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Abstract The acceleration of electrons in resonant linear accelerators (linacs) typically con-
sists of three main stages: (1) emission of the electrons from the cathode and their pre-
acceleration with a DC field to the energy of tens of keV; (2) grouping the DC electron
beam into bunches and their synchronization with the correct phase of high-frequency elec-
tromagnetic fields, and (3) accelerating the bunches of relativistic electrons to the required
energies. Although many books describe the theoretical and practical aspects of electron linac
design, most of them concentrate on beam physics in either the gun stage or in the relativistic
regime, while leaving the description of the bunching process rather general. The physics
of non-relativistic motion is described in the literature on ion accelerators, but in practice,
it cannot be scaled to electron machines due to the significantly different particle mass and
acceleration rate, beam velocity change, and frequencies. In this tutorial review paper, we
will fill this gap with a detailed description of the bunching process and provide practical
advice on the design of bunching sections in industrial-grade electron linacs.

1 Introduction

Particle accelerators are essential tools in nuclear and high-energy physics, medicine, material
treatment, security, and industry. The progress in accelerator technologies was possible thanks
to advancements in beam physics, radio frequency (RF) sources, material sciences, and
fabrication techniques [1]. At present, accelerators provide beams of a wide range of charged
particles, from electrons to radioactive isotopes, with energies from tens of keV to multiple
TeV, and currents from nA to kA.

While “big science” accelerators such as the Large Hadron Collider [2] are the first ones to
come to mind for a general reader, only ~ 1% of all accelerators are large-scale machines for
research [3]. In fact, 59% of all accelerators are used for industrial and medical applications.
A majority of them are electron linear accelerators with moderate energies of several to
several tens of MeV (see Fig. 1). Modern accelerators must satisfy the requirements for
reliability, economic efficiency, and suitability for the application (such as compactness,
mobility, variability, etc.) [4], and these requirements evolve with the development of their
applications. Therefore, it is essential to understand the physics of linear accelerators and the
practical design aspects of their components.
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Fig. 1 Approximate proportion of accelerators used for various applications. Adapted from [3]

The acceleration of a particle with charge q occurs due to the Coulomb force and interaction
with the electric component E of a DC or AC field as �F � q �E . Depending on the particle
trajectory during acceleration, all accelerators can be divided into two main classes: circular
and linear accelerators (linacs). In the latter case, the particle passes each accelerating gap only
once on the way from the source to the target. Linear accelerators are also divided into sub-
classes, depending on the electric field source. One class is DC accelerators, where the particle
energy grows due to the high voltage: electrostatic, cascade and transformer accelerators. [5]
The second class is induction linacs, where the vertical electric force is caused by variation of
the magnetic field in time [6]. The third group is resonant RF accelerators, where the particle
gains energy by interacting with a high-frequency electromagnetic field [7]. There are also
novel classes of accelerators where particles are accelerated by laser- or plasma-induced
fields [8].

This tutorial paper’s scope is limited to RF linear accelerators for industrial applications
and does not cover the design aspects of scientific-grade linacs used as injectors in light
sources. These accelerators have different requirements for the beam, focused on minimizing
its size, and thus use different design philosophies. Also, unlike industrial machines, light-
source linac design is well covered in the literature [9].

The easiest way to describe the RF linac principle is by considering a traveling (TW)
electromagnetic (EM) wave in a cylindrical waveguide. As known from the RF theory [10],
such a wave can have a longitudinal component of the electric field, which is collinear with
the beam trajectory, and therefore can accelerate the particles in phases where Ez·cosϕ> 0
(assuming q > 0). In order to be accelerated consistently, the phase velocity of the EM field
must synchronously increase with the particle velocity, so that it always remains in the
accelerating phase, as shown in Fig. 2.

However, the phase velocity (βph
1) of the EM wave in an unloaded (smooth-walled)

waveguide is always higher than the speed of light, so it must be loaded with capacitive
irises, becoming a so-called disk-loaded structure (DLS) or a corrugated waveguide, shown
in Fig. 3. By varying the distance between these irises (structure period L), it is possible
to achieve the required phase velocity profile. According to the Floquet theorem [11], the

1 Here and throughout the text we will use the relative velocity β, which is defined as β � v/c, where c is the
speed of light.
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Fig. 2 Principle of resonant (RF)
acceleration. From top to bottom:
the orientation of the electric field
(red arrows) in an accelerating
waveguide operating in the π /2
mode, and bunch location (blue
oval) at various times. T stands
for RF period 1/f. The beam
travels synchronously with the
accelerating phase
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Fig. 3 Electric field (arrows)
distribution at a given phase in a
disk-loaded waveguide, operating
at the 2π/3 mode, as simulated in
CST Microwave Studio (https://
www.3ds.com/products-services/
simulia/products/cst-studio-
suite/). The phase changes by 2π

over a three-cell period. Here L is
the period of the structure, a is
the radius of the beam aperture,
and b is the radius of the DLS cell

addition of irises modifies the waveguide’s dispersion properties, allowing the propagation
of waves with the same spatial distribution but different phase advance per structure period
θ . This phase advance, called the “acceleration mode”, depends on the frequency and can
vary from 0 to π. In practice, the preferred mode for a traveling wave guide is 2π/3 due to the
highest efficiency of energy transfer [12]. Sometimes π/2 is preferred due to the simplicity of
design and analytical calculations. In order to achieve a particular phase velocity, the period
of DLS must satisfy the condition L � βphλθ

2π
, where λ is the wavelength in free space, which

corresponds to the RF frequency (f ) as λ � c/f .
In periodic structures, the function of the electric field distribution E(z) is also periodic

with a period equal to the wavelength inside the structure and therefore can be expanded in
Fourier series [14]:

Ez(z) �
∞∑

m�−∞
Eme

−i ·m·2π ·z
L ei ·ω·t �

∞∑

m�−∞
Emei ·(ω·t−kz,m ·z) (1)

According to this expression, the electric field in the periodic accelerating structure can
be represented as the superposition of an infinite number of harmonic waves that propagate
in different directions, with different phase velocities and amplitudes but the same oscillation
frequency. These waves are called “spatial harmonics” and should not be confused with “time
harmonics,” which correspond to oscillations with different frequencies. Spatial harmonics
have different values of phase velocities, defined as [14]:

βph,m � vph

c
� ω

kz,m
� ω

kz,0 + 2πm
(2)

Here kz is the wave number. The harmonic with m �0 is called the “fundamental harmonic”
and has the highest amplitude [15]. Because of this fact, the beam is usually synchronized and
interacts with the fundamental harmonic; however, in some cases, operation on higher spatial
harmonics can be beneficial due to lower phase velocities [16–18]. All further discussions
are valid for any harmonic chosen for acceleration, which we will call the “accelerating
harmonic.”

Although the frequency of a DLS structure is a complex function of all dimensions, it is
fair to say that it is mostly defined by the radius of the cylindrical waveguide (dimension b
in Fig. 3): smaller radii correspond to higher frequencies [10]. The beam aperture (a) defines
the group velocity (βgr) of the electromagnetic wave (collective velocity of all its spatial
harmonics or energy propagation), which is related to the accelerating harmonic amplitude:
smaller apertures correspond to higher accelerating field amplitudes [19]. The group velocity
can be numerically found as [14]:

βgr � d
( 1

λ

)

d
(

1
βλ

) � 2π L

c

d f

dθ
(3)
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The efficiency of energy transfer from the EM wave to the beam in a DLS can be defined
by the value of its shunt impedance per unit length (rsh)

rsh �
∣∣∣
∫ L

0 Ez(z) · eikz ·zdz
∣∣∣
2

P · L
(4)

Here L is the length of the accelerating structure, P are power losses in a DLS waveguide
walls, and kz � 2π

βphλ
is the wave number. Another important parameter is the quality factor

of the cavity that characterizes the ratio of the stored energy (W) to RF power losses:

Q0 � ωW

P
(5)

The quality factor greatly depends on the cavity material and on the wall surface roughness,
while the rsh/Q ratio depends only on cavity geometry and thus characterizes the geomet-
rical efficiency of the structure. The attenuation coefficient α can be calculated using the
following formula and defines how the power of the EM wave attenuates along the structure
(P � P0e−2αz):

α � ω

2vgr Q
(6)

Finally, one of the most important parameters that relates the electric field amplitude of
accelerating harmonic (E) with its RF parameters (usually found numerically) is the so-called
normalized electric field amplitude:

� � Eλ√
P

�
√

2πλrsh

Qβgr
(7)

These parameters will be used in the following sections where we will discuss the practical
steps for buncher designs.

As mentioned above, this paper is focused on industrial-grade electron linacs and does
not cover ion accelerators, where the requirements for the beam, the accelerator design
philosophy and the tools are different [20]. The difference between an electron and hadron
acceleration comes from their rest-energy (W0 � 0.511 MeV for electrons and ~ 931.5 MeV
for a single hadron). Due to the light mass, the same energy gain for the electrons leads to a

much larger velocity gain: β � v
c �

√
γ 2−1
γ

, γ � 1 + W
W0

. Here W is the particle’s kinetic
energy, and the electron’s energy approaches nearly the speed of light already at ~ 1 MeV.
Table 1 and Fig. 4 show the beam velocities for different values of the beam energies and
compares these values to those for protons.

The acceleration process in a DLS-based electron linac consists of the following steps, as
shown in Fig. 5. Electrons are emitted from the cathode (usually, thermionic), pre-accelerated
in a DC gun to energies of several tens of keV (sometimes to over a hundred keV in high-
current accelerators) and are injected into the front-end of the DLS waveguide [21]. At this
point, the electron beam is continuous, and its speed is well below the speed of light (usually,
0.2–0.5c). The particles of this DC beam arrive at the EM field’s different phases, and their
energy distribution starts to change. The continuous beam transitions into small bunches in an
adequately designed accelerator due to large phase oscillations. This part is usually referred
to as the “buncher” and can be either a separate section or integrated into the accelerating
section.

The linac may also utilize a resonator with a small RF voltage placed after the DC gun
and separated from the buncher by a drift space in order to provide velocity modulation,
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Table 1 Comparison of the
electron and proton energies,
corresponding to different
velocities

Velocity β Energy, MeV

Electron Proton

0.4 0.047 85

0.5 0.079 146

0.6 0.128 235

0.7 0.205 376

0.8 0.341 627

0.9 0.661 1220

0.99 3.12 5720

0.999 10.95 20,100

Fig. 4 Electron (black) and proton (red) velocities as a function of their kinetic energies

Fig. 5 Acceleration of particles in a DLS-based TW electron linac, as simulated in CST Particle Studio [13].
From left to right: the electrons are emitted from the cathode, pre-accelerated in the gun, bunched in a three-cell
waveguide buncher, and accelerated in the β � 0.999 constant impedance section
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which turns into density modulation of the beam after passing through the drift (so-called
ballistic bunching). In this case, such a resonator is usually referred to as a “pre-buncher.” To
distinguish a ballistic buncher from a buncher that forms part of the accelerating structure,
the latter is usually referred to as a “waveguide buncher.” The bunching typically ends at
energies of ~ 1–3 MeV, and the beam continues its acceleration in the DLS section with βph

~ 1 until the particles reach the required energy. Since the electrons are ultra-relativistic at
this stage, their velocity changes insignificantly, and the phase motion is essentially frozen.
This part of the linac is usually called the “accelerating section.”

It is also worth mentioning that although we mostly consider DLS-based linacs in this
work, a similar concept is applicable for other types of slow-wave structures such as dielectric-
loaded structures. In the following text, we will use the term “accelerating structure” or
“accelerating waveguide” to mean any RF waveguide structure with phase velocity βph ≤1
and with a field configuration suitable for transferring energy from the EM wave to particles
(i.e., with the electric field collinear to the beam direction).

The length of the bunching section depends on the EM field strength. For high gradient
accelerators, the buncher can consist of only a few cells or even a single ½-cell. On the
contrary, low-energy accelerators (< 1 MeV) with low available RF power can consist entirely
of a bunching section. Also, according to the fundamental theorem of beam loading [22], the
beam passing through the accelerating structure not only takes the energy of the EM wave but
also excites one. This beam-excited wave adds to the RF wave and can change its amplitude
and phase (the so-called beam loading effect). Beam loading can be substantial during the
bunching and acceleration of high-current beams.

