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Abstract Magnetic field errors and misalignments cause optics perturbations, which can lead
to machine safety issues and performance degradation. The correlation between magnetic
errors and deviations of the measured optics functions from design can be used in order to
build supervised learning models able to predict magnetic errors directly from a selection
of measured optics observables. Extending the knowledge of errors in individual magnets
offers potential improvements of beam control by including this information into optics
models and corrections computation. Besides, we also present a technique for denoising
and reconstruction of measurements data, based on autoencoder neural networks and linear
regression. We investigate the usefulness of supervised machine learning algorithms for beam
optics studies in a circular accelerator such as the LHC, for which the presented method has
been applied in simulated environment, as well as on experimental data.

1 Introduction

Optics corrections are crucial for safe machine operation and reliably high performance in
terms of luminosity balance between experiments. Currently, LHC optics corrections are
performed in two steps, i.e., local corrections based on segment-by-segment technique [1,
2] or action phase jumps [3], and global corrections using response matrix approach [4].
Local corrections are applied in interaction regions (IRs) where the strongest error sources
are usually observed, while global corrections are performed to mitigate the error sources
globally, including the optics errors in the arcs. The corrections to be applied in the LHC
are computed as a set of magnetic field strength changes—either in the so-called circuits
(quadrupoles powered in series) or individual quadrupoles that can be trimmed independently.

These methods allow to achieve unprecedentedly low β-beating [5,6]; however, the infor-
mation about actual errors in individual magnets which caused the compensated perturbations
remains unavailable. At the LHC, several steps of acquiring data for optics analysis, comput-
ing and applying local and global corrections for each beam separately are usually needed.
Building a technique able to include the optics perturbations from both beams and to consider
the whole set of individual error sources along the lattice promises to reduce the time needed
for optics correction and allows to extend the knowledge about the present magnet errors.
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In this work, we demonstrate the ability of supervised regression models trained on a large
number of LHC simulations to predict the individual quadrupole errors given the measured
optics perturbations in one step for both beams simultaneously.

After a brief introduction to current optics corrections techniques and relevant ML con-
cepts, we present the method of estimating the quadrupolar field errors using supervised
learning and summarize the preliminary studies which demonstrated the promise of this
approach. In Sect. 2, the details on data set generation and the setup of simulation environ-
ment are given, followed by the discussion on supervised training using the generated data
and model selection with regards to generalization and accuracy presented in Sect. 3. Finally,
in Sect. 4 we demonstrate the results of model prediction, obtained on realistic simulations
considering individual magnet classes. The application of autoencoder to missing data recon-
struction and denoising is presented in Sect. 5, followed by the validation of introduced ML
methods on the experimental LHC data is presented in Sect. 6.

1.1 Traditional optics corrections techniques

The approach of the segment-by-segment technique used for the local corrections is to simu-
late the optics within the selected machine segment, which is then matched to the measured
local phase errors by trimming the neighboring quadrupoles. Action phase jump analysis
incorporates the idea of using the action and phase of the arcs outside the IR to estimate the
distortion produced by a magnetic error in the IR. Global linear optics corrections at the LHC
are usually computed by minimizing the deviation between the measured phase advance of
adjacent BPMs and its values given by the corresponding ideal optics model. The changes
in the phase advance and other optics variables introduced by available correcting magnets
are described in a response matrix. The matrix is then computed from iterative simulations
or using an analytical approach [7].

Selection of appropriate variables together with optimization of corresponding weighting
factors are fundamental to produce efficient corrections. Although these optimizations can
be achieved based on the existing optics model, in practice the variables and weights are
defined empirically. Using supervised regression, this problem can be solved by learning the
variable importance and weights automatically from the training data.

1.2 Supervised learning and regression

ML techniques aim to build computer programs and algorithms that automatically improve
with experience by learning from examples with respect to some class of task and performance
measure, without being explicitly programmed [8]. Depending on the problem and existence
of learning examples, different approaches are preferred. If pairs of input and desired output
are available, an algorithm can generalize the problem from the given examples and produce
prediction for unknown input. ML algorithms that learn from input/output pairs are called
supervised learning algorithms, i.e., supervision is provided to the algorithms in the form of
determined outputs for each given example. During the training, predictions are made from
the incoming input and are then compared to the true corresponding output. The target is to
minimize the difference between predictions made during the training and the true output by
updating adjustable parameters of a chosen model. The difference is defined as loss function
(e.g., mean absolute error) which is minimized using one of optimization algorithms such as
gradient descent or least-square minimization.

