1 + aβ2

(a+S)2

)
, φ12 = 1, φ13 = E

(
(a+S)4β2

1 +2a(a+S)(−1+(a+S)β1)β2+a2β2
2

)
2(a+S)4 , φ14 = β1 + aβ2

(a+S)2 ,

φ15 = −1, φ16 = E
2 , φ17 = E

(−6S(a+S)2β2+6(a+S)3β2−6a(a+S)β2
(
(a+S)2β1+aβ2

)+(
(a+S)2β1+aβ2

)
3
)

6(a+S)6 ,

φ18 = −2a(a+S)β2+(
(a+S)2β1+aβ2

)
2

2(a+S)4 , φ19 = − E
(
(a+S)4β2

1 +2a(a+S)
(
(a+S)β1−1

)
β2+a2β2

2

)
2(a+S)4 ,

φ20 = −β1 − aβ2

(a+S)2 , φ21 = 1
2 E

(
β1 + aβ2

(a+S)2

)
, φ22 = 1

2 , φ23 = − E
6 .

Assume that ξ1, ξ2 are eigenvalues for system (15), then we have the following translation;
(
x
y

)
= M

(
u
v

)
, (19)

where

M =
⎡
⎣ −S

(
β1 + β2

a+S

)
−S

(
β1 + β2

a+S

)
Sμ̄ − ESβ2

(a+S)2 − 1 ξ2 − S
(

Eβ2

(a+S)2 − μ̄
)

⎤
⎦

be a nonsingular matrix. By applying transformation (19), the map (18) can be written as:
(
u
v

)
→

(−1 0
0 ξ2

) (
u
v

)
+

(
f (u, v, μ̄)

g(u, v, μ̄)

)
, (20)

where

f (u, v, μ̄) =
(

(ξ2 − θ11) θ26

θ12 (ξ2 + 1)
− φ23

ξ2 + 1

)
μ̄3 +

(
(ξ2 − θ11) θ24

θ12 (ξ2 + 1)
− φ21

ξ2 + 1

)
μ̄2x

+
(

(ξ2 − θ11) θ25

θ12 (ξ2 + 1)
− φ22

ξ2 + 1

)
μ̄2y +

(
(ξ2 − θ11) θ18

θ12 (ξ2 + 1)
− φ16

ξ2 + 1

)
μ̄2

+
(

(ξ2 − θ11) θ21

θ12 (ξ2 + 1)
− φ19

ξ2 + 1

)
μ̄ x2 +

(
(ξ2 − θ11) θ23

θ12 (ξ2 + 1)
− φ20

ξ2 + 1

)
μ̄ xy

+ (ξ2 − θ11) θ15μ̄ x

θ12 (ξ2 + 1)
+

(
(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
yμ̄

+
(

(ξ2 − θ11) θ19

θ12 (ξ2 + 1)
− φ17

ξ2 + 1

)
x3 +

(
(ξ2 − θ11) θ20

θ12 (ξ2 + 1)
− φ18

ξ2 + 1

)
x2y
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+
(

(ξ2 − θ11) θ13

θ12 (ξ2 + 1)
− φ13

ξ2 + 1

)
x2 + (ξ2 − θ11) θ22xy

2

θ12 (ξ2 + 1)

+
(

(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
xy + (ξ2 − θ11) θ16y

2

θ12 (ξ2 + 1)