The bunching efficiency is characterized by a “capture coefficient” kC , which can be
defined by the number of particles accepted to the acceleration regime (within the RF bucket
as will be shown in the following section), related to the number of particles injected from the
gun within a single RF period. This parameter should not be confused with the “transmission
coefficient” kT defined as the ratio of the beam current at the linac exit to the injected current.
The second parameter also accounts for the particles that are not captured into the steady
acceleration regime but slip along the EM wave while still reaching the end of the linac,
as well as for the particle losses not related to the bunching mechanism (higher harmonics,
deflection, external forces, etc.).

In the following sections, we will provide the mathematical model of particle motion
in a corrugated waveguide and introduce the phase-space concept and its dependence on
the accelerating waveguide parameters, which is a handy tool for the buncher design. The
provided material is based on Russian and Soviet books [23–29] and publications that are
neither available in electronic format nor in English.

Section 2 is devoted to a theoretical background of buncher operation and includes the
fundamentals of longitudinal motion, a description of the phase space concept, phase and
velocity acceptance, as well as the capture and bunching processes. It will also discuss what
role accelerating waveguide and beam parameters play on the beam dynamics and bunching
process, and what are the practical limitations on their choice. In the end of the section, we
will discuss the differences between the beam dynamics approach in standing and traveling
wave linacs and demonstrate the applicability of the presented model for both types.

In Sect. 3, we will move from the theory of electron bunchers to their practical realiza-
tion. We will briefly overview different types of electron bunchers that are typically used
in industrial linacs, describe their general pros and cons, followed by an introduction of
analytical models and practical guidance for the design, including some design examples.
Finally, we will discuss some practical aspects of beam acceleration, such as phase slippage
and frequency mismatch effects.
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This paper does not attempt to review all buncher designs that were ever proposed by
accelerator scientists, but rather to present different design philosophies, possible options
and trade-offs, so that the reader can use any of the presented techniques in the design
process. We believe that this tutorial would be interesting to graduate students studying
particle accelerators and accelerator physicists who are engaged in industrial accelerator
design, as well as the general audience interested in expanding their knowledge in accelerator
physics.

2 Theory of electron bunchers

2.1 Phase space and oscillations

As discussed in the previous section, although high-frequency structures and low-beta beams
can produce strong coupling of the longitudinal and transverse motions, we may ignore this
coupling for the simplicity of the theory. In this case, the capture efficiency can be calculated
by considering only the longitudinal (phase) motion of the beam [30]. There are a lot of books
covering this problem, including but not limited to [31–40]. In this section, we will provide
a brief overview of the fundamentals of longitudinal beam dynamics, introduce the principal
parameters, such as normalized field, velocity and coordinates, describe the concept of phase
space, which will be followed by theory of bunching, concepts of beam acceptance and the
practical limitations of buncher design that will serve the basis for the later chapters.

The fundamental equation of particle motion, d �p
dt � q �E cos ϕ, can be rewritten as the

energy gain along the longitudinal coordinate z, since dpz
dt � dW

dz :

dW

dz
� q Ez cos ϕ (8)

Let us introduce the following normalized parameters: energy γ � W
W0

, the phase velocity

of the wave βph � vph
c , the longitudinal coordinate ζ � z

λ
, the amplitude of the accelerating

harmonic (usually the fundamental harmonic but there are examples of structures operating
at higher harmonics [17]) of the EM wave A � qEλ

W0
. Now, Eq. (8) can be written as:

dγ

dζ
� A cos ϕ (9)

and the particle phase shift due to its velocity (β) mismatch to the wave velocity as:

dϕ

dζ
� 2π

(
1

βph
− 1

β

)
(10)

Taking into account that β �
√

γ 2−1
γ

, we can combine Eqs. (9) and (10) into one:

2π

(
1

βph
− γ√

γ 2 − 1

)
dγ � A cos ϕ · dϕ (11)

Assuming that both the amplitude and phase velocity of the accelerating waveguide remain
constant in some regions (for example, one cell), then we can integrate Eq. (11) and get:

γ

βph
−
√

γ 2 − 1 � A

2π
sin ϕ + H (12)
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Here H is a constant of integration. By replacing γ with β, we can finally get:
1 − βphβ√

1 − β2
− Aβph

2π
sin ϕ � Hβph � H1 � const (13)

Equation (13) relates the change of electron’s phase with the change of its velocity during
its motion in the RF field. In the case of βph < 1, there are several electron motion patterns,
depending on its initial phase and velocity. When the particle is much faster than the wave,
and the amplitude is small, the particle will always slide through the wave with a phase
change more than 2π. A similar pattern would be observed if the particle is too slow, relative
to the wave, so it always falls behind it. The most interesting case is when the electron moves
along with the EM wave, and its phase oscillates around the phase of the electromagnetic
wave.

The described cases can be visually demonstrated in the plot with the phase as the hori-
zontal axis and the energy (or momentum) as the vertical axis—a so-called phase space plot.
Different values of H1 in formulae (13) will correspond to different trajectories representing
particles with different initial phases and velocities. An example of such trajectories is shown
in Fig. 6. At the bottom of the figure, we show the accelerating field profile that corresponds
to these phases. During the electron motion through the waveguide, the particles move clock-
wise along these trajectories. The direction of motion along the trajectories is defined by the
condition that dϕ

dz > 0 for p > 0.
Point (a) in the phase space corresponds to an electron with a velocity equal to the wave’s

phase velocity and a phase equal to ϕs � π/2 (E � 0). This electron will move synchronously
with the wave since its energy (speed) does not change. Electron (b) is initially slightly slower
than the wave. Therefore, it will slip behind the π/2 phase into the accelerating region (E
> 0) and acquire energy. At some point, its velocity will be higher than the wave’s velocity,
and the electrons will surpass it, finding itself in the decelerating wave and losing its energy.
This electron will oscillate around the equilibrium phase π/2.

If the electron velocity is too low (c) or too high (d), the time they spend in accelerating
or decelerating phases is not enough to change the direction of phase motion, and it will
always slip along the RF phase. These particles will not be captured into the accelerating
regime and will eventually be lost. The border between stable and unstable trajectories is
called the separatrix, and the area inside the separatrix is called the RF bucket. The particles
inside the RF bucket will form a bunch. From the phase trajectories in Fig. 6, it is evident
that in accelerating waveguides with βph < 1, the electrons’ energy cannot grow beyond a
specific value, even in an infinitely long structure. It is necessary to modify the RF bucket
by increasing its phase velocity and amplitude along the accelerating waveguide so that its
equilibrium energy grows with the beam’s energy.

Figure 7 shows the evolution of RF bucket shape with increasing phase velocity and
constant amplitude. By integrating Eq. (13) and taking into account that the separatrix crosses
the point ( − π/2, βph), it is possible to find the maximum energy height of the separatrix,
called “energy acceptance” [10, 25]:

�γmax � 2

√
2A
(
βphγph

)3

π
�

√√√√√8A

(
β2

ph

1−β2
ph

)3/2

π
(14)

The area of the RF bucket in the phase space is related to the energy acceptance as
ARF � 4Δγ max [22]. Both values progressively increase with the phase velocity of the EM
wave and the amplitude of the accelerating harmonic. The phase acceptance depends on the
injection energy and will be discussed in the following chapter.
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Fig. 6 Top: phase trajectories for particles with different velocities (yellow dots marked by letters) moving in
an EM wave with A � 0.05 and βph � 0.4. The red curve is the boundary of stable oscillation regions—the
separatrix. Blue trajectories are stable, electrons on black trajectories are lost. Bottom: Amplitude of the
electric field of the EM wave as a function of the RF phase

Now, it is interesting to calculate the phase trajectories of electrons in extreme cases
when the phase velocity of the EM wave is equal to the speed of light. Such sections can be
used to accelerate ultra-relativistic electrons since their speed changes insignificantly with
energy gain (see Table 1), and therefore, they can interact with the EM wave for a long
time. Assuming that the RF field amplitude does not decay during its propagation in the
accelerating waveguide, Eq. (12) evolves into:

γ −
√

γ 2 − 1 � A

2π
sin ϕ + H1 (15)

This equation allows plotting phase trajectories, as shown in Fig. 8. We see that there is
no equilibrium phase for βph � 1 structures as well as no RF bucket: the closed trajectories
that were within a separatrix are now deformed into lines that have vertical asymptotes. In
this case, the trajectory (2) plays the role of the separatrix. Trajectories (3) correspond to
particles accepted for acceleration. The particles moving along trajectories (1) always stay
behind the beam and either form a bunch tail or are lost.

The value of the asymptotic phase can be found considering that A
2π

sin ϕ + H1 � 0:

ϕas � a sin

(
sin ϕ0 − 2π

A

√
1 − β0

1 + β0

)
(16)
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Fig. 7 Evolution of the RF bucket as a function of phase velocity from 0.3 to 1.0 for A � 0.25. It is clearly
seen that the energy acceptance and maximum energy increases

It is now possible to tell what injection phase ϕ0 is best in terms of acceleration efficiency
in a βph � 1 accelerating waveguide. Unlike the βph < 1 case, there are no closed trajectories,
meaning that the particles do not oscillate around the synchronous phase. In that view, even
the “unstable” trajectories (1) outside the asymptotic trajectory (2) can accelerate particles to
some limited energy. The separatrix trajectory does not have this limit, but during acceleration,
the particle will slide toward the asymptotic phase of ϕ � − π/2, which corresponds to a low-
field region, thus low acceleration efficiency. For trajectories (3), the asymptotic phase is zero
(wave crest), and the acceleration is most efficient. Unlike an ion beam, where the synchronous
phase must be different from zero, the electron beam is accelerated most efficiently when the
bunches are located on the crest.

2.2 Phase acceptance

The intensity of the accelerated particles depends on the intensity of the particle source,
the number of particles captured into the accelerating regime, and the number of particles
transmitted through the structure (i.e., considering transverse losses). In this paper, we will
only consider the longitudinal motion of the beam, i.e., no transverse losses. Let us assume
that the beam is injected from a DC gun; then the injected particles in phase space will
represent a continuous line with a constant γ and phases ranging from −π/2 to 3π/2 (red
line in Fig. 9). This plot shows that only the particles in the phase range [ϕ1,ϕ2] lie within
the RF bucket. These particles will be travelling along with the EM wave. Electrons located
outside this region will slide relative to the wave and eventually be lost. Therefore, we can
define the capture coefficient as kC � ϕ2−ϕ1

2π
.

Now we can find the values of ϕ1 and ϕ2 from Eq. (13). To do this, we will define the value
of H1 for the separatrix taking into account that the phase velocity βph and the amplitude A
are defined. Then, for ϕ � − π/2 (or 3π/2) and β � βph:

Hsep �
√

1 − β2
ph +

Aβph

2π
(17)
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Fig. 8 Top: phase trajectories for particles with different velocities, moving in EM wave with A � 1
and βph � 1. The red curve is a quasi-separatrix. Blue trajectories are in the stable acceleration regime;
electrons on black trajectories form a beam tail or are lost. Bottom: amplitude of the electric field of the EM
wave as a function of the RF phase

This value, along with the known injection beam energy, can now be applied to Eq. (13)
so that

√
1 − β2

ph +
Aβph

2π
� 1 − βphβinj√

1 − β2
inj

− Aβph

2π
sin ϕ1 (18)

and finally:

ϕ1 � asin

⎡

⎣ 2π

Aβph

⎛

⎝1 − βphβin j√
1 − β2

in j

−
√

1 − β2
ph

⎞

⎠− 1

⎤

⎦ (19)
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Fig. 9 Phase space of a 35 keV
DC beam (red line), injected into
a ion with βph � 0.3. The
particles with phases outside the
range of [ϕ1, ϕ2] will not be
captured. The yellow line
corresponds to the case of βinj �
βph and maximum capture. A
beam injected below the
threshold energy (magenta line)
will not be accepted to
acceleration

Since ϕ1 and ϕ2 are symmetric around π /2 (ϕ2 � π − ϕ1), the capture coefficient
kC � (π−ϕ1)−ϕ1

2π
can be expressed as:

kC � 1

2
− 1

π
a sin

⎡

⎣ 2π

Aβph

⎛

⎝1 − βphβinj√
1 − β2

in j

−
√

1 − β2
ph

⎞

⎠− 1

⎤

⎦ (20)

The maximal capture (kC � 1) is achieved when β inj � βph (yellow line in Fig. 9).
We would like to note that particles are rarely injected with the β inj >βph since the beam,
in this case, will fall into the deceleration phase very quickly, thus making such injection
unreasonable for general purposes. The purple line defines the threshold injected energy of
the beam, below which no part of the beam is accepted. Therefore, for a given injection energy
of the beam and phase velocity of the waveguide cell, it is possible to find the minimal value
of RF field amplitude where beam capture is possible. To do this, we solve Eq. (20) for kC

