Skip to main content

Advertisement

Log in

Improved sensitivity in self-powered photoelectrochemical UV photodetector by application of graphene quantum dots

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Here, we demonstrate the successful application of graphene quantum dots (GQDs) as a sensitizing material in a self-powered photoelectrochemical (PEC) UV photodetector (PD). Relative enhancements greater than 40% in photocurrent were achieved by the application of a GQDs sensitized TiO2 layer as the photoanode in the self-powered PEC UV PD, attaining 118 mA W−1 responsivity compared to 83 mA W−1 responsivity of PD made by pure TiO2 photoanode under the illumination of 365 nm UV light. The GQDs improved both the light-harvesting efficiency and the charge collection efficiency in the PEC PD by increasing the UV light absorption and hindering the recombination at the photoanode/electrolyte interface. The UV PD based on the GQDs sensitized TiO2 layer exhibits a high photoresponse sensitivity of 786,880% at a low light intensity of 2 mW cm−2, a rise time of 0.12 s, and a decay time of 0.03 s without any external bias. This study shows that sensitization of photoanode layer with a proper sensitizing material such as GQDs with large absorption coefficient in UV wavelength region can be a facile strategy to improve the responsivity and sensitivity of low-cost, environmentally friendly, and easy-manufacturing self-powered PEC UV PDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available in the main text and supplementary material of this article.

References

  1. H. Chen, K. Liu, L. Hu, A.A. Al-Ghamdi, X. Fang, Mater. Today 18, 493 (2015)

    Article  Google Scholar 

  2. J. Liu, F. Liu, H. Liu, J. Yue, J. Jin, J. Impundu, H. Liu, Z. Yang, Z. Peng, H. Wei, C. Jiang, Y.J. Li, L. Xie, L. Sun, Nano Today 36, 101055 (2021)

    Article  Google Scholar 

  3. R. Zhuo, Y. Wang, D. Wu, Z. Lou, Z. Shi, T. Xu, J. Xu, Y. Tian, X. Li, J. Mater. Chem. C 6, 299 (2018)

    Article  Google Scholar 

  4. Y. Xue, Z. Wang, H. Ning, R. Xu, Q. Jiao, J. Li, and T. Jia, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 978, 164405 (2020)

  5. J. Xu, W. Yang, H. Chen, L. Zheng, M. Hu, Y. Li, X. Fang, J. Mater. Chem. C 6, 3334 (2018)

    Article  Google Scholar 

  6. U. Levy, M. Grajower, P.A.D. Gonçalves, N.A. Mortensen, and J.B. Khurgin, APL Photon. 2, 026103 (2017)

  7. M. Afsal, C.Y. Wang, L.W. Chu, H. Ouyang, L.J. Chen, J. Mater. Chem. 22, 8420 (2012)

    Article  Google Scholar 

  8. S. An, S. Wu, C.S. Tan, G.-E. Chang, X. Gong, M. Kim, J. Mater. Chem. C 8, 13557 (2020)

    Article  Google Scholar 

  9. W. Wang, Y. Zheng, X. Li, Y. Li, L. Huang, G. Li, J. Mater. Chem. C 6, 3417 (2018)

    Article  Google Scholar 

  10. X. Li, S. Gao, G. Wang, Z. Xu, S. Jiao, D. Wang, Y. Huang, D. Sang, J. Wang, Y. Zhang, J. Mater. Chem. C 8, 1353 (2020)

    Article  Google Scholar 

  11. J. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, J. Wang, J. Mater. Chem. C 7, 6867 (2019)

    Article  ADS  Google Scholar 

  12. J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, E. Xie, Nanoscale 8, 50 (2016)

    Article  ADS  Google Scholar 

  13. K. Huang, C. Li, X. Zhang, X. Meng, L. Wang, W. Wang, and Z. Li, Appl. Surf. Sci. 518, 146219 (2020)

  14. S. Ni, F. Guo, D. Wang, G. Liu, Z. Xu, L. Kong, J. Wang, S. Jiao, Y. Zhang, Q. Yu, J. Luo, B. Wang, Z. Li, C. Zhang, L. Zhao, ACS Sustain. Chem. Eng. 6, 7265 (2018)