+O
(
(|u| + |v| + |μ̄|)4

)
,

g(u, v, μ̄) =
(

(1 + θ11) θ26

θ12 (ξ2 + 1)
+ φ23

ξ2 + 1

)
μ̄3 +

(
(1 + θ11) θ24

θ12 (ξ2 + 1)
+ φ21

ξ2 + 1

)
μ̄2x

+
(

(1 + θ11) θ25

θ12 (ξ2 + 1)
+ φ22

ξ2 + 1

)
μ̄2y +

(
(1 + θ11) θ18

θ12 (ξ2 + 1)
+ φ16

ξ2 + 1

)
μ̄2

+
(

(1 + θ11) θ21

θ12 (ξ2 + 1)
+ φ19

ξ2 + 1

)
μ̄ x2 +

(
(1 + θ11) θ23

θ12 (ξ2 + 1)
+ φ20

ξ2 + 1

)
μ̄ xy

+ (1 + θ11) θ15μ̄ x

θ12 (ξ2 + 1)
+

(
(1 + θ11) θ17

θ12 (ξ2 + 1)
+ φ15

ξ2 + 1

)
yμ̄ +

(
(1 + θ11) θ19

θ12 (ξ2 + 1)
+ φ17

ξ2 + 1

)
x3

+
(

(1 + θ11) θ20

θ12 (ξ2 + 1)
+ φ18

ξ2 + 1

)
x2y +

(
(1 + θ11) θ13

θ12 (ξ2 + 1)
+ φ13

ξ2 + 1

)
x2 + (1 + θ11) θ22xy

2

θ12 (ξ2 + 1)

+
(

(1 + θ11) θ14

θ12 (ξ2 + 1)
+ φ14

ξ2 + 1

)
xy + (1 + θ11) θ16y

2

θ12 (ξ2 + 1)
+ O

(
(|u| + |v| + |μ̄|)4

)
,

where,

x = θ12(u + v), y = −(1 + θ11)u + (ξ2 − θ11)v.

Assume that �
c(0, 0, 0) be the center manifold of (20) intended at (0, 0) in a smallest neigh-

borhood of η̄ = 0. Then, �
c(0, 0, 0) can be estimated as follows:

�
c(0, 0, 0) = {

(u, v, μ̄) ∈ R
3 : v = M11u

2 + M12uμ̄ + M13μ̄
2 + O

(
(|μ̄| + |u|)3)} ,

where

M11 = 1

1 − ξ2

((
(1 + θ11) θ13

θ12 (ξ2 + 1)
+ φ13

ξ2 + 1

)
θ12

2 −
(

(1 + θ11) θ14

θ12 (ξ2 + 1)
+ φ14

ξ2 + 1

)
θ12 (1 + θ11)

)

+ 1

1 − ξ2

(1 + θ11) θ16 (1 + θ11)
2

θ12 (ξ2 + 1)
,

M12 = 1

1 − ξ2

(
(1 + θ11) θ15

ξ2 + 1
−

(
(1 + θ11) θ17

θ12 (ξ2 + 1)
+ φ15

ξ2 + 1

)
(1 + θ11)

)
,

M13 = 1

1 − ξ2

(
(1 + θ11) θ18

θ12 (ξ2 + 1)
+ φ16

ξ2 + 1

)
.

Now, the map restricted to set �
c(0, 0, 0) is described as follows:

G : u → −u + k11u
2 + k12uμ̄ + k13u

2μ̄ + k14uμ̄2 + k15u
3 + O

(
(|u| + |μ̄|)4) ,

where

k11 =
(

(ξ2 − θ11) θ13

θ12 (ξ2 + 1)
− φ13

ξ2 + 1

)
θ12

2 −
(

(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
θ12 (1 + θ11)

+ (ξ2 − θ11) θ16 (1 + θ11)
2

θ12 (ξ2 + 1)
,

k12 = (ξ2 − θ11) θ15

ξ2 + 1
−

(
(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
(1 + θ11) ,

k13 =
(

(ξ2 − θ11) θ21

θ12 (ξ2 + 1)
− φ19

ξ2 + 1

)
θ12

2 −
(

(ξ2 − θ11) θ23

θ12 (ξ2 + 1)
− φ20

ξ2 + 1

)
θ12 (1 + θ11)
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+ (ξ2 − θ11) θ15M1

ξ2 + 1
+

(
(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
(ξ2 − θ11) M1

+2

(
(ξ2 − θ11) θ13

θ12 (ξ2 + 1)
− φ13

ξ2 + 1

)
θ12

2M2 +
(

(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
θ12 (ξ2 − θ11) M2

−
(

(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
θ12M2 (1 + θ11) − 2

(ξ2 − θ11) θ16 (1 + θ11) (ξ2 − θ11) M2

θ12 (ξ2 + 1)

k14 =
(

(ξ2 − θ11) θ24

θ12 (ξ2 + 1)
− φ21

ξ2 + 1

)
θ12 −

(
(ξ2 − θ11) θ25

θ12 (ξ2 + 1)
− φ22

ξ2 + 1

)
(1 + θ11)