� 0 (purple line in Fig. 9, touching the separatrix at the single point ϕ � π /2):

Amin � π

βph

⎛

⎝1 − βphβinj√
1 − β2

inj

−
√

1 − β2
ph

⎞

⎠ (21)

It is worth mentioning that when the phase velocity is matched to the beam velocity βph

� β inj, capture is possible for any field value. Also, some accelerators do not have bunching
ions at all, and the electrons are injected directly into the ion with βph � 1. In this case, the
field amplitude must be higher than:

Amin � π

√
1 − βinj

1 + βinj
(22)
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Fig. 10 Separatrix shapes for different values of field amplitude and phase velocities. Left: βph � 0.4, right:
A � 1

2.3 RF amplitude threshold

Equation (20) is valid only for specific conditions: if A is very high, some electrons will
be decelerated and reverse their direction of motion. In this case, it is convenient to use a
momentum-based phase space instead of energy-based, since momentum can be negative,
unlike γ. Therefore, taking into account the expression for normalized momentum p � βγ,
Eq. (13) can be written in the form of:

H1 � 1

p0 +
√

p2
0 + 1

− A

2π
sin ϕ0 (23)

If we plot the phase trajectories in this phase space, we can observe that the separatrix
stretches with increasing field amplitude and can reach p � 0 at ϕ � π/2 for some value of
Ath—see Fig. 10. Further increasing the RF field amplitude will lead to the situation where
the RF bucket will partially occupy the area with p < 0, as shown in Fig. 11. The future of
these particles will depend on the particular design of the accelerator, but most likely they
will eventually be rejected back to the gun [25]. Although in principle in the case of a negative
momentum some small fraction of particles can be captured into the RF bucket, we assume
them to be lost for the purposes of a conservative design approach. In this case, only the
particles that move along the trajectories that do not cross the p � 0 line will be captured into
the accelerating regime.

The amplitude that defines the threshold of this effect (Ath) can be calculated by assuming
β inj � 0 in Eq. (21), which results in the following value:

Ath � π

βph

(
1 −

√
1 − β2

ph

)
(24)

The border trajectory within which particles are captured touches the point
p � 0 (or β � 0) at ϕ � π/2. For this point, we can use Eq. (13) to determine the con-
stant H:

H1 � 1 − Aβph

2π
(25)
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Fig. 11 Phase trajectories within
an RF bucket (red line) in the
momentum-phase coordinates for
a ion with βph � 0.4 and A � 3.0.
Electrons moving along dashed
trajectories will acquire negative
momentum and will be rejected
from the acceleration. Only solid
green trajectories are suitable for
capture

Now it is possible to solve this equation for the border phases ϕ1 and ϕ2, similar to what
we did for Eq. (20):

1 − βphβinj√
1 − β2

inj

− Aβph

2π
sin ϕ2 � 1 − Aβph

2π
(26)

ϕ2 � π − a sin

⎡

⎣ 2π

Aβph

⎛

⎝1 − βphβinj√
1 − β2

inj

+
Aβph

2π
− 1

⎞

⎠

⎤

⎦ (27)

Finally, we can calculate the capture coefficient

kC � 1

2π

⎧
⎨

⎩a cos

⎡

⎣ 2π

Aβph

⎛

⎝1 − βphβinj√
1 − β2

inj

+
Aβph

2π
− 1

⎞

⎠

⎤

⎦

+a cos

⎡

⎣ 2π

Aβph

⎛

⎝1 − βphβinj√
1 − β2

inj

−
√

1 − β2
ph

⎞

⎠− 1

⎤

⎦

⎫
⎬

⎭ (28)

According to this formulae, the capture coefficient is maximized for A � Ath and con-
verges to kC � 0.5 at A →∞, when only particles within phase [ − π /2, π/2] are captured.
Figure 12 plots the values of threshold amplitudes for cells with different phase velocities.
The dependences of the capture coefficient on the field strength for different injection ener-
gies are shown in Fig. 13. Injection of low-energy beams into a structure with high phase
velocity can lead to significant particle losses and the transmission is limited to below 50% if
the amplitude is chosen incorrectly. Moreover, when the RF power is also limited (A < Ath),
it is particularly important to choose the proper phase velocity due to the high sensitivity of
capture to the RF field and the risks of complete beam rejection.
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Fig. 12 Threshold amplitudes for cavities with different phase velocities

2.4 Practical limitations for beam injection

In this paragraph, we discuss the choice of the injection and phase velocity parameters and,
particularly, their practical limitations. In order to achieve 100% capture of the electrons, the
following conditions must be met:

βinj � βph (29)

dβph

dz
| z�0 � 0

A ≤ π

βph

(
1 −

√
1 − β2

ph

)

In practice, some of these conditions can be hard or impossible to achieve. First, the
phase velocity of the DLS structure has a lower limit of βph > 0.3 due to manufacturing
challenges and poor electrodynamic performance. According to Fig. 3, the phase velocity of
the DLS is proportional to its length, so the irises must be put closer to each other in order to
reduce βph. The physical limit of phase velocity occurs when these irises become so close to
each other to cause electric breakdown (this minimum distance depends on the accelerating
gradient). However, the practical limit is driven by the dramatic deterioration of its efficiency
(the ratio of energy transferred to the beam to the power dissipated in the walls). Figure 14
demonstrates how the accelerating field amplitude A, normalized to the RF input power and
wave attenuation per unit length, depends on the phase velocity [41]. Long ions with low
velocity can significantly reduce the available RF power, which will reduce the accelerator
efficiency or even require the utilization of expensive high-power RF sources.

Other considerations for minimum phase velocity include fabrication feasibility: low-β
cells have larger radii, and much larger radius-to-length ratio [58], which can be challenging
to machine (for example, in a split structure DLS [42, 43]), or might not have space to place
frequency tuners [17]. The practical limit of βph is ~ 0.3 for S-band structures but is usually
set at 0.5–0.6 for higher-frequency or compact industrial accelerators [21, 44].
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Fig. 13 Capture coefficient kC as a function of field amplitude A in an accelerating waveguide for different
beam injection energies and phase velocities of the EM wave: a βph � 0.4; b βph � 0.6; c βph � 0.8; d βph
� 1.0. The discontinuity in the plot derivatives corresponds to the threshold field amplitude Atres values,
presented in Fig. 12

Fig. 14 RF parameters of DLS waveguides for different phase velocities and beam apertures (refer to Fig. 3):
left—field amplitude A, normalized to the square root of RF power; right—attenuation decrement for an
S-band DLS

The choice of high phase velocities leads to the requirement of beam injection with
the same velocity, according to (29). At the same time, higher injection voltages are more
preferable in terms of beam dynamics in electron guns: higher-energy beams are less prone
to space charge effects [38, 45, 46], and the maximum current that can be extracted from
a cathode is proportional to gun voltage according to Child’s law: I~P·V3/2[47]. Here P is

123



  446 Page 18 of 73 Eur. Phys. J. Plus         (2021) 136:446 

the gun’s perveance, defined by the geometry of the gun. However, the price, dimensions
and complexity of DC electron guns and power supplies grow significantly with the voltage
[44, 48], (mostly, due to isolation and pulsed power system complexity), and in practice
are preferred to be kept around 10–20 kV for compact medical accelerators, 30–50 kV for
industrial accelerators and to 80–160 kV for large high-current facilities [15, 21, 44, 49–51].
Therefore, the injection usually occurs at lower velocities than βph, which fundamentally
limits the capture of the beam.

In practice, electron linacs are usually not designed for very high capture ratios since it is
usually more efficient to compensate electron losses by increasing injection currents, rather
than by reducing the accelerator efficiency by introducing complex bunching systems. For
example, with enough RF power, it is possible to achieve > 60% capture in short bunching
ions even with a rapid phase velocity increase [52–54]. For some industrial machines, even
30–40% transmission can be acceptable, simplifying the buncher design to 1–3 cells [44].
The following chapters will describe different buncher types and bunching techniques in
more detail and provide some practical guidance for the buncher design.

2.5 Traveling and standing waves

It is worth noting that although this paper is devoted to traveling wave (TW) accelerators, most
of its results can also be applied for standing wave (SW) linacs. The longitudinal oscillations of
particles in a traveling wave are described by differential Eqs. (9) and (10), or more generally
by those described in [55], the solutions to which define the area of particles capture into
the accelerating regime as well as the frequency and attenuation of phase oscillations. In
standing wave accelerating structures, the longitudinal (phase) oscillations, in general, are
described not by differential equations but finite difference equations [7]. However, if the
phase variation of the RF field and energy gain do not change much from cell to cell in an SW
structure, then the finite differences can be replaced by differentials, allowing evaluation of
the motion in an equivalent TW structure. Numerical estimations [56] demonstrate that this
reduction does not lead to any significant errors, especially in high-level accelerator design.

Let us consider the longitudinal component of an axially symmetric standing wave
Ez(r, z, t) � E0(r, z) cos ωt . The function of the amplitude distribution in a cylindrical
corrugated waveguide can be represented as [57]:

E0(r, z) � E0 J0

(
2πr

λ

)
+

∞∑

m�1

Am I0(kmr) cos
2πm

λ
z (30)

where J0 and I0 are Bessel functions of the first kind and modified Bessel functions, respec-
tively. The instantaneous value of the longitudinal electric field can, therefore, be presented
as:

Ez(r, z, t) �
∞∑

m�−∞
Bm(r)cos

[
ωt − 2πm

λ
z

]
(31)

This series is a sum of the field harmonics with amplitudes Bm that travel in positive
(m > 0) and negative (m < 0) directions. By applying this expression into Eq. (8), it is possible
to calculate the energy gain:

�W � q
∫

L
Ez(r, z) · dz � q

∑∞
m�−∞ Bm(r)

∫

L
cos

[
2π

L
(k − m) · z + ϕ0

]
dz (32)

123



Eur. Phys. J. Plus         (2021) 136:446 Page 19 of 73   446 

Fig. 15 Power distribution mechanism in TW (top) and SW (bottom) structures

At the same time,

∫

L
cos

[
2π

L
(k − m) · z + ϕ0

]
dz �

{
L · cos ϕ for m � k

0 for m �� k
(33)

which means that �W � q Bk(r)·L ·cosϕ, and only one traveling harmonic (m � k) transfers
the energy from the SW to the beam. This harmonic is called an equivalent traveling wave or
accelerating wave and allows using the theory and guidance for the buncher design presented
in this paper for both TW and SW accelerators.

Apart from the different modes that are used in SW structures (π-mode in terms of beam
dynamics, usually realized in π /2 bi-periodic structures [15]), the other significant difference
that affects beam dynamics in properly designed structures is the power propagation (Fig. 15).
In TW structures, the EM wave propagates from the power inlet to the outlet while being
attenuated along its path, while SW structures are filled with power through a single port,
and the power is uniformly distributed among all cells. This difference can play a significant
role when high-current beams are accelerated. As was discussed above, an electron beam
can change the amplitude of the accelerating EM wave: gradually, from cell to cell in TW
structures and uniformly in SW linacs, as shown in Fig. 15. More details about accelerating
structures can be found in [58].
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Fig. 16 Typical layout of a high-current (high beam transmission) accelerator [65] (top) and the electron beam
longitudinal profile development (bottom)

3 Buncher types overview and design strategy

As mentioned in Introduction, a typical industrial electron accelerator, shown in Fig. 5, con-
sists of the DC injector (gun) that accelerates the beam to energies of tens of keV, a bunching
ion that groups the DC beam into small bunches that are further accelerated in sections with
phase velocity equal to the speed of light. Usually, all these elements are physically combined
into a single accelerator assembly for compactness and simplicity of fabrication/operation.
Such accelerators are usually designed to provide moderate beam transmission rates on the
order of 30–60% [1, 21, 44, 49]. In high-current/high-power accelerators, where high beam
transmission is very important, the layout can be more complex and may include > 100 kV
DC gun, separate pre-buncher and buncher and more elements as shown in Fig. 16. The
DC beam is injected at high energy, focused and passed through a pre-buncher, providing
longitudinal focusing. Then, an RF chopper [59] might be used to cut the beam tails. The
chopper is usually a resonator with transverse electric field orientation that deflects particles
that are longitudinally offset from the beam center. These particles are then eliminated when
the beam passes through a slit collimator. The beam is injected into a separate buncher with
a tapered or multi-section velocity waveguide structure, where it is shaped and optimized for
injection into the β � 1 structure.

