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Abstract Since December 2019, the new coronavirus has raged in China and subsequently
all over the world. From the first days, researchers have tried to discover vaccines to com-
bat the epidemic. Several vaccines are now available as a result of the contributions of those
researchers. As a matter of fact, the available vaccines should be used in effective and efficient
manners to put the pandemic to an end. Hence, a major problem now is how to efficiently
distribute these available vaccines among various components of the population. Using math-
ematical modeling and reinforcement learning control approaches, the present article aims to
address this issue. To this end, a deterministic Susceptible-Exposed-Infectious-Recovered-
type model with additional vaccine components is proposed. The proposed mathematical
model can be used to simulate the consequences of vaccination policies. Then, the suppres-
sion of the outbreak is taken to account. The main objective is to reduce the effects of Covid-19
and its domino effects which stem from its spreading and progression. Therefore, to reach
optimal policies, reinforcement learning optimal control is implemented, and four different
optimal strategies are extracted. Demonstrating the efficacy of the proposed methods, finally,
numerical simulations are presented.
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1 Introduction

Since the first reported case of coronavirus disease 2019 (COVID-19) in early December
2019 in China, it has resulted in an ongoing crisis that unprecedentedly spreads all around
the world [1–4]. Acute respiratory syndrome can occur in patients with serious illness, leading
to multiple organ failures and death in some cases. [5, 6]. It has been established that the
present pandemic’s spread rate is much higher than similar previously reported epidemics in
2003 and 2012, namely SARS coronavirus (SARS-CoV) and MERS coronavirus (MERS-
CoV). Until now, the epidemic crisis has resulted in a growing number of deaths all over the
globe [7, 8].

Mathematical simulations have long been used to obtain insight into the mechanisms of
disease transmission [9–22]. The essence of modeling lies in defining a set of equations
that mimic the system’s spread or dynamic in reality [23, 24]. From the beginning of the
current epidemy, the mathematical models which show its spread have been at the forefront
for prediction and control of the novel coronavirus outbreak [25–29]. Through the available
data on the reported number of infections and information that we already know about the
virus spread, as well as the confirmed number of deaths and hospitalizations, we can get an
accurate insight for the future of the virus spread [30, 31].

Up to now, to effectively mitigate the spread of COVID-19, decision makers in all coun-
tries have applied various control policies such as mandatory lockdowns, quarantining and
isolating infected people, maintaining a minimum social distancing, imposing strict and
encouraging and strictly enforcing, avoiding crowded events, and forcing people to use face
masks while in public [32–35]. Recently, several effective vaccines have been introduced for
battling the pandemic. Some of them have passed all criteria, and now countries are using
them. However, now with the advent of confirmed vaccines, governments and decision mak-
ers face new challenges. Now, to apply vaccines in effective ways, several questions have
to be answered quickly and accurately. Which policies should be taken for vaccination?
How can decision making choose different components of people? How can the vaccine be
distributed throughout the time? How will the vaccine be able to decrease the risk of being
infected? Since the disease’s dynamic is complicated, and its spread is affected by several
factors, answering these equations requires to be considered as optimization problems, which
motivated the current study. The present study aims to solve these questions by proposing
reinforcement learning-based optimal policies.

2 COVID-19 model with controls

In this study, an extended version of “Susceptible-Exposed-Infectious-Recovered” (SEIR)
compartmental model is introduced. In this model, the spread of COVID-19 has been inves-
tigated. Using the Markov Chain Monte Carlo (MCMC) method and fitting the proposed
model to the real data, the dynamic system’s coefficients have been derived.

As mentioned in [36] and [27], the total population is considered as N which can be
classified into eight different epidemiological subclasses: the humans who are not infected but
susceptible S, exposed E , asymptomatic infected having no clinical symptoms but can infect
healthy people A, infected people showing clinical symptoms I , the quarantined humans
who are not infected but susceptible Sq , the quarantined humans who are exposed to the
infection Eq , the hospitalized individuals H and the recovered individuals R. Under these
assumptions, the model is given by defining q as a rate of quarantined, β as the probability
of transmission per contact, � as the likelihood of having symptoms among infected people,
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σ as the proportion of individuals who move to the infected class, λ as the released rate of
the quarantined uninfected contacts and c as the person-to-person contact rate. The disease-
induced death rate of people is α. In this work, δI and δq stand for the transition of infected
people and exposed people to the quarantined infected class, respectively. The recovery rate of
asymptomatically infective patients is γA and the γH is the rate at which infected individuals
get recovery, while γH is the rate at which hospitalized individuals get recovery. Based on
these coefficients, the epidemic model that proposes the transmission dynamics is given by

d

dt
S � −(βc + cq(1 − β))S(I + θ A) + λSq

d

dt
E � −βc(1 − q)S(I + θ A) − σ E

d

dt
I � σ ρ E − (δI + α + γI )I

d

dt
A � σ(1 − ρ)E − γA A

d

dt
Sq � (1 − β)cqS(I + θ A) − λSq

d

dt
Eq � βcqS(I + θ A) − δq Eq

d

dt
H � δI I + δq Eq − (α + γH )H

d

dt
R � γI I + γA A + γH H

(1)

where

c � (c0 − cb)e
−r1t + cb (2)

1

δI (t)
�

(
1

δI0
− 1

δI f

)
e−r2t +

1

δI f
(3)

represents the person-to-person contact rate (c) and detection rate δI, respectively. Equa-
tion (2) and (3) include six parameters defined as follows:

• c0: initial contact rate
• cb: final contact rate that is larger than c0

• r1: exponentially decreasing rate of contact rate
• δI0: initial diagnosis rate
• δI f : fastest diagnosis rate
• r2: exponentially increasing rate of diagnosis rate

It is assumed that the contact rate exponentially decreases over time and the diagnose rate
exponentially increases with respect to time. Furthermore, we rewrite system (1) as follows:

ẋ � f (x)
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f (x(t)) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(βc + cq(1 − β))S(I + θ A) + λSq
−βc(1 − q)S(I + θ A) − σ E

σ�E − (δI + α + γI )I
σ(1 − �)E − γA A

(1 − β)cqS(I + θ A) − λSq
βcqS(I + θ A) − δq Eq

δI I + δq Eq − (α + γH )H
γI I + γA A + γH H

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where x(t) � [
S(t), E(t), I (t), A(t), Sq(t), Eq(t), H(t), R(t)

]T ∈ R
3
0+ are considered as

the state vector. In this paper, this model has been selected because this model can describe
the ongoing situation better. Firstly, this model has a higher reproduction rate over the other
models [36, 37] that make this compartment model reasonable and superior. To be more
specific, in this case, the reproduction rate was found too unstable [37], and some new variants
of the novel coronavirus have a higher reproduction rate. Consequently, when we consider
a model with a high reproduction rate and impose vaccination as a controlling variable, the
optimal controller can be adopted for the worst-case scenario [38, 39]. Moreover, this model
could estimate the confirmed case very well from 23 to 29 January 2020 because it considered
different parameter variations, and its data collection was performed during intensive social
events [39]. Therefore, this model can reflect the real situation better than others. In Sect. 4,
we consider vaccination as a control input and discuss the system’s input signal and how to
impose the vaccination to the nonlinear system.

3 Optimal control problem

Consider the system dynamics described by

ẋ � f (x) + g(x)u (5)

with x ∈ R
n denoting the state, f (x) ∈ R

n , g(x) ∈ R
n×m and the inputu ∈ U ⊂ R

m .
Consider U as a set that is defined for the control input saturation.