+ (ξ2 − θ11) θ15M2

ξ2 + 1
+

(
(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
(ξ2 − θ11) M2

+2

(
(ξ2 − θ11) θ13

θ12 (ξ2 + 1)
− φ13

ξ2 + 1

)
θ12

2M3 − 2
(ξ2 − θ11) θ16 (1 + θ11) (ξ2 − θ11) M3

θ12 (ξ2 + 1)

+
(

(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
θ12 (ξ2 − θ11) M3 −

(
(ξ2 − θ11) θ14

θ12 (ξ2 + 1)
− φ14

ξ2 + 1

)
θ12M3 (1 + θ11) ,

k15 = (ξ2 − θ11) θ26

θ12 (ξ2 + 1)
− φ23

ξ2 + 1
+ (ξ2 − θ11) θ15M3

ξ2 + 1
+

(
(ξ2 − θ11) θ17

θ12 (ξ2 + 1)
− φ15

ξ2 + 1

)
(ξ2 − θ11) M3.

Next, we have the following real numbers:

L11 =
(

∂2 f1
∂u∂μ̄

+ 1

2

∂G

∂μ̄

∂2G

∂u2

)
(0,0)

= ((1 + θ11) θ17 − θ12θ15) (θ11 − ξ2) + (1 + θ11) θ12φ15

θ12 (1 + ξ2)
�= 0,

L12 =
((

1

2

∂2G

∂u2

)2

+ 1

6

∂3G

∂u3

)
(0,0)

= k11
2 + k15 �= 0.

Hence, by aforementioned study we have the next conclusive theorem related to the
existence of period-doubling bifurcation of system (4) about (S, E, 0).

Theorem 5.1 If L12 �= 0, then system (4) undergoes period-doubling bifurcation at the
isolation free equilibrium (S, E, 0) when parameter μ varies in small neighborhood of μ̄.

Furthermore, if L12 > 0, then the period-two orbits that bifurcate from (S, E, 0) are stable,
and if L12 < 0, then these orbits are unstable.

6 Neimark–Sacker bifurcation

This section is related to the bifurcation analysis of the system (4) about (S∗, E∗, Q∗).
Where all conditions for existence and positivity of (S∗, E∗, Q∗) are given in Lemmas 2.3
and 3.3. Here, we will discuss the Neimark–Sacker bifurcation experienced by system (4)
about (S∗, E∗, Q∗) under some mathematical conditions. Bifurcation is the mathematical
phenomena produced in any system due to creation of very small change in stability of system.
Mathematically, bifurcation arises whenever parameters are varied in very least neighborhood
of equilibrium point. Moreover, for further study of bifurcation theory and to understand
this surprising behavior of a discrete-time mathematical system one can see [31–34]. We
deliberate the Neimark–Sacker Bifurcation for positive equilibrium point (S∗, E∗, Q∗) of
system (4) by using an obvious criterion for Neimark–Sacker Bifurcation and compelling
μ as a bifurcation parameter. Due to appearance of Neimark–Sacker Bifurcation, closed
invariant circles are formed. Equally, one can find some lonely orbits of periodic performance
alongside with paths that cover the invariant circle tightly. The bifurcation can be supercritical
or subcritical causing in a stable or unstable closed invariant curve, correspondingly. In
command to study the Neimark–Sacker bifurcation in system (4), we have the next obvious
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standard of Hopf bifurcation [35]. By means of this standard, one can catch the presence of
Neimark–Sacker bifurcation deprived of finding the eigenvalues.