In general, industrial-grade accelerators with multi-MW RF power [60–63] tend to have
a shorter 1–3 cell buncher design to trade off the capture efficiency for compactness and
simplicity, while high-current and scientific-grade linacs [64] implement a classical “pre-
buncher—buncher—accelerator” concept to maximize capture.

While the particles injected from a DC electron source have the same energies and their
phases are uniformly distributed, only part of them will be captured into the acceleration
regime. Captured electrons still occupy a wide range of phases, and therefore their energy
gain is different since �W � qEcosϕ. Therefore, by passing through the same distance along
with the accelerator, different electrons will gain different energies. This leads to a large
energy spectrum in the accelerated beam, which is not desirable for many applications. To
reduce the energy spread, the particles must be grouped into bunches with a small phase
spread before entering the accelerating βph � 1 section. These bunches are separated in
space by one wavelength in the accelerating waveguide (λw � βph·λ).

Electron bunching can be accomplished with various types of bunchers or even by direct
injection into an accelerating section. The simplest case is to use a stand-alone RF cavity
that is physically separated from the accelerator by a drift space. In this case, the particles’
velocities are modulated by the cavity’s RF field, resulting in density modulation after a
drift. This time-of-flight bunching method is usually referred to as “ballistic” or “klystron”
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bunching, since klystrons are based on this principle [66, 67]. This type of buncher is also
usually called a “pre-buncher.”

The other way is to use an accelerating waveguide section with a constant phase velocity.
In this case, the beam is bunched due to the phase motion discussed in previous sections.
However, sections withβph < 1 cannot accelerate particles to high energy, so the phase velocity
should be adjusted accordingly with the beam acceleration. This type of bunchers is usually
called “tapered bunchers” or “bunchers with a tapered velocity” (not to be confused with
structures with a tapered aperture). In this case, the RF bucket will shrink as the equilibrium
phase (ϕs) falls below π /2. These bunchers are very efficient since they allow simultaneous
acceleration and bunching. As a reference, such a scheme is also applied for continuous wave
ion RF quadrupoles (RFQs), where the pre-buncher is a multi-harmonic buncher (MHB) [68]
and the tapered buncher is realized inside the RFQ channel. It allows reaching high capture
and small longitudinal emittance [69, 70].

There are other methods to improve the bunching and reduce the energy spread, such as
utilizing an amplitude jump (instantaneous change) or rapidly change the equilibrium RF
phase. A radical method is to use a deflecting cavity to cut the beam tails and thus reduce
its phase length. These techniques can also be combined to optimize the performance of a
particular linac. In each particular case, the choice of a buncher design is defined by several
factors, including beam currents, energy spread, accelerator length, complexity costs, etc.

Table 2 presents a brief overview and comparison of the different buncher types and
highlights their positive and negative properties. It also provides a snapshot of the typical
cases where such bunchers are used. In the following sections, we will discuss the techniques
mentioned above in more detail. However, it is worth mentioning that there is no single or
universally applicable buncher design that is suitable for all applications. This is especially
true for novel applications, or sophisticated beam parameters, such as ultra-clean energy
spectrum, ultra-high-current transmission, energy variation, and ultra-low-power operation.
In many cases, a new accelerator requires the unique buncher design. In the following sections,
we will try to familiarize the reader with the different bunching techniques and provide some
handy analytical tools for rapid practical design of complex accelerating systems.

Bunchers can also be classified by their length:

• In long bunchers (> 10 cells), the amplitude and phase velocity variation can be made
very smooth, allowing fine, almost adiabatic, shaping of the bunch and extremely fine
parameters (one can make a comparison with proton/deuteron RFQ accelerators that can
provide > 90% beam transmission, simultaneously with acceleration over long distances
[75]). These bunchers have low RF fields and are very friendly to low injection voltages
and low-RF power accelerators, which can be regarded as a technological simplification
of linac systems. On the other hand, low-energy beams are prone to space charge and
RF defocusing effects that might require external focusing systems [76]. Also, as was
discussed in Sect. 2.5, TM- low-β structures are very inefficient in terms of RF power
consumptions, which may be a problem in case of power sources with limited capacity.

• In short bunchers (1–5 cells), the electrons are accelerated very rapidly thanks to the high
RF fields, meaning that phase oscillations stop very quickly [77]. On the one hand, this
allows a very simple design even with no external focusing [78], but, on the other hand,
the beam transmission is usually limited to 30–50% [49, 63, 79].

Besides the consideration for beam transmission, it is important to consider engineering
issues of the design. For example, each unique cell in a conventional DLS accelerator adds
several hours to the RF design, engineering design, programming, setup, machining, quality
assurance and tuning steps, which in total can sum up to 40 labor hours per unique cell.
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Table 2 Comparison of different buncher types used in electron linacs

Buncher type Pros Cons Typical Application

Ballistic buncher Improves capture Requires a separate RF
cavity and sometimes
a separate RF source;
requires a drift space

As a pre-buncher in
high-current
accelerators

No buncher (injection
into βph � 1
structure)

Simplest design Poor capture, phase and
energy spread;
requires high-voltage
injection

In large facilities with a
high-voltage injection
or in industrial
accelerators
over-simplified for
cost/dimensions
reduction, where
beam transmission is
not important; or in
mm-wave
accelerators [71,
72–74] where
low-beta cavities are
not feasible

Waveguide buncher
with matched
constant velocity
(βph � βinj)

Simple design,
provides the highest
capture ratio

Sometimes challenging
to realize (need low-β
cavities or high
voltage injection or
both); limited energy
gain—requires
further bunching
stages

As a first stage in
multi-section
bunchers, in
high-current
accelerators, where
beam capture is
important

Waveguide buncher
with low-energy
injection (βph >βinj)

Simple design; allows
using low-voltage DC
gun or efficient
high-phase-velocity
RF cavities; allows
energy spread
reduction techniques

Moderate bunching
efficiency, high
amplitude
single-section
bunchers can have
dramatic reduction in
capture ratio

In accelerators with
limited injection
energy, or where
beam transmission is
not essential, or in
accelerators with high
RF power (strong RF
fields)

Multi-section bunchers Better capture and
beam parameters than
in a single-section
buncher

More challenging beam
dynamics, RF design
and tuning

This buncher is a
balanced alternative
between single
section and tapered
waveguide bunchers
in terms of
complexity and beam
parameters

Tapered (velocity)
bunchers

Can provide the best
capture and beam
parameters along
with simultaneous
acceleration

Most challenging
design

In high-current
accelerators, or when
high transmission is
required, or in
accelerators where
specific beam
parameters are
required (low-energy
spread,
multiple-energies,
energy, current or
other parameters
variation)
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More complex shapes (i.e., cells with drift tubes, inter-cell coupling, etc.) may require extra
tooling. Additional features like tuning pins can also increase the final cost of the system. For
example, in small (low-β or high-frequency) cells, it is not always possible to add tuning to
the cell directly due to their size (length), and machining tuning features after braze might be
required, which adds considerable time and costs. Therefore, the accelerator physicist who
designs the industrial linac (and buncher) must take all these consideration into account and
find a compromise between beam parameters and linac complexity.

Finally, I would like to mention that analytical methods for buncher design provide very
limited results, and the exact solution to the electron equations of motion in RF fields should be
found numerically. The typical process of linac design includes rough analytical estimations,
preliminary design using a combination of analytical and numerical methods (i.e., motion
equation solution), particle tracking in realistic 2D or 3D fields (Parmela [80], ASTRA [81],
GPT [82], TRACK [83], etc.) and, finally, beam dynamics verification in self-consistent
codes such as CST Particle Studio (PIC) [84] and Magic3D [85]. The latter step might be
optional due to the huge computational resources required for self-consistent 3D transient
simulations.

One of the tools that allow robust beam dynamics analysis in accelerating waveguide
bunchers is the Hellweg2 code [86] developed by the author of this paper and used in this
tutorial for demonstration purposes. However, it is also possible to use approximate solu-
tions for the investigation and design of waveguide bunchers. Hellweg works on Microsoft
Windows and includes a graphical user interface (GUI). The input data for this program
are a plain text file that specifies the beam (initial phase, energy and phase distributions,
input current, Twiss parameters), the traveling wave structure (input power, frequency and
cell parameters), and computational parameters (number of macroparticles, mesh, etc.). This
allows using external optimization algorithms above Hellweg.

The numerical model is based on self-consistent equations describing electron motion in
waveguide structures with variable dimensions [87]. Originally limited to 2D dynamics in an
axisymmetric linac, these equations capture the self-consistent RF-field amplitude created
by the beam, with accurate treatment of each particle’s phase. Initially, Hellweg used the
simplified ellipsoid-based single-bunch space charge model [88] and simple approximations
of external magnetic fields. Very recently, RadiaSoft has improved Hellweg as follows: ported
to Linux and developed a prototype web-browser GUI [89], generalized the fundamental
equations to a fully 3D representation [55], and significantly improved the generality and
robustness of the space charge calculations [90]. The results obtained with Hellweg have
been carefully benchmarked against analytical models, other codes, and experimental results
[55, 63, 86, 89 91. Hellweg is open source and available on GitHub [92]. In the following
sections, we will use this code to illustrate the beam dynamics in the described bunchers.

3.1 Ballistic bunchers (pre-bunchers)

The bunch’s phase length can be reduced with an RF resonator, followed by a drift space.
Although this problem has been solved many times in the klystron theory [15, 66], we
will approach it from the bunching efficiency and electron linac point of view to obtain
some practical expressions. The schematics of a ballistic buncher is presented in Fig. 17. A
continuous beam from the DC gun with a voltage UDC is injected into an RF cavity with a
small AC voltage U(t) � URF·sin(ωRFt), operating at a frequency ωRF � 2π/TRF. Particles
that arrive in the accelerating phase gain energy and start to move faster, while the particles

2 The code is available for evaluation from the author.
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Fig. 17 Principle of ballistic bunching. The DC beam (yellow line) is injected into the RF cavity with a small
AC voltage. Particles that arrived in the accelerating phase gain energy and start to move faster, while the
particles that arrived in the decelerating phase slow down. When the beam flies in a space between the RF
cavity and accelerator, faster particles meet slower particles and form a bunch

that arrive in the decelerating phase slow down. When the beam flies in a space with a length
L, faster particles meet slower ones and the bunch phase length compresses.

The particle’s time of flight in the ballistic buncher is calculated in “Appendix” A, where we
demonstrate the convenience of introducing the parameter r, called the “bunching parameter”
[93] that characterizes the pre-buncher:

r � π L

βinjλ

URF

UDC
(34)

For a desired phase length or number of particles inside the bunch, it is convenient to use
the numerically obtained plot to determine the optimal bunching parameter of the pre-buncher
(r) [94]. The details can be found in “Appendix” A. By selecting the desired phase length of
the bunch, this plot allows estimation the ratio of particles inside this bunch. For example,
a 1-rad long bunch will contain ~ 70% of the injected particles. This plot also allows us to
define the parameter r, required for a practical pre-buncher design. For this case r � 1.8, and
by using the formulae (34), we can find that the drift space length L needs to be ~ 1.15λ for
URF � 0.2UDC.

In the example of beam compression in RF, presented in Fig. 18, the phase length of a
bunch is 2.1 rad and includes ~ 80% of all particles. At the same time , ~ 92% of the particles
fit into the RF bucket, compared to 68% calculated by formula (20) for the case when the
DC beam has not been pre-bunched. Note that the ballistic buncher does not provide any
significant acceleration even to a fraction of the beam due to small RF amplitudes, and the net
acceleration is zero. Therefore, ballistic bunchers are usually used not as separate bunchers,
but as pre-bunchers to improve capture efficiency in the following waveguide bunchers.

To design an efficient ballistic buncher, it is necessary to know what number of the injected
particles can be grouped within the required phase length. By increasing the factor r, the size
of the bunch (where most of the particles are concentrated) will shrink, and the density
of electrons will grow. However, the total number of electrons in the bunch will decrease
(Fig. 19).