Assumption 1 f (.) and g(.) are differentiable in their argument with f (0) � 0 and g(0) � 0,

and they are Lipschitz continuous on their set, so f (x) + g(x)u is Lipschitz continuous on a
set 
 ⊆ Rn containing the origin, so there exists a continuous control function u such that
the dynamics (5) is asymptotically stable on 
 and controllable.

Assumption 2 The control matrix g(x) and f (x) are bounded over the compact set; ‖g
(x)‖≤ �g , ‖g(x)‖≤ � f

Definition 1 In this paper, we define infinite horizon integral cost as follows:

V (x(t), u(t)) �
∫ ∞

t
r(x(τ ), u(τ ))dτ (6)

where r(x(τ ), u(τ )) � Q(x(τ )) + u(x(τ ))TRu(x(τ )) and Q(x(τ )) is a positive definite
monotonically increasing function. R is a symmetric positive definite matrix and Q(0) � 0.

Definition 2 (Admissible Control Policy) [40, 41] u is the control policy that can be said to
be admissible with respect to the cost function (6) on 
, written as u, if u is continuous on
a compact set 
 ⊂ R

n and differentiable on 
, u(0) � 0, u stabilizes (5) and for every
x0 ∈ 
, the V (x(0), u(0)) is finite.
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According to the differentiability and continuity of cost function, the infinitesimal version
of (7) is the nonlinear Lyapunov equation

0 � Q(x(τ )) + u(x(τ ))TRu(x(τ )) + (∇V )T( f (x) + g(x)u) (7)

with (0) � 0. In Eq. (6), the notation ∇x (.) means the gradient operator with respect to x
and is equivalent to ∂(.)

∂x . Consider the Hamiltonian of (5)

H(x, u,∇V ) � Q(x(τ )) + u(x(τ ))TRu(x(τ )) + (∇V )T( f (x) + g(x)u) (8)

The optimal performance index function of (5) can be formulated as

V ∗(x(t), u(t)) �
∫ ∞

t
r
(
x(τ ), u∗(τ )

)
dτ � min

u∈U

∫ ∞

t
r
(
x(τ ), u∗(τ )

)
dτ (9)

According to the Bellman optimal control theory, the optimal value function V ∗
(x(t), u(t)) can be obtained by solving the Hamilton–Jacobi–Bellman (HJB) equation:

0 � min
u∈U H (x, u,∇V ∗) (10)

Assume that the minimum value on the right-hand side of Eq. (10) exists and is unique.
By differentiating the HJB, the optimal control for the given problem can be expressed as

u∗(x) � argmin
u∈B H

(
x, u,∇x V

∗(x)
) � −1

2
R−1gT (x)∇V ∗(x) (11)

where V ∗(x(t), u(t)) is formulated in the following HJB equation

V ∗(x(t), u(t)) � Q(x(τ )) +
(∇V ∗)T

f (x) +
1

4

(∇V ∗)T
g(x)R−1gT(x)

(∇V ∗)
V ∗(0) � 0 (12)

This nonlinear partial differential HJB equation is extremely difficult to solve and, in
general, maybe it is impossible to be computed in some cases. Moreover, complete knowledge
of the system’s dynamics is required. According to [42], the IRL algorithm is presented to
estimate value function iteratively in the following section.

Definition 3 (UUB Stability [43, 44]) For nonlinear system (5), with the equilibrium point xe
its solution is said to be UUB if there exists a compact set
 ⊂ R

n , so that for every x0 ∈ 


, there exists a positive bound √ and a timeT

(
√, x0

)
> 0, independent oft0, such that ‖x

(t) − √‖≤ x0 for ∀t ≥ t0 + T .

In this article, partially model-free integral reinforcement learning (IRL) has been intro-
duced to obtain the optimal value function approximation V ∗(x) and a continuous optimal
control policy u∗(x).

3.1 Value function approximation using Critic network

The critic control design with neural networks generally is acceptable to determine the opti-
mal approximation for control problems [45, 46]. With the higher-order Weierstrass approx-
imation theorem [47], a single-layer neural network can be utilized to reconstruct the cost
function V ∗(x).

V ∗
c (x) � w∗

c
T
φc(x) + εc(x) (13)
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where w∗
c ∈ R

l is suitable coefficients with l neurons, φc(x) ∈ R
l provides the activation

function of the neural network(NN), and εc(x) ∈ R is the reconstruction error. Assuming w∗
c

and φc(x) are bounded. ‖w∗
c‖≤ �w∗

c
, ‖φc‖≤ �φc

Since V ∗
c (x) is differentiable, its gradient

can be approximated as

∂V ∗
c (x)

∂x
�

(
∂φc(x)

∂x

)T

w∗
c +

∂εc

∂x
� ∇φc(x)w

∗
c + ∇εc(x) (14)

According to the [48], for x ∈ 
 one can infer that εc(x) and its gradient ∇εc(x) are
bounded ‖∇T εc(x)‖≤ �ε1 . According to the fact that φc ≤ �φc

, one can infer ∇φc ≤ �∇φc
.

While generally, the optimal coefficient w∗
c is unknown, the estimated value function is given

by

V̂c(x) � ŵT
c φc(x) (15)

where ŵc denotes estimated weights of these basis functions that are updated through the
learning process. The updating rule will be formulated in the following section.

3.2 Policy approximation using Actor-network

Zhu et al. [49], have determined policy estimation by considering the fact that if the initial
admissible policy is given, the policy function can be expressed by NN. NN approximation is
a well-known method for policy estimation in optimal control [50–52]. Therefore, similar to
value function, in order to Weirstrass high-order approximation theorem, the smooth policy
can be uniformly approximated over a compact set as

u∗
c(x) � �

(
w∗
a
T
φa(x)

)
+ εa(x) (16)

where w∗
a ∈ R

l ′×m is optimal coefficients with l ′ neurons, φc(x) ∈ R
l ′ provides the activation

function of the neural network, and εa(x) ∈ R is the approximation error that is bounded
‖εa(x)‖≤ ba . �(.) is a continuous activation function.

Assumption 3 � : Rm ∪ {±∞} → U is a function that is continuous monotonic bijective.
The first derivative of this function is bounded �

′
(.) � d0(.)

d(.) and �(0) � 0.

Remark 1 tanH,SQNL [53], and softsign [54] activation functions satisfy Assumption 3. In
this case, because the input should be bounded by a constant ‖u‖≤ �u , softsign is employed.
Then, the estimated policy function is given by.

ûc(x) � �
(
ŵT
a φa(x)

)
(17)

where ŵa denotes estimated weights to learn w∗
a .

3.3 Learning rules for actor and critic networks

Updating Rule for the Critic Network: By substituting Eqs. (14) in (8), we have

H
(
x, u, w∗

c

) � Q(x(τ )) + u(x(τ ))TRu(x(τ )) +
(
w∗
c

)T∇φc(x)( f (x) + g(x)u) � εH (18)

, while based on Eq. (7), εH can be given by

εH � −∇T εc(x)( f (x) + g(x)u) (19)
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Assumption 4 Under the Lemma 1 that is mentioned in [55] and by using Assumption 7 in
[56], the least-squares solution to (17) exists and is unique for any admissible control policy
and the number of hidden layer neuronsN → ∞, φc(x) gives the complete independent
basis for V ∗

c (x).