Lemma 6.1 (see [35]) Consider an m-dimensional discrete dynamical system YK+1 =
gα(YK ), where α ∈ � is bifurcation parameter. Let Y ∗ be a fixed point of gα and the
characteristic polynomial for Jacobian matrix J (Y ∗) = (si j )m×m of m-dimensional map gα

is given by

Hα(κ) = κm + b1κ
m−1 + b2κ

m−2 + ........ + bm−1κ + bm (21)

where bi = bi (α, s), i = 1, 2, 3, ....,m and s is control parameter or another parameter
to be determined. Let �±

0 (α, s) = 1,�±
1 (α, s),�±

2 (α, s), ....., �±
m(α, s). be the sequence of

determinants defined by �±
i (α, s) = det (N1 ± N2), i = 1, 2, 3, ....,m where

N1 =

⎛
⎜⎜⎜⎜⎝

1 b1 b2 .... bi−1

0 1 b1 .... bi−2

0 0 1 .... bi−3

.... .... .... .... ....

0 0 0 .... 1

⎞
⎟⎟⎟⎟⎠ (22)

N2 =

⎛
⎜⎜⎜⎜⎝

bm−i+1 bm−i+2 .... bm−1 bm
bm−i+2 bm−i+3 .... bm 0
bm−i+3 bm−i+4 .... 0 0

.... .... .... .... ....

bm 0 0 .... 0

⎞
⎟⎟⎟⎟⎠ . (23)

Moreover, the following conditions are satisfied:

C1 Eigenvalue assignment: �−
m−1(α0, s) = 0,�+

m−1(α0, s) > 0, Hα0(1) > 0, (−1)m

Hα0(−1) > 0,�±
i (α0, s) > 0, i = m−3,m−5,m−7, ...., 1 or i = m−3,m−5,m−

7, ...., 2 when m is even or odd, respectively.
C2 Transversality condition:

[ d
dα

(�−
m−1(α, s))

]
α=α0

�= 0

C3 Nonresonance condition: cos( 2π
n ) �= ψ, or resonance condition cos( 2π

n ) = ψ, where

n = 3, 4, 5, ...., and ψ = −1+0.5Hα0 (1)�−
m−3(α0,s)

�+
m−2(α0,s)

. Then, Neimark–Sacker bifurcation

exits at α0.

The following result shows that system (4) undergoes Neimark–Sacker bifurcation if we take
α as bifurcation parameter.

Theorem 6.1 The unique positive equilibrium point of system (4) undergoes Neimark–
Sacker bifurcation if the following conditions hold:

⎧⎪⎪⎨
⎪⎪⎩

1 − A2 + A3(A1 − A3) = 0,

1 + A2 − A3(A1 + A3) > 0,

1 + A1 + A2 + A3 > 0,

1 − A1 + A2 − A3 > 0.

where, A1, A2 and A3 are given in (13).
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Proof According to Lemma 6.1, for m = 3, we have in (14) the characteristic polynomial of
system (4) evaluated at its unique positive equilibrium, then we obtain the following equalities
and inequalities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�−
2 (μ) = 1 − A2 + A3(A1 − A3) = 0,

�+
2 (μ) = 1 + A2 − A3(A1 + A3) > 0,

Hμ(1) = 1 + A1 + A2 + A3 > 0,

(−1)3
Hμ(−1) = 1 − A1 + A2 − A3 > 0.

�	

Remark 6.1 The arithmetical rule for μ at which Neimark–Sacker bifurcation arises can be
established by finding the solutions of the equation �−

2 (μ) = 0.

7 Modified hybrid control of Bifurcation and Chaos

Control of bifurcation and chaos in mathematical models is considered as a key element
for population models mainly when these models are associated with biological interactions
and breeding of different species. Generally discrete-time mathematical systems are more
complex to analyze as compared to continuous one. It is necessary that the population does
not experience any irregular situation. Hence, to avoid these irregularities a chaos controlling
technique must be implemented. In this part of manuscript, we study a feedback control
strategy with parameter perturbation to move unstable and irregular trajectories toward the
stable trajectories. The most useful and well-known method in the field of chaos is given by Ott
et al. [36] to control period-doubling bifurcation, which is known as OGY method. Latter on,
numerous strategic control methods are developed (see [22,37]). Here, we present a modified
hybrid control method to control the Neimark–Sacker bifurcation and chaos. Furthermore,
this mathematical method is well applicable to every discrete-time system experiencing the
period-doubling bifurcation and chaos. Originally, hybrid method was proposed by Liu et al.
[27]. Moreover, it was developed to control the period-doubling bifurcation (see [26–30]).
Here, we have used the modified hybrid control technique [22] to control Neimark–Sacker
bifurcation. Moreover, this technique is much better then old techniques of control. Consider
the following n-dimensional discrete dynamical system:

Zn+1 = g(Zn, �) (24)

with Zn ∈ �n , n ∈ Z . Suppose � ∈ � is parameter for which system (24) experiences the
bifurcation. The purpose of proposing the modified technique for controlling the bifurcation
is to regain the maximum range of stable region in (24) by reduction in length of unstable
region. Hence, we present the following generalized hybrid control technique by applying
state feedback along with parameter perturbation;

Zn+k = θ3g(h̄)(Zn, �) + (1 − θ3)Zn (25)

where h̄ > 0 is in Z and 0 < θ < 1 is parameter for controlling the bifurcation appearing in
(25). In addition, g(h̄) is kth iterative value of g(.). By application of (25) on system (4), we
get the following system;
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Sn+1 = θ3
(
Sne

B−β1En− β2En
a+Sn

− β4Qn
b+Sn

−μSn
)

+ (1 − θ3)Sn,

En+1 = θ3
(
Ene

β1Sn+ β2Sn
a+Sn

− β3Qn
d+En

−μ

)
+ (1 − θ3)En,

Qn+1 = θ3
(
Qne

c1β3En
d+En

+ c2β4Sn
b+Sn

−μ

)
+ (1 − θ3)Qn

(26)

Furthermore, the system (26) and system (4) have same constant solutions. Additionally, the
Jacobian matrix of (26) about (S∗, E∗, Q∗) is given as follows:

⎛
⎜⎜⎜⎜⎜⎝

1 + θ3S∗
(
μ − β2e∗

(a+S∗)2 − β4Q∗
(b+S∗)2

)
−θ3S∗

(
β1 + β2

a+S∗
)

− θ3β4S∗
b+S∗

θ3E∗
(
aβ2+β1(a+S∗)2

)
(a+S∗)2 1 − θ3 + θ3

(
(d+E∗)2+β3E∗Q∗

)
(d+E∗)2 − θ3β3E∗

d+E∗

− bθ3c2β4Q∗
(b+S∗)2

dθ3c1β3Q∗
(d+e∗)2 1

⎞
⎟⎟⎟⎟⎟⎠

. (27)

The one and only positive equilibrium point (S∗, E∗, Q∗) of the controlled system (26) is
locally asymptotically stable, if all solutions of the characteristic polynomial of (27) lie inside
D1. Where D1 is an open unit disk.

8 Numerical simulation

In this part of article, the numerical analysis for the dynamics of (4) is provide. Moreover,
this study is the direct verification of our theoretical analysis and analytic results which we
proved in previous sections.

Example 8.1 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 and B > 0. Then, the discrete-time mathematical system (4) takes the
following form:

Sn+1 = Sne
B−0.99En− 0.01En

2+Sn
− 0.60Qn

10+Sn
−μSn ,

En+1 = Ene
0.99Sn+ 0.01Sn

2+Sn
− 0.80Qn

0.4+En
−μ

,

Qn+1 = Qne
0.80En
0.4+En

+ 2(0.60S)n
10+Sn

−μ
,

(28)

where μ > 0 and S0 = 0.91059, E0 = 0.38854, Q0 = 0.3549 are initial conditions.
In this case, the graphical behavior of both population variables is shown in (Fig. 4). In
(Fig. 4c), maximum Lyapunov exponents for the existence of bifurcation are given. In (Fig. 5),
some phase portraits are given for variations of μ > 0. Hence, it can be easily seen that
there exists the Neimark–Sacker bifurcation for large range of bifurcation parameter μ. For
aforementioned values of parameters, one can obtain the Jacobian matrix FJ3 as follows:

FJ3 =
⎛
⎝ 1 + 0.91059(0.0021294 − μ) −0.904613 −0.0500756

0.286336 1.1728 −0.335248
−0.0357759 0.239551 1

⎞
⎠ .