    Article  Google Scholar 

  15. W. Xia, H. Qian, X. Zeng, J. Sun, P. Wang, M. Luo, J. Dong, RSC Adv. 9, 23334 (2019)

    Article  ADS  Google Scholar 

  16. D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, J. Jiao, Nanoscale Res. Lett. 13, 92 (2018)

    Article  Google Scholar 

  17. J. Yan, Y. Chen, X. Wang, Y. Fu, J. Wang, J. Sun, G. Dai, S. Tao, Y. Gao, Nanoscale 11, 2162 (2019)

    Article  Google Scholar 

  18. Y. Li, Y. Li, J. Chen, Z. Sun, Z. Li, X. Han, P. Li, X. Lin, R. Liu, Y. Ma, W. Huang, J. Mater. Chem. C 6, 11666 (2018)

    Article  Google Scholar 

  19. C. Zhou, X. Wang, X. Kuang, and S. Xu, J. Micromech. Microeng. 26, 075003 (2016)

  20. S. Ng, F.K. Yam, S.N. Sohimee, K.P. Beh, S.S. Tneh, Y.L. Cheong, and Z. Hassan, Sens. Actuators A Phys. 279, 263 (2018)

  21. Y. Xie, L. Wei, Q. Li, Y. Chen, S. Yan, J. Jiao, G. Liu, and L. Mei, Nanotechnology 25, 075202 (2014)

  22. A. Bayat, E. Saievar-Iranizad, J. Energy Chem. 27, 306 (2018)

    Article  Google Scholar 

  23. P. Yan, Y. Wu, G. Liu, A. Li, H. Han, Z. Feng, J. Shi, Y. Gan, C. Li, RSC Adv. 5, 95939 (2015)

    Article  ADS  Google Scholar 

  24. C. Gao, X. Li, X. Zhu, L. Chen, Y. Wang, F. Teng, Z. Zhang, H. Duan, E. Xie, J. Alloy. Compd. 616, 510 (2014)

    Article  Google Scholar 

  25. X. Hou, X. Wang, B. Liu, Q. Wang, Z. Wang, D. Chen, G. Shen, ChemElectroChem 1, 108 (2014)

    Article  Google Scholar 

  26. S. Ng, F.K. Yam, S.N. Sohimee, K.P. Beh, S.S. Tneh, Y.L. Cheong, Z. Hassan, Sens. Actuators A 279, 263 (2018)

    Article  Google Scholar 

  27. X. Li, C. Gao, H. Duan, B. Lu, X. Pan, E. Xie, Nano Energy 1, 640 (2012)

    Article  Google Scholar 

  28. Z. Hosseini, W.K. Huang, C.M. Tsai, T.M. Chen, N. Taghavinia, E.W.G. Diau, ACS Appl. Mater. Interfaces 5, 5397 (2013)

    Article  Google Scholar 

  29. I. Mora-Seró, Adv. Energy Mater. 10, 2001774 (2020)

    Article  Google Scholar 

  30. M.J. Molaei, Sol. Energy 196, 549 (2020)

    Article  ADS  Google Scholar 

  31. S.A. Sabetghadam, Z. Hosseini, S. Zarei, and T. Ghanbari, Mater. Lett. 279, 128515 (2020)

  32. X. Chu, S. Wang, Y. Cao, New J. Chem. 44, 797 (2020)

    Article  Google Scholar 

  33. N. Hashemzadeh, M. Hasanzadeh, N. Shadjou, J. Eivazi-Ziaei, M. Khoubnasabjafari, A. Jouyban, J. Pharmaceut. Anal. 6, 235 (2016)

    Google Scholar 

  34. P. Ramachandran, C.Y. Lee, R.A. Doong, C.E. Oon, N.T. Kim Thanh, and H.L. Lee, RSC Adv. 10, 21795 (2020)

  35. S. Min, J. Hou, Y. Lei, X. Ma, G. Lu, Appl. Surf. Sci. 396, 1375 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. Z. Thanks Dr. R. Ahmadi for providing the opportunity to use AutoLab workstation for characterizations.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. contributed to methodology, validation, investigation, writing original draft, visualization. Z.H. contributed to conceptualization, methodology, validation, writing, review and editing, visualization, supervision, project administration, funding acquisition. S.A.S. contributed to investigation, visualization. T. Ghanbari contributed to writing, review and editing, supervision, funding acquisition.

Corresponding author

Correspondence to Zahra Hosseini.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3214 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, S., Hosseini, Z., Sabetghadam, S.A. et al. Improved sensitivity in self-powered photoelectrochemical UV photodetector by application of graphene quantum dots. Eur. Phys. J. Plus 136, 515 (2021). https://doi.org/10.1140/epjp/s13360-021-01529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01529-2

Navigation