The complexity of the model depends strongly on the specific task and ranges from
univariate linear regression to deep neural networks with customized architecture. Depending
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on the desired prediction target, i.e., category or a quantity, the problem can be defined either
as classification or regression task. Here, we investigate regression models as the target is
to quantify the size of magnet errors. The actual model training is followed by evaluation in
order to measure the generalization ability and prediction accuracy of the designed estimator.

ML techniques have found their application in a wide range of accelerator control and
optimization tasks [9–12], including early works on orbit corrections using artificial neu-
ral networks [13,14] and Bayesian approach for linear optics corrections [15]. More recent
advances on building surrogate models using supervised learning are presented in [16,17].
In the following, we present the methodology of utilizing the supervised learning approach
and linear regression for quadrupole field errors estimation based on measured optics pertur-
bations.

1.3 General concept

Magnetic field and misalignment errors distort optics parameters of accelerators. The general
idea of applying supervised learning to optics corrections is to create a regression model which
will automatically learn the correlation between magnets error sources and the resulting optics
perturbations, from the provided simulations data. Given a set of features X = x1, x2, ..., xm
and targets Y = y1, y2, ..., yn , an estimator can learn a regression model or a nonlinear
approximation.

Such estimator should use the measured optics functions deviations from design as input
and predict the error sources as output. Supervised training requires a large set of train-
ing data in order to be able to generalize and produce reliable results on unseen data. The
correction results obtained in the past years are not suitable as training data source, since
corrections are only performed few times per year in the LHC, and hence, not enough data
is available. Moreover, the corrections applied in the LHC utilize the strength of “circuits,”
sets of quadrupoles powered in series, and hence, the corrections do not reflect the errors of
the individual elements.

Model training on a simplified case of introducing the errors in the circuits and model
evaluation on the optics perturbed by individual quadrupole errors is presented in [18]. The
regression models predict the strength changes in the circuits which can be applied to sim-
ulate the expected optics corrections. Different regression techniques have been compared
demonstrating similar performance, producing corrections results on the level of the tradi-
tional response matrix approach [19] as shown in Table 1. However, the realistic errors of
every single magnet have a different effect on the optics compared to the strength change in
the circuits. In this work, we present the approach of simulating the optics perturbation in
the training data using randomly generated individual magnet errors. The target is to predict
the actual effective quadrupolar field errors, instead of obtaining the strength change to be
applied to the circuits.

2 Data set generation

In order to build a data set for supervised training, we assign uniform distributed random
field errors to all quadrupoles available in the LHC for both beams. Additionally, we apply
quadrupolar errors also to the dipoles which are modeled as combined function magnets in
order to obtain more realistic simulations. The generated errors are then added to the nominal
model of collision optics with β∗ = 40 cm, producing differences between the design and the
optical functions produced in simulation. These deviations from ideal optics together with
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Table 1 β-beating after
applying the predicted circuits
errors as correction settings, the
results are averaged over 100
simulations of perturbed collision
optics with β∗ = 40 cm

β-beating % Peak rms

Uncorrected 32 ± 10 11 ± 3

Response matrix 11 ± 5 3 ± 2

Orthogonal matching 11 ± 2 3.5 ± 0.8

Convolutional neural network 11 ± 2 3.2 ± 0.5

Ridge regression 10 ± 2 2.9 ± 0.8

Linear regression 9 ± 2 2.6 ± 1.7

Fig. 1 Conceptual representation of data generation and supervised model creation for the estimation of
individual magnet errors from optics deviations

a set of associated magnet errors build a training sample for the supervised training. The
summary of this concept is presented in Fig. 1.

2.1 Simulating magnet errors as target variables

In this study, we consider quadrupolar integrated field errors, longitudinal misalignments of
quadrupoles and sextupole transverse misalignments. The errors are simulated according to
the magnet measurements [20] using MAD-X simulation framework. All quadrupoles in the
lattice are assigned a random relative gradient error obtained from uniform distribution with
the same rms error σ per magnets family. In case of the triplet magnets, also the systematic
error (the mean of the errors assigned to one magnet family) is defined as uniform distribution
in a range [−10−3,10−3] for a single LHC simulation. The distribution of relative field errors
is defined in Table 2 along with alignment errors of the sextupoles and triplet magnets.