Hence, ∂V ∗
c (x)
∂x , V ∗

c (x) can be estimated by NNs in view of the following assumption

and the Weierstrass higher-order approximation theorem, so as N → ∞,
∂εc(x)

∂x , εc(x)
approach zero [40]. Motivated by the research in [57], so as to find the updating laws for the
critic weights, we define the error function for critic network as

ec � σ T ŵc + Q(x) + ûTc Rûc (20)

where σ � ∇φc(x)( f (x) + g(x )̂uc). To train the critic networks, the squared residual error
regarding the critic network training should be minimized.

Ec � 1

2
e2
c (21)

The weight of the critic network ŵc is updated in a gradient descent algorithm to minimize
Ec with

˙̂wc � −αc
σ(

σ T σ + 1
)2

[
σ T ŵc + Q(x) + ûTc Rûc

]
(22)

where αc > 0 is the critic learning rate. Hence, in the light of (22) and (11) and inspired by
[42], the nearly optimal policy can be obtained by

uc(x) � −1

2
R−1gT (x)∇ V̂c(x) � −1

2
R−1gT (x)ŵT

c ∇φc(x) (23)

where we used V̂c(x) instead of the optimal value function V ∗
c (x). This nearly optimal policy

is used in the following section to update Actor-Network.
Updating Rule for the Actor-Network: Similar to the training of critic network, one may

define

Ea � 1

2
e2
a (24)

where ea is the output error between the policy function ûc(x) and the nearly targeted control
policy uc(x)

ea � ûc(x) − uc(x) � �
(
ŵT
a φa(x)

)
− uc(x) (25)

To minimize the square actor error Ea , the weights of the actor-network are tuned by
gradient descent rule as follows:

˙̂wa � −αa
∂Ea

∂ŵa
� −αaφa(x)�

′(
ŵT
a φa(x)

)
ea (26)

Theorem 1 Consider the system given by (5) and the updating actor law and critic law given
by (22) and (26), respectively. Assume w̃a � w∗

a − ŵa , w̃c � w∗
c − ŵc and let σ

(σ T σ+1)
be

persistently exciting (PE) [44]. If Assumptions 1–4 hold, the actor-critic weight estimation
errors w̃a and w̃c are uniformly ultimately bounded and ŵa and ŵc converge to a residual
set in the neighbor of w∗

a and w∗
c , respectively.
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Proof For convenience, we define

ua(x) � �
(
w∗
a
T
φa(x)

)
(27)

D̂ � ŵT
a φa(x) (28)

D∗ � w∗
a
T
φa(x) (29)

D̃ � D∗ − D̂ (30)

The convergence of the actor-critic network during learning is based on Lyapunov analysis.
We consider the following Lyapunov candidate

L � Lc + LV + La � 1

2
w̃T
c α−1

c w̃c + V ∗(x) +
1

2
w̃T
a α−1

a w̃a (31)

First, let us consider Lc � 1
2 w̃T

c α−1
c w̃c. Then, L̇c � −w̃T

c α−1
c

˙̂wc where ˙̂wc is given in
(22).

L̇c � −w̃T
c α−1

c
˙̂wc � w̃T

c
σ(

σ T σ + 1
)2

[
σ T (

w∗
c − w̃c

)
+ Q(x) + ûTc Rûc

]
(32)

or equivalently

L̇c � − σσ T

(
σ T σ + 1

)2 w̃T
c w̃c +

σσ T

(
σ T σ + 1

)2

[
w̃T
c

(
Q(x) + ûTc Rûc

)
+ w̃T

c σ T (
w∗
c

)]
(33)

The solution of the HJB by considering (12) can be rewritten as

εHJB � Q(x(t)) + w∗
c
T∇φc(x) f (x) +

1

4
w∗
c
T∇φc(x)g(x)R

−1gT (x)∇Tφc(x)w
∗
c (34)

where εHJB is the residual error due to the function approximation error, which is

εHJB � −∇T εc(x) f (x) +
1

2
w∗T
c ∇φc(x)g(x)R

−1gT (x)∇εc(x)

+
1

4
∇T εc(x)g(x)R

−1gT (x)∇εc(x) (35)

It is now desired to show that this error converges uniformly to zero as the number of
hidden layer units N increases [40]. Hence, it can be demonstrated that εHJB is bounded.
‖εHJB‖≤ �1

By considering (34), one can derive

(36)

L̇c � − σσ T

(
σ T σ + 1

)2 w̃T
c w̃c

+
σσ T

(
σ T σ + 1

)2

[
w̃T
c

(
εHJB − w∗T

c ∇φc (x) f (x)

− 1

4
w∗T
c ∇φc (x) g (x) R−1gT (x) ∇Tφc (x) w∗

c + ûTc Rûc

)
+ w̃T

c σ T (
w∗
c

) ]
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Based on (25), σ � ∇φc(x)( f (x) + g(x )̂uc) and making use of
�
σ � σσ T

(σ T σ+1)
2

L̇c � − �
σ w̃T

c w̃c

+
�
σ

[
w̃T
c

(
εHJB − w∗

c
T∇φc (x) f (x) − 1

4
w∗
c
T∇φc (x) g (x) R−1gT (x) ∇Tφc (x) w∗

c

+ ûTc Rûc

)
+ w̃T

c w∗
c
T∇φc (x) ( f (x) + g (x) ûc)

]

(37)

where
�
σ is bounded.

∥∥∥�
σ

∥∥∥ ≤ ��
σ

Then,

L̇c � − �
σ w̃T

c w̃c +
�
σ

[
w̃T
c

(
εHJB − 1

4
w∗T
c ∇φc (x) g (x) R−1gT (x) ∇Tφc (x) w∗

c + ûTc Rûc

)

+ w̃T
c w∗T

c ∇φc (x)
(
g (x) ûc

)]

(38)

The second term is,

L̇V �
(
w∗T
c ∇φc(x) + ∇T εc(x)

)(
f (x) + g(x)ûc

)

�
(
w∗T
c ∇φc(x) + ∇T εc(x)

)(
f (x) + g(x)�

(
ŵT
a φa(x)

))
(39)

Combining with (34),

L̇V � ∇T εc(x)
(
f (x) + g(x)�

(
ŵT
a φa(x)

))

+ w∗T
c ∇φc(x) f (x) + w∗T

c ∇φc(x)g(x)�
(
ŵT
a φa(x)

)

� ∇T εc(x)
(
f (x) + g(x)�

(
ŵT
a φa(x)

))

+ εH J B − Q(x(t)) − 1

4
w∗T
c ∇φc(x)g(x)R

−1gT (x)∇Tφc(x)w
∗
c (40)

For the second term of (31), one can write

L̇a � w̃T
a α−1

a

·
w̃a � −w̃T

a α−1
a

·
w̃a � w̃T

a

(
φa(x)�

′(ŵT
a φa(x)

)
ea

)

� w̃T
a

(
φa(x)�

′(ŵT
a φa(x)

)(
�

(
ŵT
a φa(x)

)
+

1

2
R−1gT (x)ŵT

c ∇φc(x)

))
(41)

Consequently,

L̇a � w̃T
a φa(x)�

′(ŵT
a φa(x)

)
�

(
ŵT
a φa(x)

)

+ w̃T
a φa(x)�

′(ŵT
a φa(x)

)1

2
R−1gT (x)ŵT

c ∇φc(x) (42)

