Skip to main content
Log in

Determination of pH distribution through pH-related properties in deacidified model paper

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Determination of the pH value of the paper is a very specific phenomenon, especially the surface pH measurement. In the case of heritage objects, such as archival documents, books, artworks on paper carriers, is a determination of real pH value in the whole structure (in cross section) of paper very important, because of the mechanism of degradation and thus the rate of degradation of the paper components at a given point in the paper structure depends on the pH value in the environment. This paper is aimed to show the possibilities of using modified papers by acid–base indicator, in the field of measurement of pH value of paper in the cross section of the paper. A calibration series of acidic samples neutralizing by magnesium bicarbonate of different concentrations was created. It was found that the indicator changed in the desired area, pH value 6–8, and it was observed gradual color change. The color parameters were measured and the most correlated parameter with pH value was found. The new method enables the observation of pH distribution in a critical cross section of modified paper after deacidification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIELAB space:

CIE L*a*b* − a color space defined by the International Commission on Illumination (CIE) in 1976

µ*pH:

Micro-pH distribution

pH-CP:

PH characteristic parameters

RH:

Relative humidity

References

  1. J.W. Baty, C.L. Maitland, W. Minter, M.A. Hubbe, S.K. Jordan-Mowery, BioResources 5, 3 (2010)

    Article  Google Scholar 

  2. T. Allscher, I. Ceynowa, ABI Technik. 38, 1 (2018). https://doi.org/10.1515/abitech-2018-0004

    Article  Google Scholar 

  3. D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht, Compr. Cell. Chem. (1998)

  4. P.M. Whitmore, J. Bogaard, Restaurator 15, 26 (1994)

    Google Scholar 

  5. M. Ďurovič, Restaurování a Konzervování Archiválií a Knih, 1st edn. (Praha, Paseka, 2002), pp. 213–218

    Google Scholar 

  6. A.S. Zervos, Cellulose (2015). https://doi.org/10.1007/s10570-015-0699-7

    Article  Google Scholar 

  7. A. Potthast, K. Ahn, Cellulose 24, 1 (2017)

    Article  Google Scholar 

  8. S. Buchanan et al., An evaluation of the Bookkeeper mass deacidification process. Pittsburgh: Library of Congress, https://www.loc.gov/preservation/resources/rt/bookkeeper.pdf. Accessed 6 Nov 2020

  9. A. Lienardy, Restaurator 15, 1 (1994)

    Google Scholar 

  10. J. Hanus et al., Evaluation of Some Deacidification Processes (National Archive, Prague, 2007).

    Google Scholar 

  11. M. Ramin, H. Andres, A. Blüher, M. Reist, M. Wälchli, J. Pap, Conserv. 10, 3 (2009)

    Google Scholar 

  12. S. Katuscak, M. Jablonsky, S. Holubkova, Z Bibl. Bibl. 106, 149–176 (2012)

    Google Scholar 

  13. S. Katuscak, B. Dušan, J. Šima, A. Urlandová, Knižnica 6, 4–9 (2008)

    Google Scholar 

  14. S. Katuščák et. al. Project Kniha SK. http://www.knihask.eu

  15. K. Ahn, Sustainability of mass deacidification of library objects. Diss. PhD Thesis, Universität für Bodenkultur, Wien (2013)

  16. M. Hubbe et al., BioResources 12, 2 (2017). https://doi.org/10.15376/biores.12.2.4410-4477

    Article  Google Scholar 

  17. P. G. Sparks, Technical considerations in choosing mass deacidification processes. Report of the Commission on Preservation and Access (1990)

  18. A. Pothast, U. Henniges, ABI Technik. (2016). https://doi.org/10.1007/s10570-013-9978-3

    Article  Google Scholar 

  19. L. Van der Schueren, K. De Clerck, Text. Res. J (2010). https://doi.org/10.1177/0040517509346443

    Article  Google Scholar 

  20. L. Van der Schueren et al., Sensor Actuator B-Chem. 162, 1 (2012). https://doi.org/10.1016/j.snb.2011.11.077

    Article  Google Scholar 

  21. H.Z. Chen, M. Zhang, B. Bhandari, Z. Guo, Postharvest. Biol. Technol. 140, 85–92 (2018)

    Article  Google Scholar 

  22. B. Kuswandi, A. Nurfawaidi, Food Control 82, 91–100 (2017)

    Article  Google Scholar 

  23. K. Vizárová, I. Vajová, R. Tiňo, Z. Takáč, N. Krivoňáková, Š. Vodný, S. Katuscak, Orthogonal and Cylindrical Color Parameters for Colorimetric pH Measurement of Materials and Objects, work in progress

  24. S. Katuscak, S. Vodný, K. Vizárová. Method and apparatus for pH distribution measurement in porous material microstructure. Patent Appl.: 62/392456 (2016)

  25. I. Bruckle, Structur und Eigenschaften von trockenem und nassem Papier. In Papier und Wasser, ed. By G. Banik, I. Bruckle (Siegel, Munich, 2015)

  26. KLUG-Conservation, Quality Description Novo test paper – wood-containing, viewed on 10 June 2017, http://www.klug-conservation.com/?site=produkte&id=151&pi=

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Slovak Agency for Research and Development (APVV) (Project 18-0155 MUFUSCEM) and Certex a.s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izabela Vajová.

Additional information

Focus Point on Scientific Research in Cultural Heritage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajová, I., Vizárová, K., Tiňo, R. et al. Determination of pH distribution through pH-related properties in deacidified model paper. Eur. Phys. J. Plus 136, 578 (2021). https://doi.org/10.1140/epjp/s13360-021-01495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01495-9

Navigation