Transverse sextupole misalignments induce a quadrupolar field error. A dedicated study
has been performed in order to explore replacing misalignment errors by modified field errors
in quadrupoles while keeping the optics deviations produced by included error sources real-
istic. The target is to mitigate the degeneracy caused by the close proximity of the sextupoles
to the quadrupoles in the LHC arc sections illustrated in Fig. 2. The approach is to match
the β-beating produced by a single sextupole with 1 mm offset with the field change in
the neighboring quadrupole. In case the residual β-beating is negligible, the offsets can be
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Table 2 RMS values of
integrated relative field errors
σK /K1 assigned to different
quadrupole (MQ) families and
misalignments of quadrupoles
and sextupoles (MS), with σs and
σx being the RMS of longitudinal
and transverse misalignment,
respectively, used for training
data generation

Magnet σK /K1 [10−4] σs [mm] σx [mm]

MQ 19 ... ...

MQX 4 6 ...

MQY 11 ... ...

MQM 12 ... ...

MQW 15 ... ...

MQT 75 ... ...

MS ... ... 0.3

Fig. 2 A fragmentary representation of LHC arc elements and β-function showing the adjacent placement of
arc quadrupoles (MQ) and sextupoles (MS)

reflected by increasing quadrupolar field error with the approximation

σK /K1,new =
√

σK /K 2
1,original + σ 2

x (K2L)2/K 2
1,original (1)

where K2L is the integrated sextupolar strength and σK /K1,original and σK /K1,new being
original rms of simulated arc quadrupole gradient field errors and the new rms which reflects
the presence of sextupole transversal offset.

Figure 3 shows the reconstruction of the β-beating induced by the displacement of a
sextupole in the arc on the right of IP2 (MS.13R2) changing the strength of the adjacent
quadrupole. This result confirms that the optics deviation produced by the expected transversal
offset of sextupoles is reproducible by increasing the rms of the quadrupolar field errors. Since
the sextupoles are also used to correct chromaticity and the β-function in the arcs changes
depending on the optics scheme, Eq. (1) is optics dependent.

This approach has been explored also to study the longitudinal offset of triplet magnets.
According to matching results, a longitudinal error of one magnet cannot be fully replaced
by a gradient field error.

It has been shown for the optics with β∗ = 20 cm that β-beating introduced by longitudinal
misalignments of the triplets can be reproduced with corresponding field errors [21]. Figure 4
shows an example for the optics with β∗ = 40 cm, where the additional contribution of the
misalignment to β-beating is small compared to the perturbations caused by gradient field
errors. Hence, the longitudinal misalignments of the triplet magnets are neglected for the
purpose of this study; however, the effect of the longitudinal offsets should be addressed
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Fig. 3 The optics perturbation produced by the transversal misalignment of a sextupole can be matched
by changing the adjacent quadrupole field strength, with an excellent agreement between the resulting rms
β-beating values indicated in the legend

Fig. 4 The comparison between β-beating produced by quadrupolar field errors in the triplet magnets (δK )
distributed according to Table 2, compared to β-beating caused by additionally adding longitudinal misalign-
ments (δS ) of 6mm

in the future related work. In the following, we focus on the reconstruction of effective
quadrupolar field errors.

2.2 Optics functions as input features

Feature engineering, i.e., the process of finding the most relevant properties in the input
data for predicting the targets incorporates techniques to measure the feature importance
and to build new input sets in order to simplify and improve the model training. Collecting
appropriate data is a crucial milestone of the ML-pipeline since the model selection and
achieved performance strongly depend on the amount and quality of the given data.

