Skip to main content
Log in

Probing Szekeres’ colliding sandwich gravitational waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The behavior of the Khan–Penrose impulsive plane colliding gravitational wave spacetime was investigated using the pseudo-Newtonian formalism, which expresses the spacetime curvature in terms of forces. The essential singularity produced after collision was seen as a rapid build-up of the force. However, the singularity, when either wave has passed before the collision, did not appear in the force, leading to the conclusion that it is a topological singularity. The question of whether this feature is an artefact of the impulsive wave or is inherent in the causal structure of the spacetime is investigated here by extending the analysis of the Szekeres colliding sandwich gravitational waves, and very interesting insights are obtained. In particular, what Szekeres called a coordinate singularity after the collision of the waves turns out to be a curvature singularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.S. Eddington, The propagation of gravitational waves. Proc. Roy. Soc. Lond. A 102, 268–282 (1922)

    Article  ADS  Google Scholar 

  2. A. Qadir, Einstein’s General Theory of Relativity (Cambridge Scholars Publishing, Cambridge, 2020)

    Google Scholar 

  3. R. Hulse, J. Taylor, Discovery of a pulsar in a binary system. The Astr. J. 195, 51–53 (1975)

    Article  Google Scholar 

  4. B.P. Abbott et al., Observations of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Einstein, N. Rosen, On gravitational waves. J. Frank. Inst. 223, 43–54 (1937)

    Article  Google Scholar 

  6. H. Bondi, F.A.E. Pirani, I. Robinson, Gravitational waves in general relativity. III. Exact plane waves. Proc. Roy. Soc. Lond. A 251, 519–533 (1959)

  7. K.A. Khan, R. Penrose, Scattering of two impulsive gravitational plane waves. Nature 229, 185–186 (1971)

    Article  ADS  Google Scholar 

  8. P. Szekeres, Colliding plane gravitational waves. J. Math. Phys. 13, 286–294 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Szekeres, Colliding gravitational waves. Nature 228, 1183–1184 (1970)

    Article  ADS  Google Scholar 

  10. J. Weber, J.A. Wheeler, Reality of the cylindrical gravitational waves of Einstein and Rosen. Rev. Mod. Phys. 29, 509–515 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Ehlers, W. Kundt, Exact solutions of the gravitational field equations, in Gravitation: An Introduction to Current Problems. ed. by L. Witten (John Wiley, New Jersey, 1962)

  12. A. Qadir, M. Sharif, The Relativistic Generalization of the Gravitational Force for Arbitrary Spacetimes. Nuo. Cime. B 107, 1071–1083 (1992)

    Article  ADS  Google Scholar 

  13. E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  14. K.Q. Abbasi, A. Qadir, Probing the Khan-Penrose colliding plane impulsive gravitational waves solution. J. Phys. Commun. 2, 025021 (2018)

    Article  Google Scholar 

  15. R. Penrose, Structure of space-time, in Battelle Rencontres. ed. by C.M. De Witt, J.A. Wheeler (Benjamin, New York, 1968)

  16. R. Penrose, W. Rindler, Spinors and Space-Time, vol. 1 (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  17. J.B. Griffith, Colliding Plane Waves in General Relativity (Oxford University Press, Oxford, 1991)

    Google Scholar 

  18. A. Pais, Subtle Is the Lord: The Science and the Life of Albert Einstein (Sci, Soc, 1986)

    Google Scholar 

  19. J. Quamar, Relativistic gravitodynamics and forces. PhD Thesis, Quaid-i-Azam University, (1984)

  20. A. Qadir, General relativity in terms of forces, in Proceedings of the Third Regional Conference on Mathematical Physics. ed. by F. Hussain, A. Qadir (World Scientific, Singapore, 1990)

  21. A. Qadir, The gravitational force in general relativity, in M. A. B. Beg Memorial Volume. ed. by A. Ali, P.A. Hoodbhoy (World Scientific, Singapore, 1991)

  22. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman and Company, New York, 1973)

    Google Scholar 

  23. M. Sharif, Forces in Non-static Spacetimes. PhD Thesis, Quaid-i-Azam University, (1991)

  24. A. Qadir, M. Sharif, General formula for the momentum imparted to test particles in arbitrary spacetimes. Phys. Lett. A 167, 331–334 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Barrabès, P.A. Hogan, Colliding impulsive gravitational waves and a cosmological constant. Phys. Rev. D 92, 044032 (2015)

    Article  ADS  Google Scholar 

  26. I. Hussain, F.M. Mahomed, A. Qadir, Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations. Phys. Rev. D 79, 125014 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Qadir Abbasi.