It is interesting to discuss the pre-buncher voltage choice. To reduce the energy spread
at the linac entrance, the resonator field amplitude URF should be chosen to be as small
as possible. However, low voltages will lead to long drift space requirements, which is
undesirable because of space charge repelling forces that can increase the beam radius,
leading to radial beam losses. A long drift is also impractical for linac construction. High
RF voltages can lead to significant nonlinearities of the beam phase space due to relativistic
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Fig. 18 The beam’s phase space after a ballistic buncher with r � 2.5, βinj � 0.4, and URF � 0.2UDC (black
dots). The interval �ϕ contains ~ 80% of all particles, which now can be efficiently accepted by a section with
βph >βinj. In this case, βph � 0.45, A � 0.05 (red—RF bucket), and the net improvement in the capture ratio
is ~ 25%, compared to the case with no pre-buncher

Fig. 19 The number of particles in a bunch with a length �ϕ after ballistic (red) or waveguide (blue) buncher.
Black dots represent the values of parameter r for a practical buncher design

effects. In practice, RF voltages in the range of (0.2–0.5)·UDC are recommended, depending
on a tradeoff of transmission ratio vs. compactness set by the linac requirements.

The following example will demonstrate how a pre-buncher can improve capture effi-
ciency. In this example, we will consider that a 100 kV (β inj≈0.548) DC electron beam is
injected directly into a 70-cm-long S-band (frequency 2856 MHz or 10.5 cm wavelength)
accelerating structure with a constant 10 MV/m gradient. The normalized field value for this
case is A � q Eλ

W0
≈ 2.05. Assuming no space charge effects, a 1-mm beam and a strong
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Fig. 20 Phase portraits of 100-keV DC beam, injected directly a into 10 MV/m S-band accelerating structure
and b after passing through a 50-kV pre-buncher with a 9.15-cm drift space; c and d demonstrate beam energy
spread after passing through the accelerating structure for cases a) and b), respectively. Simulations performed
in Hellweg

solenoid field (1000 Gs) to eliminate transverse beam loss effects, the beam transmission
through the structure would be 51.4%, according to Hellweg simulations. If we add a 50-kV
pre-buncher, operating at the same frequency and with buncher parameter r � 2.5 to group
80% of particles in 1.86 rad, similar to Fig. 18, we can estimate the required drift space
length as L � r ·βinjλ

π
UDC
URF

� 9.15 cm. The simulation results for this case demonstrate an
improvement in transmission to 77.4% (Fig. 20).

Although pre-bunchers can substantially improve the beam capture, they also complicate
the accelerator design. Due to the low-voltage operation, compared to the accelerating voltage
in DLS accelerating structures, and the requirements for a drift space, pre-bunchers are
usually implemented as stand-alone cavities with a separate RF coupler. Although they can
physically be embedded into the main waveguide in compact accelerator layouts, as shown
in Fig. 21, they still need their own RF system. Also, as discussed in the previous section, the
drift tube may require external focusing since low-energy beams are prone to space charge
repelling forces. For these reasons, pre-bunchers are rarely used in industrial linacs, where
compactness, simplicity and cost efficiency are prioritized [1, 4]. However, they are widely
used in large high-current machines to improve their beam efficiency.
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Fig. 21 Illustration of a conceptual design of an S-band pre-buncher with a 9.15-cm drift, followed by a β �
1 section, integrated into a single mechanical structure

3.2 Waveguide bunchers

The bunching of electrons in an accelerating waveguide is performed due to phase oscillations
(particle motion along the phase trajectories) according to the principles described in Sect. 2.1.
Due to the shape of the RF bucket, the density of particles will “pulse” during the interaction
with the RF wave. By properly adjusting the shape of the bucket, defined by the phase velocity
βph and field amplitude A of the DLS cells, it is possible to achieve high capture efficiency
and beam acceleration at the same time.

There are several types of waveguide bunchers used in industrial-grade accelerators that
can be classified by the behavior of the βph(z) and A(z) functions:

• Bunchers with constant phase velocity (including βph � 1) that are characterized by moder-
ate phase compression of the DC beam for particles accepted into the acceleration regime,
but which at the same time can result in small energy spread as well as design and fabri-
cation simplicity.

• Bunchers with βph and A varying smoothly from cell to cell (so-called tapered velocity
bunchers), which can provide high capture efficiency due to the more intense phase oscil-
lations that increase energy spread [15]. Depending on the number of cells, these buncher
can be very challenging to design, fabricate and tune.

• Bunchers with stair-step functions of phase velocity (so-called multi-section bunchers)
comprise the intermediate type between constant and tapered velocity bunchers, and
depending on the number of steps, can have a performance closer to either type.

The choice of buncher type is somewhat related to the injection energy and RF power.
As a rule of thumb, the lower the injection energy and RF power are, the more complex the
bunching section should be. The physical mechanism of phase compression is the same in
waveguide bunchers of different types. In the following section, we will provide details and
guidance for buncher design, according to these classifications. For bunchers with constant
phase velocity, it is possible to derive analytical models to a limited extent. For tapered
bunchers, we will present different design approaches.
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Fig. 22 Phase oscillations of particles in an accelerating waveguide section with βph � 0.4, simulated in
Hellweg. The beam is injected with βinj � 0.4. Each plot corresponds to different positions: a z � 0, b z �
βphλ/3, c z � βphλ, d z � 5βphλ/3. It can be seen that oscillation frequencies of particles located on the
separatrix and at equilibrium phase (π/2) are equal to zero

3.3 Waveguide bunchers with a constant phase velocity

3.3.1 Bunchers with a phase velocity, matched to the injection energy

The expression for the frequency of phase oscillations in sections with a constant phase
velocity can, as demonstrated in “Appendix” B, found to be:

� � ωRF

√√√√√
A

√(
1 − β2

ph

)3

2πβph
sin ϕs · cos

ψ

2
(35)

One type of buncher that we have partially discussed above is an accelerating waveguide
section with constant βph < 1 chosen to match the injected electrons’ velocity. The particles
in such a section are completely fit into RF bucket as shown in Fig. 9 and will oscillate
around the equilibrium phase as shown in Fig. 11. These plots also demonstrate that, as
with a ballistic buncher, the matched velocity buncher does not provide net acceleration to
the beam, since the particles will have a sinusoidal energy gain. The distribution of a DC
electron beam injected into a waveguide buncher with βph � β inj � 0.4 is shown in Fig. 22.

The phase interval that the electrons occupy at the entrance of the buncher (Fig. 22a)
will shrink during the motion along the accelerating waveguide (Fig. 22b) until it reaches
a minimum value (Fig. 22c) and then starts to expand again (Fig. 22d). As with a ballistic
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buncher, the matched waveguide section can be characterized with a bunching parameter r
as demonstrated in “Appendix” C. The numeric values of this parameters can be found in
Fig. 19, according to the desired phase length of the bunch and the percentage of particles in
this bunch. Then, the required length of the buncher can be found to be:

Lb

λ
� βph

2π

( r

�
− ϕ2 + ϕ3

)
(36)

It is important to highlight that in spite of the similar mechanisms of ballistic and matched
waveguide bunchers, the latter has better bunching efficiency, as shown in Fig. 19. For exam-
ple, a 1-rad bunch can achieve 75% bunching in a waveguide buncher versus 70% for a pre-
buncher. The energy spread after the buncher can be found by using the following expression
from “Appendix” C:

�β �
2

√
β2

ph +
(
a2 − 1

)(
a2 + β2

ph

)

a2 + β2
ph

a �
√

1 − β2
ph +

Aβph

2π

(37)

For example, let us consider that we would like to design a buncher with a phase com-
pression ratio of 5. Figure 19 allows us to find the parameter r � 2. The bunch will contain
66% of all particles, and the required length of the buncher should be 0.38λ, which roughly
corresponds to 3 cells. The velocity spread will be in the range of 0.17 to 0.58 (15–115 keV),
which corresponds to the numerical simulations shown in Fig. 22c.

This result suggests that to reduce the energy spread in the bunching section, the amplitude
of the RF field should be made as small as possible. As with pre-bunchers, this will lead to
longer bunching sections, which is undesirable due to the beam transverse divergence effects
and low power efficiency of low-β structures (see Fig. 14). However, unlike pre-bunchers,
waveguide bunchers do not require a drift space and can be integrated into the accelerating
structure.

3.3.2 Low-energy injection

To avoid lossy DLS waveguide sections with low phase velocities (βph < 0.5) and/or high
voltage DC guns, the beam is often injected into sections with βph >β inj (we call this case
“low-energy injection”). This is a practical approach when the absolute injection energy is
low: for example, a 15-kV gun will provide β inj � 0.237. DLS sections with larger βph are
also easier to fabricate. Here we will use the phase oscillations approach to derive practical
expressions for such a buncher design.

When the velocity of the electrons is lower than the phase velocity, the line of the injected
particles, plotted on the phase space plane, will lie below the equilibrium energy line, which
reduces the capture ratio. Figure 23 demonstrates the beam phase space evolution during
bunching in a βph >β inj section. Particles with ϕ <π/2 gain energy, while the particles with
ϕ >π/2 first decelerate and then accelerate along with the second half of the beam. As can
be seen from plot (c), the energy and phase spread at this moment are close to optimal.

To determine the moment when the bunch has minimal phase length, we need to under-
stand that trajectories are not symmetrical across the equilibrium energy line. The analytical
expressions for optimal buncher length and corresponding velocity spread can be found in
“Appendix” C. However, in practice, the length of such a buncher will depend on the particular
design of the accelerator and the beam requirements. For example, if the beam continues its
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Fig. 23 Phase oscillations of particles in an accelerating waveguide section with βph � 0.5, simulated in
Hellweg. The beam is injected with βinj � 0.4. Each plot corresponds to different positions: a z � 0, b z �
βphλ/3, c z � 4βphλ/3, d z � 7βphλ/3. When the beam head passes the π/2 phase, it becomes over-bunched,
and the head can split into two peaks

motion in such a section, this will lead to a decrease in the beam energy, and at the same time
an increase in phase length due to the different frequencies of phase oscillations. Figure 24
shows the beam density distribution along with phases that support the previous statement.

Moreover, once the beam is over-bunched, the density peak starts to split in two peaks,
eventually developing into two energy peaks during acceleration. In many applications, this is
undesirable, since a particular energy is required. At the same time, despite the more extensive
phase/energy spread of the beam “head,” the over-bunched beam has fewer particles in its low-
energy “tail” (see Fig. 5 for visualization). Beam tails are typically not useful in applications
and are regarded as contamination. The weight of the over-bunching technique’s pros and
cons should be estimated for the particular linac design.

The results of the over-bunching technique in a waveguide section with low-energy injec-
tion can be demonstrated with the example of a linac, developed by the author, for the
Advanced Railroad Cargo Inspection System [95], where the elimination of low- and high-
energy tails was required by the detector system to allow effective material discrimination
[96]. The linac is a 2–9 MeV S-band TW accelerator with 30 keV injection energy (β inj �
0.328). An early version of this accelerator consisted of a 4-cell constant phase βph � 0.4
waveguide buncher with low accelerating field (A � 0.26 or Eλ√

P
� 60�1/2—optimal param-

eters, according to analytical formulas), followed by 22-cells βph � 1 section as shown in
Fig. 25a. The number of DLS cells was chosen so that 150 mA can reach 9 MeV energy. The
simulation results of this linac, shown in Fig. 26a, b demonstrate that although the buncher
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Fig. 24 Phase density (normalized to a maximum for each plot) distribution evolution during bunching: the
blue curve corresponds to case (c), and the green to case (d) in Fig. 23. It can be seen that once the beam’s head
passes across the π/2 phase, a second peak starts to develop. These phase peaks can eventually be transformed
into energy peaks. At the same time, the low-energy tails become thinner. It should also be noted that the beam
has a sharp edge in the head region

Fig. 25 Two bunching section options for a 9-MeV TW accelerator with reduced energy tails: a Option 1:
4-cell waveguide section with βph � 0.4 and A � 0.26, b Option 2: improved version with A � 1.42, followed
by two βph � 0.7 cells

provides good acceptance into the accelerating section, the beam compression is still insuf-
ficient to capture most of the particles into the bunch core, leaving them outside of the
βph � 1.0 bucket. These particles are not lost but form a long low-energy tail.