The correction of β-beating can be ensured with the phase beating correction [19]. Hence,
the simulated phase advance deviation from the design between each pair of consecutive
BPMs is considered as one input feature. The β-functions next to the interaction points (IPs)
indicate the local optics errors which are dominated by the errors in the triplet magnets. Thus,
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Fig. 5 The noise distribution in
the dispersion measurements of
beam 1 and beam 2 [24]
compared to the simulated noise
generated as a chi-square
distribution with non-centrality
parameter 4

the horizontal and vertical β at the BPMs left and right of main interaction points (IP1, IP2,
IP5, IP8) of both beams are included as input features into the regression model, in order to
improve the prediction of the triplet errors. In practice, these β functions are measured via K-
modulation [22]. The deviations from the design optics in the measured dispersion function
are related to quadrupolar errors. The measurement of normalized horizontal dispersion
Dx/

√
βx is independent of BPM calibration errors [23], and hence, its deviation from the

nominal values is also added to the set of important input parameters.
In total, 3346 features are extracted from the simulation data. Realistic noise estimated

from the measurements data is added to phase advance and dispersion features. Phase advance
noise is assumed to be 10−3 × 2π in a BPM with β=171 m, and it is scaled with the 1/

√
β

at the rest of locations. The normalized dispersion noise is estimated from the recent optics
measurements with β∗ = 25 cm [24] and is assumed to be a chi-square distribution with non-
centrality parameter 4 and scaled with 10−3√m as demonstrated in Fig. 5. The random noise
added to the original simulated deviations in normalized dispersion is generated accordingly.

3 Model selection and training

As it was shown in [18], applying complex models such as convolution neural network does
not result in significantly better corrections. Another reason for the choice of linear model is
that the error sources to be predicted are known to introduce linear optics perturbations. We
use a least-squares linear regression with weights regularization [25,26], the so-called Ridge
Regression as baseline model for the following studies. Ridge regression model minimizes
the residual sum of squares between the true targets in the training data and the targets
predicted by the linear approximation. The tuning parameter α is responsible for the weights
regularization—special technique to control the weights update during the training. The
regression problem is then formulated as

min
w

||Xw − y||22 + α||w||22 (2)

where w is the matrix containing the weights of regression model, X is the input data vector,
and y the vector of targets to be predicted by the model.

The trained model needs to be evaluated using adequate quality metrics considering the
data representation, desired result and specific task to be solved. In order to conclude on the
learning performance, the data set is separated into training (80%) and test (20%) sets. The
typical figures of merit for regression tasks are the mean absolute error (MAE) to compare

123



  365 Page 8 of 19 Eur. Phys. J. Plus         (2021) 136:365 

Fig. 6 Cross-validation of the optimal model based on the loss (MAE) and R2 coefficient depending on the
number of available samples. The loss is constantly decreasing with the growing number of samples, while
R2 is increasing. This trend indicates a reasonable learning behavior; however, using datasets larger than ca.
80,000 samples does not improve the scores significantly

the difference between true target values and the output of the model and the coefficient of
explained variance R2 defined as

R2(y, ŷ) = 1 − Var{y − ŷ}
Var{y} (3)

MAE(y, ŷ) = 1

n

n∑
i=1

|yi − ŷi | (4)

where ŷ is the predicted output with ŷi being the predicted value of the i th sample, y the
corresponding true values for N total samples, and Var is the variance, the square of the
standard deviation.

While the basic linear regression model trained to predict the circuits settings produced
slightly better results than Ridge, higher R2 score is achieved by Ridge regression for both
training and test data when trained models predict a larger number of targets variables as in
the case of individual quadrupolar errors. Another technique to improve the prediction quality
on unseen data is bagging. Bagging is based on the idea of generating multiple versions of
an estimator and using the averages of targets over the versions for final predictions [27].
The multiple versions are formed by using subsets of the training data for a single estimator.
After extensive validation, a model with 10 estimators, each using 80% of the training data,
regularized by α = 1 × 10−3 has been found as the optimal setup, and hence, this model is
used to obtain the results presented below.