Appendices

Appendix:

The time component of force

The time components of the e\( \psi \)N-force in all three curved regions are,

In Region II:

$$\begin{aligned} F_{t} =-\frac{27T^4+16\left( t-z\right) ^4}{5T \left( (t-z)^2+T^2\right) ((t-z)^2-T^2) (t-z) }. \end{aligned}$$

In Region III:

$$\begin{aligned} F_{t}=-\frac{27T^4+16 t^4+64 t^3 z+96 t^2 z^2+64 t z^3+16 z^4}{5T (t+z) \left( -T^4+t^4+4 t^3 z+6 t^2 z^2+4 t z^3+z^4\right) }. \end{aligned}$$

In Region VI:

$$\begin{aligned} \displaystyle F_t= & {} \bigg ((8 (t^3+3 t z^2) (L) (N) -8 (t^3+3 t z^2)(L)(R) -32 (t^3+3 t z^2) (N) (R)\\&+\frac{1}{(-p)}4 (t-z)^3 (L)(N)(R) +\frac{1}{ (-q)}4 (t+z)^3 (L) (N) (R))\\&-\frac{1}{(pq)}(L) (R) +(L) (N) (R)\bigg ) \\&\bigg [6 t^2 (L)^2 (-1+3 t^4-6 t^2 z^2+3 z^4)-64 (T^4-(t-z)^4) (t^3+3 t z^2)^2 (q) \\&-16 (p) (t+z)^3 (t^3+3 t z^2) (N)+12 (p)(t^2+z^2) (q) (p+q-T) \\&-16 (t-z)^3 (t^3+3 t z^2) (q) (N) +16 (p) (t+z)^3 (t^3+3 t z^2) (R) \\&-12 (p)(t^2+z^2) (q) (R)+ 16 (t-z)^3 (t^3+3 t z^2) (q) (M) \\&+48 t (t^3+3 t z^2) (L) (t^6-3 t^4 z^2-z^2 (3+z^4)+t^2 (-1+3 z^4)) \\&+3 (L)^2 (t^6-3 t^4 z^2-z^2 (3+z^4)+t^2 (-1+3 z^4))\\&+(48 t^2 \sqrt{pq} (t^2-z^2)^{10} (L) (2+t^8-4 t^6 z^2-7 z^4+z^8-2 t^2z^2 (11+2 z^4)\\&+t^4 (-3+6 z^4))^2)/ ((t^8-4 t^6 z^2+(-1+z^4)^2\\&-4 t^2 z^2 (3+z^4)+t^4 (-2+6 z^4)) (-T+t^{16}-8 t^{14} z^2+2 z^4+28 t^{12} z^4\\&-56 t^{10} z^6-z^8+z^{16}+t^8 (-1+70 z^8)\\&+t^6 (4 z^2-56 z^{10}) +4t^2 z^2 (3+z^4-2 z^{12})\\&+t^4 (2-6 z^4+28 z^{12}))^2)+(48 t^2 \sqrt{pq} (t^2-z^2)^3 (N) (R) (t^6-3 t^4 z^2 -z^2 (3T^2+z^4)\\&+t^2 (-T+3 z^4)) (2T^3+t^8-4 t^6 z^2-7 z^4\\&+z^8-2 t^2 z^2 (11+2 z^4)+t^4 (-3T+6 z^4)))/(t(t^8-4 t^6 z^2 \\&+(-T+z^4)^2-4 t^2 z^2 (3+z^4)+t^4 (-2T+6 z^4))^2 (T-\frac{(t-z)^8(t+z)^8}{(p)(q)}))\bigg ]\\&\div \bigg [(L) (N) (R)(4 (p) (t^3+3 t z^2) (q) (N)-4 (p) (t^3 +3 t z^2) (q) (M)\\&+3 t (L)^2(t^6-3 t^4 z^2-z^2 (3+z^4)\\&+t^2 (-T+3 z^4))) - ((p) (L)^4 (q) (\frac{T}{(-p)^2 (-q)^2}))\bigg ], \end{aligned}$$

where

$$\begin{aligned}&p=\sqrt{T-(t-z)^2},~ q= \sqrt{T-(t+z)^2},~~ L=(-T^4+2 t^4+12 t^2 z^2+2 z^4)\\&~~~R=(T-p-q)~~ \text {and}~~~~ N=(p+q-T) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, K.Q., Hussain, I. & Qadir, A. Probing Szekeres’ colliding sandwich gravitational waves. Eur. Phys. J. Plus 136, 565 (2021). https://doi.org/10.1140/epjp/s13360-021-01558-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01558-x

Navigation