Based on (28)–(30), (41) becomes

L̇a � D̃T�′(D̂)
�

(
D̂

)
+

1

2
D̃T�′(D̂)

R−1gT (x)ŵT
c ∇φc(x)

� D̃T�′(D̂)
�

(
D̂

)
− D̃T�′(D̂)

uc

� D̃T�′(D̂)
�

(
D̂

)
− D̃T�′(D̂)(

�
(
D̂

)
− ea

)
� D̃T�′(D̂)

ea (43)
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Then, u∗
c(x) be can be written

u∗
c(x) � �

(
D∗) + εa(x) � −1

2
R−1gT (x)w∗

c
T∇φc(x) (44)

Based on (25), ea become

ea � ûc(x) − uc(x)

� �
(
D̂

)
+

1

2
R−1gT (x)

(
w∗T
c − w̃T

c

)
∇φc(x)

� �
(
D̂

)
− �

(
D∗) − εa(x) − 1

2
R−1gT (x)w̃T

c ∇φc(x)

� − �
(
D̃

)
− εa(x) − 1

2
R−1gT (x)w̃T

c ∇φc(x) (45)

Then, using (45) in (42)

L̇a � −D̃T�′(D̂)(
�

(
D̃

)
+ εa(x) +

1

2
R−1gT (x)w̃T

c ∇φc(x)

)

� −D̃T�′(D̂)
εa(x) − D̃T�′(D̂)(

�
(
D̃

))
− D̃T�′(D̂)1

2
R−1gT (x)w̃T

c ∇φc(x)

(46)

By applying the Young inequality to the second term, we have

− D̃T�′(D̂)1

2
R−1gT (x)∇φc(x)w̃c

≤ 1

4
w̃c∇Tφc(x)g(x)R

−1gT (x)∇φc(x)w̃c

+ D̃T�′(D̂)
�′(D̂)T

D̃ (47)

Then, we rewrite (46)

L̇a ≤ −D̃T�′(D̂)(
−�′(D̂)T

D̃ + εa(x) +
(
�

(
D̃

)))

+
1

4
w̃c∇Tφc(x)g(x)R

−1gT (x)∇φc(x)w̃c (48)

By considering softsign as the activation function, �(y) � y
(1+|y|) therefore �′(y) �

1
(1+|y|)2 . With these functions, one can then show that the first term of (48) can be given

(49)

−D̃T�
′ (
D̂

) (
−�

′(
D̂

)T
D̃ + εa (x) +

(
�

(
D̃

)))

� −D̃T�
′ (
D̂

) (
−D̃(

1 + ‖D̂‖)2 + εa (x) − D̂(
1 + ‖D̂‖) +

D∗

(1 + ‖D∗‖)

)

� −D̃T�
′ (
D̂

) (
− (

D∗ − D̂
) − D̂

(
1 + ‖D̂‖) + D∗ (

1 + ‖D̂‖)(
1 + ‖D̂‖)2

)

� −D̃T�
′ (
D̂

) ‖D̂‖D̃(
1 + ‖D̂‖)2
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Substituting (49) in (48)

L̇a ≤ −D̃T�
′(
D̂

) ‖D̂‖D̃(
1 + ‖D̂‖)2 +

1

4
w̃c∇Tφc(x)g(x)R

−1gT (x)∇φc(x)w̃c (50)

Next, using (38), (40), and (50) to rewrite (30), we get

(51)

L̇ � −Q (x (t)) − �
σ w̃T

c w̃c − D̃T�
′ (
D̂

) ‖D̂‖D̃(
1 + ‖D̂‖)2

− 1

4
w∗
c
T∇φc (x) g (x) R−1gT (x) ∇Tφc (x) w∗

c − D̃T�
′ (
D̂

) (
�

(
D̃

))

+ ∇T εc (x)
(
f (x) + g (x) �

(
ŵT
a φa (x)

))

+ εHJB +
�
σ

[
w̃T
c

(
εHJB − 1

4
w∗
c
T∇φc (x) g (x) R−1gT (x) ∇Tφc (x) w∗

c + ûTc Rûc

)

+ w̃T
c w∗

c
T∇φc (x) (g (x) ûc)

]
+

1

4
εKw̃c∇Tφc (x) g (x) R−1gT (x) ∇φc (x) w̃c

Let ϒ0 � �
′
(D̂)‖D̂‖

(1+‖D̂‖)2 , ϒ1 � 1
4εK∇Tφc(x)g(x)R−1gT (x)∇φc(x) and ϒ2 � �

σ
4 w∗

c
T∇φc

(x)g(x)R−1gT (x)∇Tφc(x)w∗
c positive definites. Based on definitions of ûc, εHJB, ∇T εc, �(

ŵT
a φa(x)

)
,

�
σ , w∗

c , ∇φc(x) and Assumption 2 and 3, one can conclude

‖εHJB‖≤ �1

‖∇T εc(x)
(
f (x) + g(x)�

(
ŵT
a φa(x)

))
‖≤ �ε1

(
� f + �g�u

) � �2

‖�
σ ûTc Rûc‖≤ ��

σ
�2

u R � �3∥∥∥�
σ w∗T

c ∇φc(x)
(
g(x)ûc

)∥∥∥ ≤ ��
σ
�w∗

c
�∇φc�g�u � �4 (52)

where �u , �1, �ε1 , ��
σ

, �w∗
c
, �∇φc , � f and �g are the upper bound of ûc, εH J B , ∇T εc, �(

ŵT
a φa(x)

)
,

�
σ , w∗

c , ∇φc(x), f (x) andg(x), respectively. Consequently, we can obtain

L̇ ≤ −λQx
2 − w̃T

c

(�
σ −ϒ1

)
w̃c − D̃Tϒ0 D̃ − w̃T

c (ϒ2 − �3 − �4) + �1 + �2 (53)

where λQ is a positive constant such that Q(x(t)) > xT λQx for every x ∈ 
. If we choose

εK and R such that
(�
σ −ε1

)
bigger than zero, then L̇ yields

L̇ ≤ −
∥∥∥�
Z
∥∥∥λmin(G) + ‖q‖

∥∥∥�
Z
∥∥∥ + � (54)

where
�
Z �

⎡
⎣ x

D̃
w̃c

⎤
⎦ and

G �
⎡
⎢⎣
Q 0 0
0 ϒ0 0

0 0
(�
σ −ϒ1

)
⎤
⎥⎦

G �
⎡
⎣ 0

0
−(ϒ2 − �3 − �4)

⎤
⎦

� � �1 + �2

123



  609 Page 12 of 22 Eur. Phys. J. Plus         (2021) 136:609 

If the parameters are selected such that � and G are positive, then the Lyapunov derivative
is negative if

∥∥∥�
Z
∥∥∥‖q‖ +

√
‖q‖2 + 4λmin(G)�

2λmin(G)
(55)

By mathematical induction, it is now desired to show if we can bound the Lyapunov

function, then for sufficiently large
∥∥∥�
Z

∥∥∥ L̇ is negative. Therefore, by using the standard

Lyapunov extension theorem [58], it follows that the system state and the weights error are
UUB, which completes the proof.

Remark 2 If Assumptions 1–4 hold, then the assumption of the nonlinear Lyapunov equation
solution of (12) can be relaxed without loss of the stability performance, and the equilibrium
point of (5) remains UUB.