Moreover, the characteristic equation H(ψ) = 0 for FJ3 has the following coefficients:

123



Eur. Phys. J. Plus         (2021) 136:853 Page 19 of 26   853 

Fig. 4 Existence of Neimark–Sacker bifurcation in system (4) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 =
0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 0.91059, E0 = 0.38854, Q0 =
0.3549

A1 = 3.17946 − 0.91059 μ,

A2 = 3.68735 − 1.97853 μ,

A3 = 1.58237 − 1.1377 μ.

Moreover, the equilibrium point (S∗, E∗, Q∗) will be locally asymptotically stable for

0.37858611389735736 < μ < 1.0675487017977925.

In addition, the one and only positive equilibrium point (S∗, E∗, Q∗) experiences the
Neimark–Sacker bifurcation whenever

1.0675487017977952 < μ < 2.3456458284152606.

Example 8.2 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, B > μ and
Qn → 0,∀n. Then, the discrete-time mathematical system (4) takes the following form:

Sn+1 = Sne
B−0.99En− 0.01En

2+Sn
−μSn ,

En+1 = Ene
0.99Sn+ 0.01Sn

2+Sn
−μ

(29)
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Fig. 5 Phase portraits of system (4) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 0.91059, E0 = 0.38854, Q0 = 0.3549

where S0 = 1.4391059, E0 = 1.138854 are initial conditions. In this case, the graphical
behavior of population variables Sn and En is, respectively, shown in Fig. 6a and b. It is
clearly seen that in the absence of isolated compartment the system (4) experiences the
chaos for higher values of death parameter. In addition, the isolation-free equilibrium point
(S, E, 0) experiences the period-doubling bifurcation whenever we have

1.26997017977952 < μ < 1.9887756458284152.

Example 8.3 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2, B > 0 and μ > 0 with initial conditions S0 = 1.35, E0 = 0.31, Q0 =
0.75 in system (4). Then, in this case the graphical behavior of susceptible population is
shown in (Fig. 7). Furthermore, it can be seen that the system (4) undergoes period-doubling
bifurcation for higher values of μ (see Fig. 7a). Additionally, the existence of chaos for
susceptible population can be seen from (Fig. 7b).
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Fig. 6 Existence of period-doubling bifurcation in system (4) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 =
0.01, B > μ and Qn → 0,∀n and S0 = 1.4391059, E0 = 1.138854

Fig. 7 Period-doubling bifurcation and chaos in system (4) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 =
0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 1.35, E0 = 0.31, Q0 = 0.75

Example 8.4 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 and B > 0. Then, the discrete-time mathematical system (26) takes the
following form:

Sn+1 = θ3
(
Sne

B−0.99En− 0.01En
2+Sn

− 0.60Qn
10+Sn

−μSn
)

+ (1 − θ3)Sn,

En+1 = θ3
(
Ene

0.99Sn+ 0.01Sn
2+Sn

− 0.80Qn
0.4+En

−μ
)

+ (1 − θ3)En,

Qn+1 = θ3
(
Qne

0.80En
0.4+En

+ 2(0.60S)n
10+Sn

−μ
)

+ (1 − θ3)Qn,

(30)

where μ > 0 ,S0 = 0.91059, E0 = 0.38854, Q0 = 0.3549 and θ ∈ [0, 1]. In this case,
the graphical behavior of both population variables is shown in (Fig. 8). Hence, it can be
easily seen that the Neimark–Sacker bifurcation has been controlled for large range of control
parameter θ.

Example 8.5 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 and B > 0 in system (26). Then, for μ > 0 with initial conditions
S0 = 1.35, E0 = 0.31, and Q0 = 0.75 the graphical behavior of susceptible population
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Fig. 8 Control diagrams for Neimark–Sacker bifurcation in system (26) for a = 2, b = 10, β1 = 0.99, d =
0.4, β2 = 0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 0.91059, E0 =
0.38854, Q0 = 0.3549

Fig. 9 Control diagrams for period-doubling bifurcation and chaos in system (26) for a = 2, b = 10, β1 =
0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 1.35, E0 =
0.31, Q0 = 0.75

is shown in (Fig. 9). Hence, it can be easily seen that the period-doubling bifurcation is
controlled for large range of control parameter θ. Additionally, from (Fig. 9b) it can be seen
that the chaos in system (26) has been controlled effectively large range of control parameter
θ.