In order to reduce the number of particles in this tail, we increased the field amplitude
in βph � 0.4 by factor of 5.4 (from A � 0.26 to 1.42), which resulted in a significantly
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Fig. 26 Phase portraits (a and c) and energy spectra (b and d) at the end of a 9-MeV TW linac with the buncher
options 1 (a, b) and 2 (c, d) as referred to in Fig. 25, simulated in Hellweg. The beam passing through long
waveguide buncher sections sustains extensive phase oscillations and “folds” in phase space multiple times,
“packing” more particles within the bunch core, which would otherwise become a low-energy tail

better phase compression due to the more intensive phase oscillations (the particles now fill
the whole RF bucket) at the cost of larger energy spread. We also added two intermediate
cells with βph � 0.7 to improve the acceptance into the βph � 1.0 section (see Fig. 25b)
and eliminate the particles outside the RF bucket. As shown in Fig. 26 c, d, this technique
significantly reduced the number of particles in the low-energy tail. A comparison of beam
parameters achieved by both bunchers is provided in Table 3 and demonstrates the parameter
trade-offs (transmission, energy spread, beam tails, complexity) that should be considered
during the buncher design.

Finally, let us discuss how, in general, the parameters of the buncher influence the beam
parameters. Reducing the field amplitude leads to compression of phase trajectories in the
vertical direction (according, for example, to (14)) and smaller energy spread. At the same
time beam capture will also be lower for the same injection energy (β inj <βph), according
to (20). Higher amplitude bunchers yield larger energy spreads. A similar result is observed
by varying the phase velocity. Although the capture is reduced for higher phase velocities,
the beam energy grows, and at the same time, the phase length of the beam becomes shorter.
The maximum reasonable βph is set by the acceptable capture ratio, which is not practical to
make much less than at least 20–30%.

3.3.3 Injection of a DC beam into an accelerating section

A special case of a waveguide buncher with a constant phase velocity is the case where a DC
beam is injected directly into a βph � 1 section without prior bunching. This solution, which
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Table 3 Comparison of beam parameters at the end of a 9 MeV linac with buncher options 1 and 2 as presented
in Fig. 25

Buncher option Figure 25a Figure 25b

Buncher type Constant phase velocity with
optimal focusing

Constant phase velocity with
over-focusing

Phase velocity 4×βph � 0.4 cells 4×βph � 0.4 + 2×βph � 0.7
cells

Field amplitudes Aa 0.26 (βph � 0.4) 1.42 (βph � 0.4), followed by
2.06 (βph � 0.7)

Average energy, MeV 7.8 9.0

Peak energy, MeV 9.0 9.3

Beam transmissionb, % 66.0 64.8

Energy spectrum FWHM, MeV 0.4 0.7

Low energy tail, % 29.9 (below 8.0 MeV)

46.9 (below 8.5 MeV) 7.4 (below 8.6 MeV)

High-energy tail, % None 0.36 (above 9.3 MeV)

aA=3.15 for βph=1 section.
bIncluding transverse losses.

is the easiest to handle theoretically, is the least used [97]. Since no closed phase trajectories
exist in βph � 1.0 sections (see Sect. 2.2), the particles do not sustain phase oscillation and
the capture process occurs as the injected beam moves up to the crest, which leads to beam
bunching due to velocity modulation caused by particles experiencing different accelerating
field values. In other words, if particles are injected into a structure whose phase velocity
equals the velocity of light, they slip in phase, but if the accelerating field is chosen correctly,
the particles will asymptotically approach the crest where they can be efficiently accelerated
to high energies [10].

To estimate this structure’s bunching efficiency, it is convenient to plot its phase trajecto-
ries, as shown in Fig. 27. As we previously discussed, the phase oscillations stop when the
electron’s velocity β approaches 1, and the ultra-relativistic particles have only an insignif-
icant slide along with the wave. This sliding becomes slower as the difference between the
beam velocity and phase velocity decreases. Therefore, the phase of all electrons captured in
the βph � 1 section will gradually decrease during acceleration and approaches an asymptotic
value.

The electrons can be captured in a section with a given A and βph � 1 only if their energy
is higher than the threshold value, according to Eq. (22):

βmin � π2 − A2

π2 + A2 (38)

Injected electrons are grouped into a phase region from −π /2 and ψ , which corresponds
to the amplitude of phase oscillations for the electron that entered the section in + π/2 phase.
This value can be found with the help of Eq. (98):

ψ � a cos

[
1 − 2π

A

√
1 − β

1 + β

]
(39)
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Fig. 27 Phase oscillations of particle, injected at 130 keV into an accelerating waveguide section with βph �
1 and A � 2, simulated in Hellweg. Each plot corresponds to different lengths: a L � 0, b L � βphλ/3, c L �
2βphλ/3, d L � 4βphλ/3. The last plot is expanded into -3π/2 region to demonstrate the long low-energy tail

For example, for a DC beam injected with an energy of 130 keV (β ~ 0.6) into a βph � 1
section with A � 2, approximately 50% of the electrons can be captured. However, despite
the large capture, such a beam will have a significant phase length, and therefore, energy
spread (low-energy bunch tail). A compromise solution can be a capture of ~ 20%. In this
case, the phase length of the accelerated bunch will not exceed 0.65 rad. This, however, is
not a very efficient design in terms of beam transmission.

Based on these considerations, it is possible to conclude that although a DC beam can
be directly injected into sections with βph � 1, the injection energy must be high enough
(> 100–150 keV [98]) to achieve reasonable capture. The bunching in such structures is
not very efficient because of the large energy spread. The accelerating efficiency in such a
structure also deteriorates with this bunching technique, since the bunch is located behind
the crest of the EM wave, where its amplitude scales as cosϕ and the electrons will continue
to slide back in phase.

Therefore, βph � 1 bunchers are rarely used as is and often are accompanied by either a
pre-buncher, or a ½-cell buncher (equivalent to a single cell βph � 0.4 buncher with a high
field amplitude) or by a phase jump technique to move the bunch head back on the crest. This
can be realized by inserting a drift space or a short section with βph <β, as will be discussed
in the following sections. Another case when βph � 1 injection maybe appropriate to use
is when it is technically challenging to fabricate lower-beta DLS structures. One example
of such a case is a mm-wave accelerator operating at > 100 GHz frequencies [71], shown in
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Fig. 28 Photo of RadiaBeam
beam-driven 182 GHz TW
structure

Fig. 29 Example of a typical S-band standing wave side-coupled medical linac with a ½-cell buncher

Fig. 28. Such a structure requires fabrication of sub-mm features with micron-level accuracy,
so adding lower-beta cells can increase the complexity to an unreasonable level. At present,
mm-wave technologies are not ready to be used in industrial accelerators, but might be
available in the future [4].

One example of a βph � 1 injector was already described in Sect. 3.1, where it was
compared for cases with and without a pre-buncher. A similar system was also used in the
SLAC Mark III accelerator with injection from an 80 keV DC gun and a pre-bunching cavity
[99]. Another example of a βph � 1 injector accompanied by a 1/2-bunching cell with the
same field amplitude is an S-band accelerating structure design by E. Tanabe [100], which is
widely used in medical systems (Fig. 29). While this is a simple design to fabricate, it has a
very limited (< 30%) beam transmission [44], depending on the RF power supply [101] and
operating frequency [102] as shown in Table 4.

3.3.4 Multi-section bunchers

Since a buncher with constant phase velocity can provide acceleration only to limited
energy, the use of a single buncher section might not be sufficient to provide good injection
into the accelerating (βph � 1) section for the reasons described in the previous sections. In
this case, multiple sections with gradually increased (from section to section) phase velocities
can be used to provide better matching (i.e., larger capture and smaller energy spread) into
the βph � 1 waveguide.
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Table 4 Beam parameters of S-
and X-band versions of a medical
SW side-coupled linac consisting
of a βph � 1 structure with
½-bunching cell, simulated in
Parmela, including transverse
effects

Frequency, MHz 2998 9300

Number of cells 6.5 13.5

RF power, MW 2.7 1.9

Injection energy, keV 17 15

Beam energy (peak), MeV 7.42 5.30

Beam energy (mean), MeV 6.50 3.60

Beam current, mA 100 35

Field amplitude, MV/m 56 60

Beam transmission, % 29.7 30.0

The typical strategy for a buncher design with multiple sections of constant phase velocity
(both matched and low-energy injection) consists of the following steps, illustrated in Fig. 30:
I—choose the combination of phase velocity and field amplitude (β1, A1) so that enough
particles are placed within the RF bucket. II—choose the number of cells to compress the beam
within the [−π/2, π/2] range. Over-bunching can be acceptable to capture more particles in
the beam head at the cost of a broader energy spectrum. III—inject the bunched beam into
the next section with a phase velocity higher than the bunch’s velocity and field amplitude
high enough to fit the bunched beam within the new RF bucket (β1, A1). IV—the length of
the second section should be chosen, following a similar approach as step (II). This process
should be repeated until the beam is injected into the section with βph � 1. The buncher will
represent a group of cells with different phase velocities, and its length will depend on the
available RF power and desired beam parameters.

In Sect. 3.3.2, we have already showed how the addition of a section with intermediate
velocity (βph � 0.7) between βph � 0.4 and βph � 1 sections can improve the quality of
the beam (i.e., reduce the energy spread and low-energy tails). Another example of when a
multi-section buncher design is suitable is a sub-MeV (180 keV) Ku-Band (16.4 GHz) hand-
portable linac for Co-57 radioisotope replacement [103]. The requirements for ultra-small
dimensions (~ 20×20×10 cm) led to the reduction of all sub-components, the including
accelerating structure and RF source (magnetron), which drove the low gun voltage (15 kV),
higher frequency and lower RF power choice. With limited available power (50 kW), the field
amplitudes will be very limited: for example, according to Fig. 14b, a βph � 0.4 cell will
have A � 0.2 for apertures a � 0.08λ, as typically used in DLS structures [58]. Small field
amplitudes result in small RF bucket areas and velocity acceptance (see Eq. (14) and (37)),
which means that low-energy injection is very limited. In fact, the amplitude threshold for a
βph � 0.4 cell is A � 0.65. Therefore, only a long buncher approach (see Sect. 3 introduction)
can be applicable. Moreover, at 180 keV beam will have βph � 0.673, so such a linac will
never have a βph � 1 section and will consist only of a bunching section.

The design of the 180 keV Ku-band linac is presented in Fig. 31. It consists of four
waveguide section with different constant velocities. The first section consists of 6 cells with
βph � 0.3, followed by 8 cells with βph � 0.5 and then 4 cells with βph � 0.6 and 2 cells with
βph � 0.7 cells. This design is only 5.9 cm long, but provides acceleration of a 2 mA beam
from 15 to 180 keV and has a transmission of 25% without an external focusing system.
The phase space evolution of the beam in this linac is presented in Fig. 32 and illustrates the
design philosophy described in the beginning of this section: the length of each section is
chosen such that the bunch makes ~ 1/4–1/2 of the oscillation period and reaches its maximum
energy in a given section; then it enters the next section with a higher phase velocity and the
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Fig. 30 Evolution of the beam’s phase space in a two-section βph � const buncher, simulated in Hellweg.
I—15 keV (β � 0.237) DC beam is injected into βinj � 0.5 section. II—After passing six cells, the bunch
is formed. III—the second section has a phase velocity of βph � 0.9. IV—The beam is accelerated to ultra-
relativistic energies, and the shaped bunch is ready for injection into the βph � 1 section. The low-energy tail
is almost eliminated

process repeats until the beam reaches the βph � 1.0 section or the required energy as in the
present example. The parameters of the accelerator are summarized in Table 5.

In general, the multi-section buncher design is an intermediate step between bunchers with
a constant phase velocity where all cells are identical, and with tapered phased velocity where
each cell has unique parameters. Unlike the latter, multi-section bunchers are easier to design,
since it is intuitively clear how to choose the length, field amplitude and phase velocity of each
section just by looking at the beam’s phase space development. If some special parameters are
required (for example, energy spread reduction or beam tail elimination), it is also possible
to apply overfocusing or the phase/amplitude jump techniques with visual control of the
beam phase space. At the same time, the beam parameters achieved by this buncher type will
depend on the designer’s skills and diligence and might not be satisfactory for a particular
application. In that case, the design of a more gentle (and more complex) buncher might be
required.

3.4 Waveguide bunchers with tapered phase velocity

Although waveguide bunchers with constant phase velocity are very appealing due to their
simplicity, bunchers where phase velocity and field amplitude change from cell to cell are
somewhat more popular since they can provide better efficiency [15, 23, 107]. Such bunchers
are usually referred to as waveguides with a tapered phase velocity. They can ultimately be
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Fig. 31 Example of a buncher for a 40-kW 16.4 GHz linac, consisting of four βph � const sections: six cells
with βph � 0.3, eight cells with βph � 0.5, four cells with βph � 0.6, and two cells with βph � 0.7. The
available power restricts the length due to low field amplitude A

considered as multiple waveguide sections, each consisting of a single cell, so that the methods
from the previous chapters can be applied. However, such an approach is not very efficient
since it requires to solve a problem with many variables (at least two for each unique cell).
Therefore, it is convenient to reduce this problem to some general solution with the minimum
number of variables.