Remark 3: By utilizing gradient descent rules (22), (26), and the backpropagation rule, the
HJB error Ec � 1

2e
2
c and the point-wise control error Ea � 1

2e
2
a update the critic and actor

networks. The error Ec is convex with respect to ŵc . Hence, the critic network’s weight
converges to its global optimal point by applying the updating rule (22). The error Ea is
non-convex with respect to ŵa so the weights of the actor-network converge to a locally
optimal point by applying the updating rule (26).

4 Optimal vaccination strategies

In this study, several optimal vaccination strategies are proposed. In each strategy, we consider
four cost functions to formulate the main concerns and characterizations that should be
considered and noted. Then, we define the appropriate model for each of them. It should be
noted that the main objective is to reduce the effects of Covid-19 and its domino effects which
stem from its spreading and progression. In this section, the optimal control principle provides
an optimized approach that can hinder the impacts of Covid-19 outbreak. Therefore, to
minimize defined objective functions, we implement reinforcement learning optimal control
to reach the optimal policy. Here, by using the HJB equation which is described in each
subsection, the necessary condition for optimality is satisfied.

4.1 Strategy 1

In view of the above discussion, we suppose the optimal control problem with vaccination as
input control. Motivated from proposed model in [59] and [60], we introduce a mathematical
model with end-point state constraint, control input inspired of [37], and considering vaccine
efficiency. This model is shown in Fig. 1 and can be driven as follows:

ẋ � f (x) + g(x)u
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Fig. 1 Transmission diagram of dynamics of COVID-19 spread, by the implementation of a vaccination by
strategy 1 or 2, b strategy 3, c strategy 4
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f (x(t)) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(βc + cq(1 − β))S(I + θ A) + λSq
βc(1 − q)S(I + θ A) − σ E + (1 − ev)βcVa(I + θ A)

σ 〉E − (δI + α + γI )I
σ(1−〉)E − γA A

(1 − β)cqS(I + θ A) − λSq
βcqS(I + θ A) − δq Eq

δI I + δq Eq − (α + γH )H
γI I + γA A + γH H

−(1 − ev)βcVa(I + θ A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(x) � [−S, 0, 0, 0, 0, 0, 0, 0, S]T

x(t) � [
S(t), E(t), I (t), A(t), Sq(t), Eq(t), H(t), R(t), Va(t)

]T (56)

where u denotes the ratio of susceptible individuals vaccinated per day (0 ≤ u ≤ 1) and
ev is the vaccine efficiency. This parameter demonstrates the effectiveness of vaccine which
means that if this factor ev � 1, the vaccine is fully effective. Note that the term (1 − ev)βcVa
(I + θ A) represents the vaccinated people who can be infected due to vaccine incompleteness
and expresses the fact that no vaccination is 100% effective. Moreover, in the introduced
model, Va indicates the vaccinated sub-population. In this strategy, we wish to reduce the
objective function which considers the infected individuals and the ratio of vaccinated people

V ∗ � min

(∫ t f

0
�I,s1 I

2(t) + �u,s1u
2dt

)
(57)

where �I,s1 and �u,s1 are the relative weight factors selected to balance the objective function
over innervation time t f .

4.2 Strategy 2

The objective function (55) can be enhanced by assuming exposed individuals as a population
that should be considered to be minimized. In fact, by employing a strategy whose aim is
to reduce exposed people, we can find a better solution to minimize the number of infected
individuals and the cost of vaccination. More precisely, we seek that the optimal control
consists of minimizing the objective functional

V ∗ � min

(∫ t f

0
�I,s2 I

2(t) + �E,s2 E
2(t) + �u,s2u

2dt

)
(58)

subject to the mathematical model proposed by (56). Similar to (57), �I,s2 , �s,s2 and �u,s2

are positive weights for balancing cost function.

4.3 Strategy 3

In this strategy, we consider quarantined vaccination as a method that can effectively be
taken into account to reduce the cost of vaccination and the number of infected and exposed
individuals. Hence, the vaccination control variable is imposed on quarantined individuals
who are susceptible to the virus. Then, the epidemic model with two control input imposed
is given by

ẋ � f (x) + g(x)u
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f (x(t)) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(βc + cq(1 − β))S(I + θ A) + λSq
βc(1 − q)S(I + θ A) − σ E + (1 − q)(1 − ev)βcVa(I + θ A)

σ 〉E − (δI + α + γI )I
σ(1−〉)E − γA A

(1 − β)cqS(I + θ A) − λSq
βcqS(I + θ A) − δq Eq + q(1 − ev)βcVa(I + θ A)

δI I + δq Eq − (α + γH )H
γI I + γA A + γH H

−(1 − ev)βcVa(I + θ A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(x) � [−S, 0, 0, 0,−Sq , 0, 0, 0,
(
S + Sq

)]T
x(t) � [

S(t), E(t), I (t), A(t), Sq(t), Eq(t), H(t), R(t), Va(t)
]T (59)

Indeed, in this model, the vaccination will be distributed equally between the quarantined
and non-quarantined individuals. By considering this fact that quarantined individuals are
considered as one group which are vaccinated, the quadratic objective functional (56) is
defined as

V ∗ � min

(∫ t f

0
�I,s2 I

2(t) + �E,s2 E
2(t) + �Eq ,s2 Eq

2(t) + �u,s2u
2dt

)
(60)

where �Eq ,s2 Eq
2(t) is the quadratic terms of quarantined exposed individuals representing

the population that we wish to minimize besides infected and non-quarantined exposed
individuals.

4.4 Strategy 4

Here, instead of the uniform allocation of vaccine proposed in Strategy 3, we use two inde-
pendent control variables for the propagation control of the coronavirus. The resulting control
model, after incorporating the aforementioned control variables, is formulated via the fol-
lowing system:

f (x(t)) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(βc + cq(1 − β))S(I + θ A) + λSq
βc(1 − q)S(I + θ A) − σ E + (1 − q)(1 − ev)βcVa(I + θ A)

σ 〉E − (δI + α + γI )I
σ(1−〉)E − γA A

(1 − β)cqS(I + θ A) − λSq
βcqS(I + θ A) − δq Eq + q(1 − ev)βcVa(I + θ A)

δI I + δq Eq − (α + γH )H
γI I + γA A + γH H

−(1 − ev)βcVa(I + θ A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g(x) �
[ −S, 0, 0, 0, 0, 0, 0, 0, (S)

0, 0, 0, 0,−Sq , 0, 0, 0,
(
Sq

) ]T

x(t) � [
S(t), E(t), I (t), A(t), Sq(t), Eq(t), H(t), R(t), Va(t)

]T
x(t) � [

S(t), E(t), I (t), A(t), Sq(t), Eq(t), H(t), R(t), Va(t)
]T (61)

V �
[
u
uq

]
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In this strategy, uq is the input variable which represents the fraction of quarantined
susceptible individuals who vaccinated. By modifying Strategy 3 in the control variables
assumption, the updated objective functional (60) is given as

V ∗ � min

(t f∫
0

�I,s2 I
2(t) + �E,s2 E

2(t) + �Eq ,s2 E
2
q(t) + �uq ,s2u

2
q + �u,s2u

2dt

)
(62)

where the �uq ,s2u
2
q stands for minimization of quarantined vaccination. This objective illus-

trates the importance of vaccination optimization. Moreover, the constant �uq ,s2 similar to the
proposed strategies is the balancing factor, which measures the relative cost of quarantined
vaccination. Figure 1 shows these strategies. In the next section, we will present the result of
each strategy and compare the numerical results of their optimal solution.