Increasing the number of training samples does not necessarily result in a large increase
of predictive power of the model. Considering the amount of time and storage needed to
handle the training simulation data, especially for the future online application, we need to
determine the optimal training set size. The change of the model scores with respect to the
number of samples (learning curve) also indicates the ability of the model to learn from the
given data and the data set size required to achieve the optimal model performance as shown
in Fig. 6. In the next section, we present the results from the regression model with described
parameters using 80,000 samples in total for training and test.
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Fig. 7 Schematic of the magnets layout (triplet quadrupoles Q1, Q2, Q3 and sextupoles MS), with error bars
indicating the lengths of elements and β-function around IP1 for the optics settings β∗ = 40 cm as used in
training data generation. Please note that the value of the beta is given at the end of each element

Fig. 8 Comparison between true and predicted relative magnet errors. The left column illustrates the prediction
results obtained for the field errors in individual triplet quadrupoles, while the center and right columns
correspond to the combination of Q1 and Q3 magnets and Q2A and Q2B magnets pieces, respectively. The
slope in upper plots illustrates the systematic bias of regression model computed as correlation between residual
error and corresponding true values

4 Results on simulations

Identification of local error sources such as quadrupolar field errors is known to be a degen-
erate problem with multiple solutions. However, the estimates found by ML-model can be
validated in two different ways—comparing the true simulated magnet errors to the ML-
model prediction or by comparing the β-beating simulated by true errors to the β-beating
produced by predicted errors. This allows to test how reliable prediction is on unseen data
and to investigate the ability of the model to learn the physical correlations between the linear
magnetic field errors and optics perturbations. The results presented below are obtained from
LHC simulations using the collision optics settings with β∗ = 40 cm and the magnet errors
distribution listed in Table 1.
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Fig. 9 The systematic and random components of the true simulated quadrupolar field errors, computed as
mean μ and rms σ of the errors distribution, compared to their values in the predicted results on validation
data

4.1 Triplet errors

The field errors in the triplet magnets produce the largest contribution to the optics pertur-
bations, and hence, their prediction is evaluated separately from the magnets in the arcs, to
ensure the ability of the presented approach to reconstruct the most significant error source.
Figure 7 demonstrates the large values of β-function in the triplet region and illustrates the
layout of single magnets (Q1, Q2, Q3) in one triplet circuit.

Figure 8 summarizes the results of triplet errors prediction. In order to compare these
results to the original simulated error distribution presented in Sect. 2, the model prediction
is given as relative integrated field errors. To inspect the predictive power of the trained
regression model, we compare the true simulated magnet error to corresponding residuals,
computed as the difference between true and predicted values. The correlation between the
individual simulated magnetic error and residuals demonstrates a systematic bias of prediction
of 16%. The predicted errors are systematically smaller than in simulations. The systematic
bias reduces by incorporating the knowledge about the relations between single magnets in
the triplet circuits. Q1 and Q3 magnets are powered together, while Q2 magnets have two
pieces (Q2A and Q2B), which strengths can be balanced. Averaging the values of Q1 and
Q3 magnets, the systematic error is reduced by a factor of 2, while the combination of Q2A
and Q2B pieces results in more significant reduction to 2%. The systematic prediction error
for the arc magnets is 30%, being as expected larger compared to the triplet magnets, since
the reconstruction of the error sources located in the arcs is affected by degeneracy stronger
compared to the triplet magnets installed around the IPs. Inspecting the reconstruction of
particular components of the simulated errors (systematic and random errors as described in
Sect. 2), Fig. 9 demonstrates a very good agreement between the systematic components of
the simulated and predicted triplet errors, whereas the random part appears to be the biggest
contribution to the overall prediction error of the trained estimator. Combining individual
triplet magnets also leads to a better agreement between rms values of simulated and predicted
field errors. Table 3 provides a summary on the metrics used to evaluate the prediction of the
quadrupolar field errors.

We also evaluate the trained model in terms of reproducing the originalβ-beating simulated
in validation data using the quadrupolar errors predicted from the corresponding simulations.
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Table 3 Explained variance R2,
residual error of prediction
relative to the corresponding
simulated true values and
comparison between predicted
and simulated RMS (σpred ,
σsim ) values of the relative
integrated field errors

Triplets Arcs

Individual ∅ Q1,Q3 ∅ Q2A,Q2B

R2 0.84 0.94 0.98 0.6
res
true [%] 16 6 2 30

σpred/K1 [10−4] 2.8 5.8 6.1 15

σsim/K1 [10−4] 4 6 6.2 20

Fig. 10 The original β-beating generated in validation data, compared to the β-beating simulated using the
predicted magnet errors and their differences. The histograms represent rms values of 100 simulations

For each validation sample, we compare the β-beating in the original optics simulation where
the sample’s input has been extracted from, to the β-beating induced by the magnet errors
predicted from the given input. Figure 10 summarizes the results for 100 validation simula-
tions, per beam and per plane individually. The results demonstrate a very good agreement
between the original and reconstructed optics errors, with the average rms difference of 1%.