Example 8.6 Assume that a = 2, b = 10, β1 = 0.99, d = 0.4, β2 = 0.01, β3 = 0.80, β4 =
0.60, c1 = 1, c2 = 2 and B > 0. Then, the continuous-time mathematical system (1) takes
the following form:

dS

dt
= BS − 0.99SE − 0.01SE

2 + S
− 0.60SQ

10 + S
− μS2,

dE

dt
= 0.99SE + 0.01SE

2 + S
− 0.80EQ

0.4 + E
− μE,

dQ

dt
= 1(0.80)QE

0.4 + E
+ 2(0.60)SQ

10 + S
− μQ.

(31)
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Fig. 10 Two-dimensional plots and phase portraits for system (31) for a = 2, b = 10, β1 = 0.99, d =
0.4, β2 = 0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 1.35, E0 = 0.31, Q0 =
0.75

From (Fig. 11) it can be seen that the system (31) is stable whenever the death rate μ ≤ 1.

Furthermore, in (Fig. 10) the stable behavior of each population variable, namely, S, E and
Q is represented in (Fig. 10a–c), respectively. In (Fig. 10), some stable phase portraits are
given. Moreover, the system (31) will remain unstable whenever the death parameter μ is
taken as μ > 1.

9 Concluding remarks

We study the qualitative behavior of a discrete-time mathematical model for the popula-
tion suffering from hypertension or diabetes exposed to COVID-19. The continuous-time
counterpart of our model was modeled and analyzed in [1] with Z-control. In our study, we
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Fig. 11 Three-dimensional phase portraits for system (31) for a = 2, b = 10, β1 = 0.99, d = 0.4, β2 =
0.01, β3 = 0.80, β4 = 0.60, c1 = 1, c2 = 2 , B > 0, μ > 0 and S0 = 1.35, E0 = 0.31, Q0 = 0.75

discretize the model by using piecewise constant arguments and provides a better graphical
and theoretical analysis of model. In addition, in this paper, we considered the reported cases
from the early stages of pandemic to the number of cases in the start of year 2020 in country
India [1]. Firstly, by assuming the condition that exposed population(E) will remain finite, the
boundedness of every positive solution of system (4) is discussed and an explicit lemma for
the boundedness of every positive solution of system (4) is provided in Sect. 2. It is shown that
there exist six equilibria for system (4). The stability of system (4) is discussed about each of
its equilibrium point. Additionally, we have evaluated some mathematical results concerned
to existence of one and only positive equilibrium point and some conditions are developed
for local asymptotic stability of positive equilibrium point. It is shown that in the absence of
quarantined compartment, the system (4) undergoes period-doubling bifurcation and chaos
(see Sect. 9). In order to show the complexity in system (4), the existence of Neimark–Sacker
bifurcation for one and only positive equilibrium point is proved mathematically. Through
numerical study, we show that system (4) undergoes Neimark–Sacker for wide range of bifur-
cation parameter μ. Moreover, it is shown that for discrete-time mathematical system (4) and
its continuous counterpart (1), if we take death parameter μ ≤ 1, then both systems are sta-
ble and for μ > 1 these systems are unstable. A stability comparison of continuous-time
mathematical (1) system with its discrete counterpart (4) for death parameter μ is given in
Examples 8.1 and 8.6. It is easy to see that our discrete-time mathematical system undergoes
chaos when an individual exposed to COVID-19 does not quarantined himself, that is, for
Qn → 0,∀n, the system (4) must be chaotic but for system (1) if Q(t) → 0, then system (1)
reduces to a two-dimensional continuous-time system, in which chaos is ceased to exist (see
[38,39]). Thus, our discrete-time mathematical system (4) will remain bounded whenever E
is finite and (4) become unbounded when E is unbounded. In addition, an individual which
is exposed to COVID-19 must have to quarantine himself such that the system (4) remains
stable.

Acknowledgements José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cát-
edras CONACyT para Jóvenes investigadores 2014 and SNI-CONACyT.
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