These strategies are designed based on this assumption that susceptible people have been
determined. Moreover, in this article, the susceptible people are considered as the only group
of people who should be prioritized for getting the vaccine because they are more likely to be
infected by the infection, and their infection will be more severe than the other people. After
identification of the susceptible individuals, they should be classified. In this case, suscepti-
bility can be decerned through potential risk factors such as age or pregnancy. Consequently,
it will be necessary to monitor the susceptible individuals and prioritize them regarding their
conditions.

5 Numerical results

In this section, we simulate the epidemiological model with vaccination based on the obtained
data from the laboratory-confirmed case of 2019-nCoV that occurred in mainland China
which is proposed by [36]. It should be noted that their research was based on a collected
dataset and surveys until January 22, 2020. They employed the Markov Chain Monte Carlo to
estimate the model parameters and their baselines. Based on these parameters, we implement
these four strategies in python. In each strategy, the balancing factors are considered to
countervail the imbalances between the magnitude of objectives’ value. In this simulation,
the embedded Runge–Kutta (RK5(4)) [61] has been used to model the dynamics of the
epidemiological system. According to the research in [62], we assume vaccine efficacy ev �
0.90, and the parameters in the optimal control framework are taken as

φc(x) � [S2, E2, I 2, A2, S2
q , E

2
q , H

2, R2, S.E, S.I, S.A, S.Sq , S.Eq , S.H, S.R],

φa(x) � [S, E, I, A, Sq , Eq , H, R]

The initial values of weights are as follows:

ŵc � [10−5, . . . , 10−5]

ŵa � [10−4, . . . , 10−4]

Based on [36], the model’s baselines and initial values are given in Tables 1 and 2. Here, we
use them as baselines of the model and the initial values. Next, according to the defined cost
functions (57), (58), (60), and (62), reinforcement learning optimal control has been applied as
a feedback controller. Now, the time evolution of respective subpopulations and vaccination
efforts are shown in Figs. 2, 3 and 4. In Fig. 2, the outcome of different optimal control
strategies on the population of "stratified groups of people" is shown. First, in Fig. 2, the time
evolution of the subpopulations illustrates that by using the vaccination strategies, susceptible,
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Table 1 Parameter estimates for COVID-19 in Wuhan, China [36]

Parameter Estimated mean value Parameter Estimated Mean value

β 2.1011×10–8 δq 0.1259

q 1.8887×10–7 γI 0.33029
σ 1/7 γA 0.13978
λ 1/14 γH 0.11624

� 0.86834 α 1.7826×10–5

Table 2 Initial values estimation
for COVID-19 in Wuhan, China
[37]

Initial values Value Initial values Value

S(0) 10,893,000 Sq (0) 167,000

E(0) 16,000 Eq (0) 0

I (0) 2000 H (0) 1000
A(0) 1000 R(0) 2000

exposed, infected individuals (with or without a sign of disease), hospitalized, and recovered
population fall. Moreover, the number of hospitalized individuals is reduced compared with
the no-control strategy. It can be considered as a secondary effect of vaccination. Furthermore,
at the beginning of public vaccination, it can successfully reduce the number of infected
people, and as a consequence, people are less likely to be exposed to the infected people who
can spread the disease. Therefore, the need for hospitalization will decrease in the long term.
From Fig. 2a, it is precisely shown that the population of susceptible individuals declines
more in Strategy 4, in which vaccine has been considered for both quarantined and non-
quarantined susceptible individuals. This can explain that quarantined vaccination is one of
the best options for eradicating the disease in the long run. In Fig. 3, the vaccinated population
is shown in each control policy. As shown in this figure, the total population of vaccinated
individuals in Strategy 3 is lower than the other optimal control strategies; however, Fig. 2c
illustrates that the time evolution of infected individuals in all optimal strategies are close to
each other. Thus, one can see after 110 days, the population of infected individuals in each
strategy is similar to the others. Therefore,Strategy 3will be suggested to be taken into account
if restriction exists in vaccine supplements. In view of Fig. 2a, one can obtain that the tenth
day can be supposed as the perfect trigger time for vaccination. On this day, the population
of susceptible exceeds the minimum itself, and after that, the population of this compartment
will rise gradually. In this context, if the cost of vaccination is important to governments,
they can follow Strategy 3, which is the best option to bring down the cost of vaccination
and reduce the number of infected people simultaneously. Based on this strategy, it would be
better for governments and authorities to begin the public vaccination when the population of
susceptible people reaches its minimum. Figure 4 shows the number of vaccinated population
in each strategy per day presented to compare the time evolution of the vaccinated population
in four different strategies. From Fig. 4a, we compare the control profiles of each strategy.
One can see that in Strategy 4, the number of susceptible people declines more than the
others; this strategy requires more vaccination effort. In this case, this fact is shown that from
the aspect of vaccination cost, Strategy 3 can be more satisfying than the other strategies.
Note that in Strategy 4, the vaccination distributes among quarantined and non-quarantined
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Fig. 2 Number of individuals with different values of derivative order, a susceptible people, b exposed people,
c symptomatic infected people, d asymptomatic infected people, e quarantined susceptible people, f quaran-
tined exposed people, g quarantined infected people, h recovered people

susceptible individuals. The allocation of the vaccine in this strategy is shown in Fig. 4b.
One can infer from this figure that in the primary phase, the authorities should give top
priority to the quarantined susceptible individuals, although the non-quarantined susceptible
individuals also should be considered for vaccination. As mentioned in the previous section,
these strategies are formulated to be performed just for susceptible individuals. As a result, it
should be noted that before performing, the susceptible people should be identified, stratified,
and prioritized. This stratification can be performed based on their risk factor and their
vulnerability. Moreover, ring vaccination is another strategy to control the outbreak [63, 64].
To be more specific, utilizing smart surveillance monitoring can provide the authorities and
governors with a great tool to identify the susceptible people. This method can be taken into
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Fig. 3 Number of vaccinated people

Fig. 4 Compared solutions vaccination for Covid-19 by different strategies

action to reduce transmission earlier by vaccination and immunization of the susceptible ring.
Therefore, these proposed strategies can provide effective protection.

In this sense, in Fig. 4a, Strategy 2 shows that its performance is better than the performance
of Strategy 1 because this strategy reduces the number of susceptible people more than other
strategies. This figure also demonstrates that if the exposed people are considered in the
objective function, the optimal controller can perform better regarding the reduction in both
susceptible and exposed populations. It should be noted that the more exposed the population
decrease, the less susceptible individuals can be infected. Due to this fact, one can infer that
both susceptible and exposed populations should be considered in objective functions.

Also, from a practical viewpoint, let us denote that the reinforcement learning optimal
control can introduce a better policy for vaccination distribution regarding Pontryagin’s min-
imum principle. For example, in [59, 65, 66], the proposed optimal controls suggest the time
evolution vaccination whose initial proportion is high and significant. This high initial value
of vaccine usage makes Pontryagin’s minimum principle approach impractical and too harsh
in the real world, but as presented in this article, reinforcement learning optimal control can
propose a policy with smooth starting that provides functionality and practicality for public
vaccination.