4.2 Effect of noise

In order to investigate the effect of the noise on the predictive power of the regression model,
we compare prediction errors between models trained on the input data given different noise
levels. Two different feature groups included in the model input are treated separately—
normalized dispersion noise and phase advance noise. Figure 11 shows the change in model
performance depending on the noise added to the simulated normalized dispersion deviations,
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Fig. 11 The effect of the noise added to normalized dispersion function (σ Dx√
βx

) used in training data sim-

ulation on the predictive power of a regression model. Mean absolute error (MAE) of prediction is given in
the units of absolute quadrupole errors. R2 defines the explained variance. The gray line marks the expected
noise in the LHC measurements [24]

Fig. 12 The change of model scores trained on phase advance features only, depending on the noise added
to simulated phase advance deviations as described in Sect. 2

while keeping the phase advance noise unchanged. Figure 12 presents the results obtained
from regression models trained using the phase advance features only, without adding the
features containing normalized dispersion and β information. This model is also applied
later to the LHC measurements data obtained in 2016 LHC commissioning, where measure-
ments of normalized dispersion and β function around the IPs are not available. Alternative
approaches for data reconstruction are presented in the next section.

In addition, we explored the accuracy of the triplet and arcs magnets error prediction as
presented in Sect. 4, including the reconstruction of β-beating on simulations, on the noise-
free data. The absence of noise in the training, as well as in validation input data, leads to the
reduction of systematic prediction error for the arcs magnets from 30 to 1%, while for the
triplet magnets the systematic error reduces to 12%. Considering the β-beating reconstruction
using the predicted quadrupole errors, the rms difference between the original simulated and
reconstructed β-beating reduces by a factor of 2.

The change of the phase advance noise has a bigger impact on the model performance,
due to the stronger correlation between the magnetic errors and the deviations in the phase
advances compared to the correlation with the dispersion perturbation, as the dispersion is
suppressed in the quadrupoles located in the straight sections.

Reducing the noise in the measurements of optics observables used as input for magnetic
errors reconstruction can potentially improve the prediction accuracy. Especially in terms
of arc magnets errors, the noise becomes the biggest limitation for the presented approach.
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Fig. 13 Example of reconstructing the phase advance deviations at the location of simulated missing BPMs
in horizontal plane, beam 1 using autoencoder neural network

These results can be potentially used as future requirements on instrumentation and analysis
techniques included into optics computation from turn-by-turn data.

5 Reconstruction and denoising of optics observables

Keeping the measurements noise as low as possible, as well as including all relevant variables
into the training data, is crucial for the accuracy of the magnetic error reconstruction. The
presence of the noise enforces acquisition of several turn-by-turn measurements for each beam
in order to obtain statistically significant computation of the optics functions and uncertainties.
Providing online measurements as input of regression models trained on simulations, missing
data can be a possible issue. The signal of identified faulty BPMs is excluded from the optics
analysis, and hence, the optics observables used as input features of regression model are
missing at the locations of faulty BPMs. In the following, we focus specifically on these
problems and its possible solution.

An ML-based approach to mitigate the effect of the noise and to reconstruct the missing
data points is the application of autoencoder [28]. Autoencoder is a specific type of a neural
network that is trained to reproduce its input in the output layer. The network consists of two
parts: a learned encoder function h = f (x) describing a set of hidden layers h and a decoder
that produces a reconstruction r = g(h). To perform denoising and data reconstruction, the
encoder extracts relevant information from the input by lowering its dimension and filtering
the noise. The original input is then reconstructed by the decoder. During the training, the
encoder learns to recognize the noise patterns in the input and to keep only the signal relevant
for the reconstruction performed by the decoder. In general, this learning process is described
as minimization of a loss function L(x, g( f (x̃))) penalizing g( f (x̃)), where x̃ is the input
corrupted by noise and x is original input. Since autoencoder is considered as a special case of
a feedforward network, it can employ the same techniques for training, e.g., gradient descent
and backpropagation.