When βph(z) ��const, the equilibrium phase is not equal to π/2, since the velocity of
synchronous particle must also increase, which is only possible in the accelerating phase.
Let us consider the motion in such a section assuming that the field amplitude is constant
(A(z) � const). The equilibrium particle will always travel synchronously with the wave at
a phase ϕs. Then, Eqs. (9) and (10) will take the form:

dγs

dζ
� A cos ϕs (40)

dϕs

dζ
� 0 (41)

By integrating the first equation and using the second as a boundary condition, we can
obtain an important relationship for the phase velocity βph(ζ) � βs(ζ), which can be written
in the form [24]:

βph(ζ ) �
√

1 −
(

1

γ0 + Aζ cos ϕs

)2

(42)

Unfortunately, in order to obtain the energy and the phase of the other particles at any
given point ζ, it is necessary to solve the equations of motion (9) and (10) with the particular
initial conditions and the function βph(ζ), defined above. The captured electrons will oscillate
around the equilibrium phase with oscillation amplitudes that decay with ζ, which leads to a
bunching effect.

Electron bunching in a section with tapered phase velocity depends on the initial energy,
field amplitude, and equilibrium phase. The oscillations are most intense in the initial part
of the buncher, where the particles’ velocities are relatively low. By reducing the injection
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Fig. 32 Evolution of the beam phase space in the 180-keV Ku-band accelerator with a four-section βph �
const buncher, simulated in Hellweg with the consideration of transverse and space charge effects (thickening
of beam lines). The groups of two plots demonstrate the beam at the entrance and at the end of each section:
i.e., a, b—βph � 0.3, c, d—βph � 0.5, e, f—βph � 0.6, g, h—βph � 0.7
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Table 5 Parameters of the
180 keV Ku-band split linac for
Co-57 replacement

Frequency 16.4 GHz

Buncher type Four sections with constant phase velocities

Phase velocity 0.3–0.5–0.6–0.7

Field amplitudes (A) 0.1–0.13–0.145–0.165

Input RF power 50 kW

Unused RF power 12.2 kW

Injection energy 15 keV

Length 5.9 cm

Number of cells 20

Beam current ~ 5 mA

Beam energy (peak) 179 keV

Beam energy (mean) 140 keV

Beam transmission 27.2%

energy, this part of the buncher must be made longer to improve the bunching effect. Numer-
ical analysis of the beam dynamics, performed for the different configurations, demonstrated
[24] that the bunching improves for lower field amplitudes since it leads to a larger number
of phase oscillation and increases the length of the buncher. A similar result is observed for
equilibrium velocities approaching π/2.

It is interesting to observe the bunching around the equilibrium phase. For small amplitudes
of phase oscillations, i.e., short initial bunches, the bunching coefficient linearly depends
on the value of ϕs, and the field amplitude does not affect the bunching efficiency. Parti-
cles located far from equilibrium have significantly lower bunching coefficient than particles
located near ϕs. Therefore, the bunching coefficient is lower for longer initial bunches, assum-
ing the other parameters are the same.

In the most general case, both amplitude and equilibrium phase change along the bunch-
ing section. However, by assuming these parameters to be constant, it is possible to reach
conclusions on their influence on bunching efficiency. Figure 33 shows that the bunching
coefficient (phase compression) cannot exceed specific values for a given equilibrium phase,
and when this phase approaches ϕs � 0, it can reach values of 18–20. In practice, this coef-
ficient becomes significantly smaller since it is not reasonable to make ϕs � 0 because it
results in very long bunching sections, and secondly, this value does not include the particles
in the whole range of phases, [ − π/2, 3π/2], for a DC beam.

When the equilibrium phase is constant, the bunch should be shifted on the wave at the
end of the buncher. As discussed in the previous section, this shift can be realized with a
phase-shifting section with βph <βbeam. Good bunching performance can be obtained if the
equilibrium phase is varied from 0 to −π/2. The advantage of this technique is that it allows
achieving 100% capture. To realize this method, it is necessary to choose the appropriate
function of phase velocity change βph(ζ). This function will also depend on the amplitude
variation.

The simplest way is to use a linear function of ϕs(ζ), while its derivative will be a function
of field amplitude. Assuming that the most appropriate function for the equilibrium phase
variation would be cosine, it is possible to write the expression for the phase velocity change:

ϕs(ζ ) � π

4

[
1 − cos

(π

L
λζ
)]

(43)
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Fig. 33 Bunching (compression)
coefficient as a function of
equilibrium phase in the case of
small amplitude phase
oscillations

Here, L is the bunching section length. It is necessary to perform analysis and monitor the
electrons’ trajectories numerically in phase space to control the equilibrium phase variation.

In order to get optimal beam parameters, one needs to numerically optimize the functions
of A(ζ), βph(ζ) and ϕs(ζ), which is complicated even more by the fact that the length of
the buncher is not constant and will depend on the energy gain. With enough time, skill and
computational resources, a designer can do this either manually or by using some optimization
algorithms [104]. At the same time, in the era before powerful computational tools, scientists
developed a number of approaches, including using empirically obtained optimal functions
of A(ζ) and βph(ζ) that can help rapidly develop tapered velocity bunchers. Although there
are no universal solutions that will produce optimal beam parameters for any accelerator,
these approaches might be useful as a starting point for buncher development. They can also
be implemented into design optimization algorithms as they allow reducing the problem to
2–3 variables.

In the following sections, we will present three different approaches for tapered waveguide
buncher design proposed by different Soviet scientists that include analytical expressions for
buncher parameter (phase velocity and amplitude) variation and which can be useful for
optimization algorithms and practical design.

3.4.1 Direct formulas

One of the simplest and most straightforward design approaches for tapered velocity bunchers
was proposed by Prof. O.A. Valdner [23, 24]. A perfect buncher should provide the maximum
capture of injected electrons, shortest phase length, and smallest energy spread while having
a relatively simple and compact design. These requirements can be realized in waveguide
bunchers with tapered velocity and amplitude of the EM wave. The bunching efficiency
directly depends on the velocity and amplitude profiles βph(ζ) and A(ζ), which must be
identified during the design.

Similar techniques to those used for βph � const bunchers can be applied for tapered
waveguides, including amplitude and phase jump. To have efficient bunching, the initial phase
velocity should be small and close to the velocity of the injected beam, and the equilibrium
phase close to π/2. For the amplitude profile optimization, it is necessary to account for
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the maximum values that depend on the available RF power source, which can be defined

as Amax � �
√

PRF
W0

, where � � Eλ√
P

is an accelerating cell property that can be calculated
for a particular geometry [19], PRF is the RF power incoming into the cell, and W0 is the
rest energy of the accelerated particle. Secondly, it is necessary to avoid sharp variations of
βph(ζ) and A(ζ) because such jumps reduce the RF properties of corrugated waveguides and
complicate their design, which in practice may lead to power reflections and breakdowns.

The general recommendations for the tapered velocity buncher design can be formulated
in the following way. The dependence of βph(ζ) should start with a section with dβph/dζ �
0. Such a section will significantly improve the capture efficiency. Then, βph should increase
with ζ to ensure phase oscillations for simultaneous bunching and acceleration. At the end of
the buncher, the phase velocity is chosen to shift the bunch on the wave crest. This ensures
efficient acceleration in the βph � 1 section.

Unfortunately, the optimal functions βph(ζ) and A(ζ) cannot be derived analytically. How-
ever, some experimentally obtained expressions [23] that satisfy the conditions mentioned
above can be used for the practical design of a tapered buncher. The phase velocity profile
can be calculated as:

βph(ζ ) � 2

π

(
1 − βinj

)
atan

(
k1ζ

k2
)

+ βinj (44)

where

k1 � 3.8 · 10−3
(

10.8AM − 1
)

k2 � 1.25AM + 2.25
(45)

For further improvements in bunching efficiency, the amplitude should also vary along
the buncher as:

A(ζ ) � k3 − k4 cos

(
π

k5
ζ

)
for0 < ζ < k5

A � AM forζ ≥ k5

(46)

Here

k3,4 � 0.5AM ± 0.15
√

AM (47)

k5 � 1

1.25
√

AM

AM is the amplitude of the EM field in the accelerating section. These expressions can be
used for amplitudes AM from 0.1 to 4.0, initial phase velocities βph(ζ) from 0.3 to 0.6, and
frequency bands from L- (1.3 GHz) to Ku- (16 GHz).

As an example, assume a 6-MeV C-band (5.712 GHz) accelerator with a 5-MW power
source and 50 kV DC gun (β inj � 0.412), and compare different buncher designs obtained
using formulas (44)–(47) for different values of AM. For the sake of experiment, let us
assume that the linac has a focusing solenoid of 1000 Gs and injection current of 100 mA,
so that the transverse RF and space charge repelling forces are kept under control, while
the beam loading effect of the field is not dominant. Figure 34 compares phase velocity and
amplitude profiles obtained by above-mentioned formulas, while Table 6 provides the results
of beam dynamics simulations for these cases performed in Hellweg. These results suggest
that there is an optimum value of AM that allows best transmission and energy spectrum. Low-
field (gentle) bunching obtained by these formulas does not seem to provide any significant
benefits, while making the accelerating structure significantly longer. It is also interesting to
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Fig. 34 Phase velocity a and amplitude b profiles obtained by formulas (44)–(47) for different values of AM
in the case of a 6 MeV (peak) C-band TW linac with 50-keV 100-mA DC beam injection

Table 6 Beam parameters of a
6-MeV (peak) C-band TW linac
with 50-keV 100 mA DC beam
injection and tapered velocity
bunchers, designed according to
Valdner’s approach for different
values of accelerating field AM,
as simulated in Hellweg

Field amplitude AM 2.0 3.0 4.0

Field amplitude Eλ√
P

, �1/2 457 685 914

Number of buncher cellsa 18 10 7

Number of total cells 31 22 17

Buncher length, cm 22.7 9.8 7.5

Linac length, cm 45.4 32.46 24.9

Mean energy after buncher, MeV 2.20 1.07 0.57

Peak energy after buncher, MeV 2.70 2.4 0.74

Transmission after buncher, % 40.58 45.6 55.0

Energy spread (FWHM) after buncher, MeV 0.49 0.27 0.24

Mean energy after linac, MeV 4.5 5.3 5.2

Transmission after linac, % 40.2 42.7 41.4

Energy spread (FWHM) after linac, MeV 1.52 0.86 0.95

Low-energy tail min energy, MeV 3.4 4.4 3.9
aHere, we consider all cells with
βph < 0.999 as a buncher section

note that a high-amplitude buncher (AM � 4) provides very similar parameters to the optimal
buncher (AM � 3), from which we can conclude that a trade-off between buncher complexity
and beam parameters may be very much justified for industrial linac design if sufficient RF
power is available.

Since Valdner’s formulas have only one parameter to vary (AM), they can provide only
limited optimization and results, despite their simplicity. In fact, the 42.7% transmission
obtained in Table 6 is not very impressive, although the results may differ much for different
initial parameters (frequency, power, injection energy, etc.). In order to add more flexibility
to these equations, one may substitute β inj with β0 and vary it. The other option is to not use
the chosen AM in the accelerating section but adjust it to the desired value, either smoothly or
by an amplitude jump, to provide better acceleration efficiency. Finally, a designer can vary
the coefficients in Eq. (44)–(47) (i.e., 3.8·10–3, 10.8, etc.) to obtain better results. However,
this might require the use of optimization algorithms.
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Fig. 35 Phase oscillations of the particles in a tapered wave buncher, simulated in Hellweg. The buncher can
be separated into three sections: I—initial section for beam capture, II—middle section with intensive phase
oscillations, and III—end section with minimal oscillations

3.4.2 Buncher subsections

Another more general and robust approach for a tapered buncher design was proposed by
Dr. S.P. Lomnev [105]. This method requires numerical modeling that can provide phase
portraits of the beam and implies the separation of the buncher into three subsections:

I. The initial section, where the particles are captured into the acceleration regime;
II. The middle section with intensive phase oscillations where bunches are formed;

III. The end section with minimal phase oscillations where the bunch parameters can be
improved and the bunch is prepared for injection into the βph � 1 section for further
acceleration.