Graphical results depict the importance of vaccine allocation. In these graphical interpre-
tation shows that if the vaccination is taken into account, the severity of infection can be
reduced gradually. In the presented model, vaccination plays a vital role in the reduction in
susceptible individuals. Consequently, one can see that when suspectable individuals who
can transmit the virus and be infected start to fall, the number of infected people can decline
in number. Decreasing the number of symptomatically infected people will reduce the expo-
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sure of uninfected people to infected people. Therefore, it can reduce the probability of being
infected through the disease transmission too. As a result, the number of infected people is
decreased significantly, which can end up with the elimination of the disease in society. It
should be noted that due to the slow dynamic behavior of the epidemic model, it seems that
the vaccine does not affect the population of infected people, but over time, the significance
of vaccination effectiveness can be observable. Hence, this simulation highly suggests that
governments and authorities should not be obsessed with the number of infected people
during the early stage of vaccination because vaccines take time to induce immunity.

6 Conclusion

In this research, the significant challenge regarding vaccination strategies for COVID-19 has
been investigated. Based on data from confirmed cases of 2019-nCoV in mainland China, a
new deterministic SEIR model with additional vaccination components was developed. Fol-
lowing that, based on the reinforcement learning method, an optimal control was developed
to discover the best policies. By implementing the dynamic model of the epidemiological
system, numerical results for four different control strategies obtained by the proposed tech-
nique were demonstrated. The feasibility of the recommended method for designing optimal
vaccine plans was clearly shown by these findings. As a future study, it would be useful to
look at any of the behavioral or emotional side effects of quarantine, such as depression,
which may impact depression or even suicide rate in society. Such investigations lead us to
find an optimal trade-off for quarantine decisions.

References

1. K. Yuki, M. Fujiogi, S. Koutsogiannaki, COVID-19 pathophysiology: a review. Clin. Immunol. 2020,
108427 (2020)

2. P. Xu, Q. Zhou, J. Xu, Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 99,
1205–1208 (2020)

3. M. Ciotti, S. Angeletti, M. Minieri, M. Giovannetti, D. Benvenuto, S. Pascarella et al., COVID-19 outbreak:
an overview. Chemotherapy 64, 215–223 (2019)

4. T.P. Velavan, C.G. Meyer, The COVID-19 epidemic. Trop. Med. Int. Health 25, 278 (2020)
5. L. Gattinoni, S. Coppola, M. Cressoni, M. Busana, S. Rossi, D. Chiumello, COVID-19 does not lead to

a “typical” acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 201, 1299–1300 (2020)
6. Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang et al., Pathological findings of COVID-19 associated

with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020)
7. J.A. Al-Tawfiq, Asymptomatic coronavirus infection: MERS-CoV and SARS-CoV-2 (COVID-19). Travel

Med. Infect. Dis. 35, 101608 (2020)
8. D. Giannis, I.A. Ziogas, P. Gianni, Coagulation disorders in coronavirus infected patients: COVID-19,

SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 127, 104362 (2020)
9. N. Gul, R. Bilal, E.A. Algehyne, M.G. Alshehri, M.A. Khan, Y.-M. Chu et al., The dynamics of fractional

order Hepatitis B virus model with asymptomatic carriers. Alex. Eng. J. 60, 3945–3955 (2021)
10. A. Ali, F.S. Alshammari, S. Islam, M.A. Khan, S. Ullah, Modeling and analysis of the dynamics of novel

coronavirus (COVID-19) with Caputo fractional derivative. Results Phys. 20, 103669 (2021)
11. H. Alrabaiah, M.A. Safi, M.H. DarAssi, B. Al-Hdaibat, S. Ullah, M.A. Khan et al., Optimal control

analysis of hepatitis B virus with treatment and vaccination. Results Phys. 19, 103599 (2020)
12. Y.-M. Chu, A. Ali, M.A. Khan, S. Islam, S. Ullah, Dynamics of fractional order COVID-19 model with

a case study of Saudi Arabia. Results Phys. 21, 103787 (2021)
13. M.A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional

derivative. Alex. Eng. J. 59, 2379–2389 (2020)
14. E.O. Alzahrani, W. Ahmad, M.A. Khan, S.J. Malebary, Optimal control strategies of Zika virus model

with mutant. Commun. Nonlinear Sci. Numer. Simul. 93, 105532 (2021)

123



Eur. Phys. J. Plus         (2021) 136:609 Page 21 of 22   609 

15. H. Jahanshahi, Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled
sliding mode supervision. Eur. Phys. J. Spec. Top. 227, 707–718 (2018)

16. H. Jahanshahi, K. Shanazari, M. Mesrizadeh, S. Soradi-Zeid, J.F. Gómez-Aguilar, Numerical analysis
of Galerkin meshless method for parabolic equations of tumor angiogenesis problem. Eur. Phys. J. Plus
135, 1–23 (2020)

17. T.H. Zhao, O. Castillo, H. Jahanshah, A fuzzy-based strategy to suppress the novel coronavirus (2019-
NCOV) massive outbreak. Appl Comput Math. 20, 160–176 (2021)

18. H. Jahanshahi, J.M. Munoz-Pacheco, S. Bekiros, N.D. Alotaibi, A fractional-order SIRD model with
time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19.
Chaos Solitons Fract. 143, 110632 (2021)

19. H. Wang, H. Jahanshahi, M.-K. Wang, S. Bekiros, J. Liu, A.A. Aly, A caputo-fabrizio fractional-order
model of HIV/AIDS with a treatment compartment: sensitivity analysis and optimal control strategies.
Entropy 23, 610 (2021)

20. P. Pandey, Y.-M. Chu, J.F. Gómez-Aguilar, H. Jahanshahi, A.A. Aly, A novel fractional mathematical
model of COVID-19 epidemic considering quarantine and latent time. Results Phys. 221, 104286 (2021)

21. N.C. Grassly, C. Fraser, Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 6,
477–487 (2008)

22. S.-B. Chen, F. Rajaee, A. Yousefpour, R. Alcaraz, Y.-M. Chu, J.F. Gómez-Aguilar et al., Antiretroviral
therapy of HIV infection using a novel optimal type-2 fuzzy control strategy. Alex. Eng. J. 60, 1545–1555
(2021)

23. M.A. Khan, C. Alfiniyah, E. Alzahrani, Analysis of dengue model with fractal-fractional Caputo-Fabrizio
operator. Adv. Differ. Equ. 2020, 1–23 (2020)

24. S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A. Srinivasan, Z. Toroczkai et al., Modelling disease
outbreaks in realistic urban social networks. Nature 429, 180–184 (2004)

25. S. Ullah, M.A. Khan, Modeling the impact of non-pharmaceutical interventions on the dynamics of novel
coronavirus with optimal control analysis with a case study. Chaos Solitons Fract. 139, 110075 (2020)

26. M. Awais, F.S. Alshammari, S. Ullah, M.A. Khan, S. Islam, Modeling and simulation of the novel
coronavirus in Caputo derivative. Results Phys. 19, 103588 (2020)

27. A. Yousefpour, H. Jahanshahi, S. Bekiros, Optimal policies for control of the novel coronavirus disease
(COVID-19) outbreak. Chaos Solitons Fract. 136, 109883 (2020)

28. F. Ndaïrou, I. Area, J.J. Nieto, D.F.M. Torres, Mathematical modeling of COVID-19 transmission dynam-
ics with a case study of Wuhan. Chaos Solitons Fract. 135, 109846 (2020)

29. N.H. Tuan, H. Mohammadi Rezapourdidi, A mathematical model for COVID-19 transmission by using
the Caputo fractional derivative. Chaos Solitons Fract. 140, 110107 (2020)