In order to apply this approach to denoising and reconstruction of simulated phase
advances, autoencoder network is trained using the noisy phase advances and the original
simulated phase advances. The discussed results are obtained with an autoencoder consisting
of 4 hidden layers, using MAE as loss function and Adam [29] as optimization algorithm.
To simulate the missing data points in validation data, 10% of input values are omitted in
each of the validation samples, according to statistical analysis of BPM discarded by clean-
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Fig. 14 Comparison between the noise added to original simulation of phase advance deviations in beam 1,
horizontal plane to the reconstruction error from autoencoder prediction, performed on 1000 LHC simulations

Fig. 15 Comparison between simulated and reconstructed β in both planes and for both beams at the BPMs
next to the main IPs for 1000 simulations, demonstrating the relative rms difference of 1%

ing tools [30]. Exemplary comparison between autoencoder prediction at the location of
discarded data points and corresponding original simulated values is shown in Fig. 13 indi-
cating a very good agreement. Processing the phase advance data with autoencoder also
allows to reduce the noise by a factor of 2 as demonstrated in Fig. 14. The rms error of 100
validation samples, for both beams, horizontal and vertical planes, is 0.8 × 10−3 [2π] which
is below the used uncertainty estimate for the phase advance measurements in the LHC. The
advantage of autoencoder is the possibility to combine two different objectives, namely the
reconstruction of missing data and denoising.

Considering specifically the reconstruction of missing data, also linear regression appears
as appropriate technique while enabling faster training and simpler model parameter tuning
compared to autoencoder. We demonstrate the application of Ridge regression to reconstruct
the β-function at the BPMs next to IPs and the full set of horizontal normalized disper-
sion deviations. These observables have been found to be important for the estimation of
quadrupolar field errors; however, they are not always available in the measurements data. In
order to obtain information about the dispersion function, several beam excitations on and off
momentum are required. In the LHC, the β-function directly at the IP is typically computed
using the k-modulation technique [22], which also produces accurate β measurements at the
BPMs around the four main experiments that are included in the input of regression models
for magnetic errors estimation.

The result of reconstructing theβ deviations is presented in Fig. 15. Ridge regression model
is trained on 8000 training samples with simulated noisy phase advance deviations for both
beams and planes being the input and β deviations in horizontal and vertical planes simulated
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Fig. 16 Reconstruction of horizontal normalized dispersion deviations in beam 1 from noisy phase advance
data. The left plot illustrates the agreement between simulated and reconstructed values in one simulation,
while the histogram on the right shows statistics obtained from 1000 simulations with the rms reconstruction
error of 7%

at the BPMs around the IPs 1, 2, 5 and 8 the output. The validation is then performed on a
set of 1000 LHC simulations. The error of reconstruction defined as the difference between
simulated and reconstructed values relative to simulated β is 1% which is comparable to the
uncertainty of k-modulation technique for the β∗ measurements for the optics settings used
in the presented study [31].

In order to assert the approach of reconstructing the normalized dispersion measurements
from phase advance deviations, we train a Ridge regression model on 8000 samples generated
with the setup described in Sect. 2. Here, individual regression models are built for each beam
separately, and hence, the input consists of phase advance deviations in horizontal and vertical
planes of one beam only. Figure 16 shows the comparison between normalized dispersion
function predicted by regression model and corresponding actual simulated function. The
relative rms prediction error of 1000 simulations is 7%.

6 Experimental data

The previously discussed results are obtained from LHC simulations. In this section, the
trained regression model is verified against the application on historical LHC measurements
data. The target is to estimate magnet errors from LHC commissioning data, measured with
β∗ = 40 cm, before applying any corrections to the machine. Since β-function at the BPMs
next to IPs and normalized dispersion measurement are not present in the corresponding
historical data, the model trained on the phase advance deviations only as input features is
used. Due to the cleaning of faulty BPMs prior to the computation of phase advance, missing
data points appear in the input features extracted from experimental LHC data. To obtain
these data, we apply the autoencoder presented in the previous section. The output of the
autoencoder, i.e., the full set of phase advance deviations is then provided to the regression
model to predict the field errors in individual magnets.

