Skip to main content
Log in

Complexity analysis of dynamical cylinder in massive Brans–Dicke gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a complexity factor is devised for a non-static cylindrical system in the framework of massive Brans–Dicke theory. The definition of complexity is developed by taking into account the essential physical characteristics (such as anisotropy and inhomogeneity.) of the system. In order to determine the complexity factor of the self-gravitating object, we acquire structure scalars from the orthogonal splitting of the Riemann tensor. Moreover, we discuss two patterns of evolution and choose the homologous mode as the simplest pattern under the influence of massive scalar field. We derive solutions in the absence as well as the presence of heat dissipation for a specific form of the scalar field. The factors that induce complexity in an initially complexity-free system are also examined. It is concluded that the massive scalar field as well as heat dissipation contribute to the complexity of the celestial system. Thus, a dynamical cylinder is more complex as compared to its static counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Kolmogorov, Prob. Inform. Theory J. 1, 3 (1965)

    Google Scholar 

  2. J. Grassberger, Int. J. Theor. Phys. 125, 907 (1986)

    Article  Google Scholar 

  3. P.W. Anderson, Phys. Today 7, 9 (1991)

    Article  Google Scholar 

  4. G. Parisi, Phys. World 6, 42 (1993)

    Article  Google Scholar 

  5. R. Lopez-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  6. X. Calbet, R. Lopez-Ruiz, Phys. Rev. E 63, 066116 (2001)

    Article  ADS  Google Scholar 

  7. R.G. Catalan, J. Garay, R. Lopez-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  8. J. Sañudo, R. Lopez-Ruiz, Phys. Lett. A 372, 5283 (2008)

    Article  ADS  Google Scholar 

  9. J. Sañudo, A.F. Pacheco, Phys. Lett. A 373, 807 (2009)

    Article  ADS  Google Scholar 

  10. KCh. Chatzisavvas et al., Phys. Lett. A 373, 3901 (2009)

    Article  ADS  Google Scholar 

  11. de Souza, R.A., de Avellar, M.G.B. Horvath, J.E.: arXiv: 1308.3519

  12. M.G.B. de Avellar et al., Phys. Lett. A 378, 3481 (2014)

    Article  ADS  Google Scholar 

  13. A. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972)

    Article  ADS  Google Scholar 

  14. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  15. A.I. Sokolov, J. Exp. Theor. Phys. 79, 1137 (1980)

    Google Scholar 

  16. R.K. Kippenhahm, A. Weigert, Stellar Structure and Evolution (Springer, New York, 1990).

    Book  Google Scholar 

  17. L. Herrera, Phys. Rev. D 97, 044010 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 98, 104059 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 99, 044049 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Herrera, A. Di Prisco, J. Carot, Phys. Rev. D 99, 124028 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Sharif, I.I. Butt, Eur. Phys. J. C 78, 688 (2018)

    Article  ADS  Google Scholar 

  22. M. Sharif, S. Tariq, Mod. Phys. Lett. A 35, 28 (2020)

    Google Scholar 

  23. L. Herrera, A. Di Prisco, J. Ospino, Eur. Phys. J. C 80, 631 (2020)

    Article  ADS  Google Scholar 

  24. A. Einstein, N. Rosen, J. Franklin Inst. 223, 43 (1937)

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Herrera et al., Int. J. Mod. Phys. D 14, 657 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. L. Herrera, N.O. Santos, Class. Quant. Grav. 22, 2407 (2005)

    Article  ADS  Google Scholar 

  27. M. Sharif, G. Abbas, Astrophys. Space. Sci. 335, 515 (2011)

    Article  ADS  Google Scholar 

  28. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  29. M. Sharif, I.I. Butt, Eur. Phys. J. C 78, 850 (2018)

    Article  ADS  Google Scholar 

  30. M. Sharif, I.I. Butt, Chinese J. Phys. 61, 238 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Brans, R.H. Dicke, Phys. Rev. 124, 3 (1961)

    Article  Google Scholar 

  32. E.J. Weinberg, Phys. Rev. D 40, 3950 (1989)

    Article  ADS  Google Scholar 

  33. C.M. Will, Living Rev. Rel. 4, 4 (2001)

    Article  Google Scholar 

  34. M. Sharif, R. Manzoor, Gen. Relativ. Gravit. 47, 98 (2015)

    Article  ADS  Google Scholar 

  35. M. Sharif, R. Manzoor, Phys. Rev. D 91, 024018 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Sharif, R. Manzoor, Astrophys. Space Sci. 359, 17 (2015)

    Article  ADS  Google Scholar 

  37. M. Sharif, R. Manzoor, Commun. Theor. Phys. 68, 39 (2017)

    Article  ADS  Google Scholar 

  38. M. Sharif, A. Majid, Chin. J. Phys. 61, 38 (2019)

    Article  Google Scholar 

  39. M. Sharif, A. Majid, Int. J. Geom. Methods Mod. Phys. 16, 1950174 (2019)

    Article  MathSciNet  Google Scholar 

  40. M. Sharif, A. Majid, Indian J. Phys. (2020)

  41. G. Abbas, H. Nazar, Eur. Phys. J. C 78, 510 (2018)

    Article  ADS  Google Scholar 

  42. G. Abbas, H. Nazar, ibid. 957

  43. G. Abbas, H. Nazar, Astrophys. Space Sci. 364, 11 (2019)

    Article  Google Scholar 

  44. M. Sharif, A. Majid, M.M.M. Nasir, Int. J. Mod. Phys. A 34, 32 (2019)

    Article  Google Scholar 

  45. M. Zubair, H. Azmat, Int. J. Mod. Phys. D 29, 2 (2020)

    Article  Google Scholar 

  46. G. Abbas, H. Nazar, Phys. Dark Universe 28, 100531 (2020)

    Article  Google Scholar 

  47. Z. Yousaf, M.Z. Bhatti, T. Naseer, Phys. Dark Universe 28, 100535 (2020)

    Article  Google Scholar 

  48. K.S. Thorne, Phys. Rev. 138, B251 (1965)

    Article  ADS  Google Scholar 

  49. K.S. Thorne, ibid 139 (1965) B244

  50. M. Sharif, S. Fatima, Gen. Relativ. Grav. 43, 127 (2011)

    Article  ADS  Google Scholar 

  51. L. Herrera et al., Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Schwarzschild, Structure and Evolution of the Stars (Dover, Illinois, 1958).

    Book  Google Scholar 

  53. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, New York, 1990).

    Book  MATH  Google Scholar 

  54. C. Hansen, S. Kawaler, Stellar Interiors: Physical Principles, Structure and Evolution (Springer, New York, 1994).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Majid, A. Complexity analysis of dynamical cylinder in massive Brans–Dicke gravity. Eur. Phys. J. Plus 136, 530 (2021). https://doi.org/10.1140/epjp/s13360-021-01548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01548-z

Navigation