30. M.S. Alqarni, M. Alghamdi, T. Muhammad, A.S. Alshomrani, M.A. Khan, Mathematical Modeling for
Novel Coronavirus (COVID-19) and Control (Methods Partial Differ. Equ, Numer, 2020). https://doi.org/
10.1002/num.22695

31. J. Panovska-Griffiths,CanMathematicalModelling Solve the Current Covid-19 Crisis? (Springer, Berlin,
2020).

32. M.A. Khan, A. Atangana, E. Alzahrani, The dynamics of COVID-19 with quarantined and isolation. Adv.
Differ. Equ. 2020, 1–22 (2020)

33. M.A.A. Oud, A. Ali, H. Alrabaiah, S. Ullah, M.A. Khan, S. Islam, A fractional order mathematical model
for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Adv. Differ. Equ. 2021,
1–19 (2021)

34. M.A. Khan, S. Ullah, S. Kumar, A robust study on 2019-nCOV outbreaks through non-singular derivative.
Eur. Phys. J. Plus 136, 1–20 (2021)

35. D. Dunford, B. Dale, N. Stylianou, E. Lowther, M. Ahmed, A.I. De la Torre, Coronavirus: the world in
lockdown in maps and charts. BBC News 9, 462 (2020)

36. B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao et al., Estimation of the transmission risk of
the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9, 462 (2020)

37. B. Tang, N.L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission
of the novel coronavirus (2019-nCov). Infect. Dis. Model. 5, 248–255 (2020)

38. E. Volz, S. Mishra, M. Chand, J.C. Barrett, R. Johnson, L. Geidelberg et al., Assessing transmissibility
of SARS-CoV-2 lineage B. 1.1. 7 in England. Nature 593, 266–269 (2021)

39. N.G. Davies, S. Abbott, R.C. Barnard, C.I. Jarvis, A.J. Kucharski, J.D. Munday et al., Estimated trans-
missibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science 372, eabg3055 (2021)

40. M. Abu-Khalaf, F.L. Lewis, Nearly optimal control laws for nonlinear systems with saturating actuators
using a neural network HJB approach. Automatica 41, 779–791 (2005)

41. R. Beard, Improving the closed-loop performance of nonlinear systems, Ph.D. dissertation, Rensselaer
Polytech. Inst., Troy, NY (1995)

123

https://doi.org/10.1002/num.22695


  609 Page 22 of 22 Eur. Phys. J. Plus         (2021) 136:609 

42. F.A. Yaghmaie, D.J. Braun, Reinforcement learning for a class of continuous-time input constrained
optimal control problems. Automatica 99, 221–227 (2019)

43. P.G. Drazin, P.D. Drazin, Nonlinear Systems (Cambridge University Press, Cambridge, 1992).
44. P.A. Ioannou, J. Sun, Robust Adaptive Control (Courier Corporation, London, 2012).
45. X. Zhong, H. He, An event-triggered ADP control approach for continuous-time system with unknown

internal states. IEEE Trans. Cybern. 47, 683–694 (2016)
46. Wei Q, Zhang H, A New Approach to Solve a Class of Continuous-Time Nonlinear Quadratic Zero-Sum

Game Using ADP. IEEE. pp. 507–512.
47. V.R. Konda, J.N. Tsitsiklis, Actor-Critic Algorithms, Citeseer. pp. 1008–10014.
48. K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown mapping and its deriva-

tives using multilayer feedforward networks. Neural Netw. 3, 551–560 (1990)
49. Y. Zhu, D. Zhao, X. Li, Using reinforcement learning techniques to solve continuous-time non-linear

optimal tracking problem without system dynamics. IET Control Theory Appl. 10, 1339–1347 (2016)
50. G. Xiao, H. Zhang, Y. Luo, Q. Qu, General value iteration based reinforcement learning for solving

optimal tracking control problem of continuous–time affine nonlinear systems. Neurocomputing 245,
114–123 (2017)

51. B. Kiumarsi, F.L. Lewis, Actor–critic-based optimal tracking for partially unknown nonlinear discrete-
time systems. IEEE Trans. Neural Netw. Learn. Syst. 26, 140–151 (2014)

52. X. Yang, D. Liu, B. Luo, C. Li, Data-based robust adaptive control for a class of unknown nonlinear
constrained-input systems via integral reinforcement learning. Inf. Sci. 369, 731–747 (2016)

53. A. Wuraola, N. Patel, SQNL: A new computationally efficient activation function. IEEE, pp. 1–7.
54. D.L. Elliott, A better activation function for articial neural networks. ISR technical report TR 93-8,

Univeristy of Maryland (1993)
55. K.G. Vamvoudakis, F.L. Lewis, Online actor–critic algorithm to solve the continuous-time infinite horizon

optimal control problem. Automatica 46, 878–888 (2010)
56. S. Bhasin, R. Kamalapurkar, M. Johnson, K.G. Vamvoudakis, F.L. Lewis, W.E. Dixon, A novel actor—

critic–identifier architecture for approximate optimal control of uncertain nonlinear systems. Automatica
49, 82–92 (2013)

57. J. Shi, D. Yue, X. Xie, Adaptive optimal tracking control for nonlinear continuous-time systems with time
delay using value iteration algorithm. Neurocomputing 396, 172–178 (2020)

58. F.W. Lewis, S. Jagannathan, A. Yesildirak, Neural Network Control of Robot Manipulators and Non-
Linear Systems (CRC Press, London, 2020).

59. Y. Yang, S. Tang, X. Ren, H. Zhao, C. Guo, Global stability and optimal control for a tuberculosis model
with vaccination and treatment. Discrete Contin. Dyn. Syst. B 21, 1009 (2016)

60. D. Rostamy, E. Mottaghi, Stability analysis of a fractional-order epidemics model with multiple equilib-
riums. Adv. Differ. Equ. 2016, 1–11 (2016)

61. J.R. Dormand, P.J. Prince, A reconsideration of some embedded Runge–Kutta formulae. J. Comput. Appl.
Math. 15, 203–211 (1986)

62. F.P. Polack, S.J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart et al., Safety and efficacy of
the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020)

63. W. Xu, S. Su, S. Jiang, Ring vaccination of COVID-19 vaccines in medium-and high-risk areas of countries
with low incidence of SARS-CoV-2 infection. Clin. Transl. Med. 11, 2 (2021)

64. A.J. Kucharski, R.M. Eggo, C.H. Watson, A. Camacho, S. Funk, W.J. Edmunds, Effectiveness of ring
vaccination as control strategy for Ebola virus disease. Emerg. Infect. Dis. 22, 105 (2016)

65. R.A. Sari, U. Habibah, A. Widodo, Optimal control on model of SARS disease spread with vaccination
and treatment. J. Exp. Life Sci. 7, 61–68 (2017)

66. M.D. Ahmad, M. Usman, A. Khan, M. Imran, Optimal control analysis of Ebola disease with control
strategies of quarantine and vaccination. Infect. Dis. Poverty 5, 1–12 (2016)

123


	Application of reinforcement learning for effective vaccination strategies of coronavirus disease 2019 (COVID-19)
	Abstract
	1 Introduction
	2 COVID-19 model with controls
	3 Optimal control problem
	3.1 Value function approximation using Critic network
	3.2 Policy approximation using Actor-network
	3.3 Learning rules for actor and critic networks

	4 Optimal vaccination strategies
	4.1 Strategy 1
	4.2 Strategy 2
	4.3 Strategy 3
	4.4 Strategy 4

	5 Numerical results
	6 Conclusion
	References