The actual magnet errors that generate the measured optics perturbations in the uncorrected
machine are unknown such that a comparison between model prediction and corresponding
true values as in the case of simulations is not possible. Instead, we use the predicted errors
to simulate optics perturbations and compare this simulation to the actual measurement. The
residual difference indicates how well the estimated magnetic errors reflect the actual error
sources present in the uncorrected machine. The optics is reconstructed using two different
sets of magnet errors: (i) errors predicted from the phase advance deviations replacing the
missing values with 0 and (ii) errors estimated from the output of autoencoder performing
reconstruction of missing values along with denoising. Processing the original phase advance
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Fig. 17 Comparison between original β-beating measured in the uncorrected machine and reconstructed
optics simulated using the predicted quadrupole errors. The difference between measurement and simulation
reflects the residual β-beating after potential correction in beam 1 (right) and beam 2 (left)

data with autoencoder results in reducing the rms of residual β-beating by 3% and the peak
β-beating by 8% with respect to utilizing the original measured phase advances as predictor’s
input.

The final results on comparing the optics simulated with predicted magnetic errors to
the actual measurement in uncorrected machine are demonstrated in Fig. 17. The residual
β-beating also indicates a potential optics correction that can be achieved by computing
correction settings based on predicted errors. The agreement between the measured and
reconstructed optics shows that rms β-beating in Beam 1 can be potentially reduced from
12 to 3% and from 54 to 9% in horizontal and vertical planes, respectively. For Beam 2,
the rms β-beating decreases from 49 to 15% in the horizontal and from 12 to 2% in the
vertical plane. Even though the β-beating for the uncorrected machine was above 100%,
which is significantly larger than the β-beating introduced in the training simulations, the
optics reconstruction using the predicted magnet errors results in 7% rms β-beating around
the ring and below 3% at the two main experiments CMS and ATLAS.

7 Conclusion and outlook

The traditional approaches used for optics corrections in circular accelerators aim to compute
correction settings needed to compensate the measured optics deviations from design. Instead,
the presented ML-based approach allows determining the actual individual quadrupole field
errors currently present in the machine. The advantage of regression models is the ability
of extracting an average linear response over the training population instead of only using
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the unperturbed model and the response of a single observable to a strength change in a
single corrector, as it is done in the response matrix approach. Also, the weighting factors
of specific observables are found automatically instead of defining them manually as needed
for the application of currently available correction tools for the LHC.

The presented results based on simulations and historical data demonstrate successful
verification of the proposed ML-based approach. We showed its potential to improve the
optics corrections at the LHC by providing the knowledge about the local errors which is in
particular of a great importance for the triplets. One of the limitations of the applied linear
regression estimators is low prediction accuracy considering the quadrupoles located in the
arcs, which can be explained with the fact that the error sources in the arcs exhibit a weaker
effect on the optics compared to the triplet magnets located around the IPs. Therefore, it is
more difficult to extract the relation patterns between provided model input and corresponding
output during the training and produce accurate predictions. Potentially, additional input
features which are relevant for arc magnets predictions have to be identified and included
into the regression model.

Currently, individual regression models have to be generated for each specific optics
design, since the response of the perturbations introduced in the input features by the magnet
errors depends on particular optics. However, it is possible to allow more general application
of created models by performing the training on the data simulated using different optics
settings, reducing the effort for the model preparation in case of optics and machine settings
modifications during operation.

The possibility to reconstruct normalized dispersion and β around the IPs from phase
advance measurements using supervised learning allows to include these observables into
corrections computation even if dedicated measurements needed to obtain these optical func-
tions have not been performed. This opens the perspective to extend offline optics analysis
and to speed up optics measurements saving the costly operational time. Also the application
of autoencoder has been found to be a promising solution for denoising and the reconstruction
of phase advance measurements at the location of faulty BPMs, improving the quality of the
input data provided to magnet error prediction models.

The most important future step towards applying the presented approach in LHC operation
will be the computation of actual correction settings to be implemented in the LHC after
predicting the individual magnet errors from measured optics. The significant decrease of
prediction error after combining individual triplet magnets according to the correlations
between these magnets promises improvements of local corrections around the IPs by using
the predicted field errors. Future advances in instrumentation and optics analysis techniques,
along with the application of denoising autoencoder, will allow significant gain in the accuracy
of magnet errors reconstruction and consequently lead to better correction results and optics
control.
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