In order to better understand this division, let us plot phase trajectories inside the buncher
designed by the approach presented in the previous section using formulas (44)–(47) for
βph(0) � 0.412 and AM � 1.6. Figure 35 demonstrates phase oscillations in such a buncher,
and all three subsections can be clearly identified: I—DC beam receives density modulation,
II—intensive phase oscillations occur; III—phase oscillations decay and the bunch slips in
phase along the wave. Now, we discuss the physics of each section and provide some practical
guidance for their design.

The initial parts (I, II) of the buncher provide the most influence on the beam dynamics.
Therefore, it is reasonable to understand the requirements for the bunch parameters entering
the end section (III) to provide the best efficiency. So, we will start the description from the
end of the buncher. Usually, this section can only utilize the variation in phase velocity (i.e.,
AIII � const). The function of this variation βph(ζ) is defined by the energy of the entering
bunch and the requirements for phase length and energy spread at the end of the buncher.

Assume βmin is the minimum velocity of the bunch particles entering section III and βmax

is the maximum velocity. Then, it is possible to emphasize the following relationships for
the phase and beam velocities:

1) βph � βmax. This case is useful when the fastest particle phase is minimal, and it is
necessary to reduce the phase length of the beam. Alternatively, if the fastest particle has
a maximum phase, it is possible to reduce the beam’s energy spread in such a section.
Also, the particles will reach the highest energy at the end of such a buncher.

2) βph � 0.5·(βmin + βmax.). This design is the best for the simultaneous phase and energy
flattening.
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Fig. 36 Comparison of phase velocity a and amplitudeb profiles obtained by Valdner’s and Lomnev’s formulas
for AM � 2.9

3) βph � βmin. This design is reasonable to implement if the slowest particle has maximal
phase, and it is required to compress the phase length of the bunch.

4) If the slowest particle has a minimum phase, it is reasonable to put it on the wave crest
(ϕ � 0)

It is interesting to note that it is possible to artificially induce phase oscillations for further
bunch compression by implementing a phase velocity jump as described in Sect. 4.

For the middle section (II), it is reasonable to use another set of experimental dependencies
[106]:

βph(z) � 2

π
a tan

[
n
( z

10

)2
+ k1

]
(48)

A(ζ ) � AM sin

[
m
( z

10

)2
+ k2

]
for z < 10

√(
π
2 − k2

)

m
and A � AM otherwise (49)

Here m, n, k1, and k2 are parameters that should be optimized to achieve the desired phase
length and/or energy spread. “Appendix” D discusses the choice of these parameters. Units
of length are in centimeters. The shape of the initial part of βph(z) and A(z) should be chosen
to achieve maximum capture, while the end part is critical for bunching (phase length).

Now let us compare the results achieved with Lomnev’s approach to Valdner’s. For con-
sistency, let us assume initial parameters similar to those discussed in the previous section:
frequency 5712 MHz, RF power 5 MW, injection energy 50 kV (βph � 0.412). This time
we will consider that the accelerating section (βph � 1) is made of a DLS with aperture
radius a � 0.08λ (typical numbers for DLS linacs [58]). By using the data from Fig. 14,
we can estimate that the amplitude in this section is AM ~ 2.9,3 which roughly corresponds
to Eλ√

P
≈ 650�1/2. In order to calculate phase velocity and amplitude profiles along the

buncher, we will use Eq. (48),(49), assuming k1 � 0.6435, k2 � 0.7126, n � 0.25, m � 0.11,
as proposed by Prof. Lomnev in his book, but which are subject to further optimization for
a particular design. These conditions yield the phase velocity and amplitude profiles shown
in Fig. 36.

The results of beam dynamics simulations are presented in Table 7 and Fig. 37 along with
the results achieved by Lomnev’s and Valdner’s formulas for the same initial parameters. By

3 This estimation does not include field amplitude attenuation due to RF losses or beam loading effects.
However, both of these effects are accounted for in simulations.
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Table 7 Comparison of beam
parameters achieved in a 6-MeV
C-band TW linac with 50-keV
100 mA DC beam injection and
tapered velocity bunchers
designed using Valdner’s and
Lomnev’s formulas

Approach Lomnev’s Valdner’s

Field amplitude AM 2.9 2.9

Number of unique cells 22 11

Total Number of cells 22 23

Initial phase velocity 0.364 0.412

Peak energy at the end of the linac, MeV 6.0 6.0

Mean energy at the end of the linac, MeV 5.35 5.31

Transmission after linac, % 51.3 43.1

Energy spread (FWHM) after linac, MeV 1.14 0.86

Low-energy tail lowest energy, MeV 3.8 4.3

Fig. 37 Comparison of beam energy spectra at the exit of 6-MeV C-band linacs with tapered velocity waveg-
uides designed using Lomnev’s a and Valdner’s b formulas

comparing these results, we can make the following conclusions: Lomnev’s design is more
complex as it requires more unique cells. However, a more smooth velocity profile leads
to a better beam transmission (by 8%), but ~ 30% wider energy spectrum and longer low-
energy tails. At the same time, the most probable energy after Lomnev’s buncher matches
the maximum energy of the beam core, while in Valdner’s design the most probable energy
is shifted toward the mean energy. As discussed in previous sections, this effect depends on
the injection phase into the accelerating section. Finally, Lomnev’s design has a pronounced
high-energy tail that might be very undesirable for some applications (as will be discussed
in Sect. 4.1). The provided results may be improved by optimizing the parameters k1, k2, n
and m.

The provided analysis of the tapered velocity buncher designs shows that it is almost
impossible to achieve good phase length and energy spread of the beam while capturing
100% of the particles. However, the practical designs of electron linacs do not imply such
requirements. Usually, either a short phase length of the beam or a narrow energy spectrum
is required. Moreover, most industrial applications do not require large beam transmission,
and values in the range of 30–40% can be satisfactory as a trade-off for simplicity and low
energy spread.

123



Eur. Phys. J. Plus         (2021) 136:446 Page 47 of 73   446 

3.4.3 Machine learning

An even more general approach based on the use of optimization algorithms was proposed
by Prof. N.P. Sobenin in his Reference book on DLS accelerating structures [107]. Although
this method is difficult or even unreasonable to use in a manual design approach, it can
be implemented in machine learning algorithms, so it might be interesting for software
developers. This approach allows using search engine optimization methods for complex
multi-parametric objects [108]. Depending on the particular requirements for the bunch
parameters, the optimization criteria can include beam transmission, energy spread, phase
length, energy gain, tail lengths etc. As an illustration of this approach, let us consider the
task for minimization of the energy spread at the end of the bunching section �γb.

The transition of continuous functions βph(ζ) and A(ζ) into a finite array is possible in
different ways: for example, by formal power series intervals or piecewise-linear approxima-
tion. The main disadvantage of these methods is the large number of independent variables,
which complicates the search and increases the time of the iterative procedure. Let us con-
sider that the function of amplitude A(ζ) is defined as a quadratic polynomial and the phase
velocity has the form:

βph(ζ ) � b1 − b2e−b3ζ
b4 (50)

where b1–4 are independent variable for the iterative procedure. The disadvantage of this
method is the limited class of applicable functions. However, this representation is convenient
because it represents two types of functions: with and without points of inflexion. Moreover,
it does not have a periodic behavior, which simplifies its practical realization.

Let us find the minimum of the beam’s output energy spread as:

F � γi,max − γi,min � f (b1, b2, b3, b4) (51)

Since the form of a function f is unknown, we have to represent it in the following
polynomial form [109]:

F � α0 +
n∑

αi bi +
n∑

i< j

αi j bi b j +
n∑

αi j b
2
i + . . . (52)

with the regression coefficients α0, αi, αij, αii, etc. By implementing the simulation results,
it is possible to leave only sample regression coefficients α0, αi, αij, αii, which will serve as
approximations for theoretical regression coefficients. In order to define these coefficients,
it is possible to use complete factorial experiment for four independent variables b1-4 that
are varied on two levels (planning of 24 type). By approximating f as a linear function, it
is possible to reduce the number of experiments, using fraction replications of complete
factorial experiment (24–1 planning). Then, for regression analysis, it is possible to write a
simple formula [107]:

αi �
b∑

n�1

ynbin

8
, i � 0 − 4 (53)

All regression coefficients in the factorial experiment are evaluated independently. Since
all variables are changed simultaneously during all experiments, each regression coefficient
is defined by the results of all N � 8 experiments, meaning that the dispersion in the coeffi-
cient estimation is 8 times lower than the dispersion of the experiment. During the iterative
procedure, a series of experiments is performed for a local description of the result surface
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function as a linear polynomial. The motion along this surface is performed in the direction
of its gradient, which can be described as:

grad( f ) � ∂ f

∂b1

�i +
∂ f

∂b2

�j +
∂ f

∂b3
�m +

∂ f

∂b4

�k (54)

where i, j, m, k are unity vectors in the direction of the coordinate axes. If the resulting
surface can locally be represented as a linear equation, then partial derivatives are equal to
the regression coefficients [107]: ai � ∂ f

∂bi
. Further motion along this surface in the direction

of a linearly approximated gradient must be accompanied by adjustment of the independent
variables proportionally to the values of the regression coefficients, taking into account their
sign. Therefore, the iterative procedure is chosen to maximize its convergence speed. In this
particular task, the form of the result function is unknown, so in order to increase the speed
of the search, it is recommended to take into account only the sign of the derivative, not its
value, i.e., to use step normalization. In this case, the iterative sequence will have the form
of:

bm+1 � bm − q · sign

(
∂ f

∂bi

)
(55)

The presented algorithm is very versatile and can be used for other design criteria such
as beam transmission and bunch phase length. The further discussion of machine learning
techniques is, however, beyond the scope of this paper [110, 111].

4 Additional considerations for buncher design

4.1 Beam tails and energy spread

In the previous chapter, we have already discussed the phenomena of energy tails and their
nature. In this section, we would like to discuss this problem in more detail, including their
effect on beam quality and some techniques for their elimination. Here, we also limit the
discussion to industrial applications and will not consider scientific or FEL accelerators,
where the requirements and effects of beam tails are generally different.

First, let us clarify that beam tails are the particles outside the beam core (for example,
defined as FWHM), as shown in Fig. 38. There are two types of beam tails, which have
different nature and effects on the accelerator performance: low-energy tails and high-energy
tails. Low-energy tails usually appear when the particles found themselves outside of the
RF bucket (especially high-phase-velocity buckets), when they can still be accelerated to a
limited energy, before being decelerated (see, for example, lines (1) in Fig. 8). Depending on
their initial phase distribution, they can form a continuous beam tail like in Fig. 26b or have
a low-energy cut-off like in Fig. 38b. Since the trajectories of these particles are outside of
the bucket, these particles will slip along the phase of EM and overlap with the successive
bunches. At the same time, since their momentum is positive, these particles will not be lost
and will eventually reach the end of accelerator.

In view of this nature, we can highlight several adverse effects caused by low-energy tails.
First, due to their phase and velocity distribution, they can fill the whole accelerating structure
and create an electron cloud that can affect the performance of high-current accelerators, for
example, leading to an increase of the transverse and longitudinal emittance (beam size and
beam divergence), reducing the accelerating field gradients due to space charge effects, and
causing beam losses [112].
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Fig. 38 a Illustration of low- and high-energy tails in longitudinal cross section of the beam inside ARCIS
linac [95] as simulated in CST Particle Studio and b energy spectrum plot of this beam as simulated in Hellweg

Fig. 39 Electron beam energy deposition in a layer of water for monochromatic electron beam with different
energies

Secondly, these electrons still interact with the RF fields and receive the energy from them,
causing beam loading effects (see Sect. 4.2) that reduce the accelerating voltage and lead
to energy under-gain of the whole beam. This basically means that part of the RF power is
used to accelerate particles that may not be used in the accelerator application. For example,
in food, materials irradiation, or radiotherapy [113], low-energy electrons only irradiate the
surface of the object. For example, Fig. 39 [21] demonstrates the energy deposition of an
electron beam in a layer of water, showing that low-energy beams do not deposit their energy
deep into thick objects. In the case where the electron beam is converted into X-rays, low-
energy electron tails will increase the low-energy tails of the bremsstrahlung [114], leading to
a similar effect. Although these effects are harmless for most of the applications, low-energy
tails generally reduce the efficiency of the accelerator and should be reduced or eliminated.

Unlike low-energy tails, high-energy particles appear because of large-amplitude phase
oscillations, when some may find themselves at the top part of the RF bucket (see, for example,
Fig. 30), and then accelerate faster than the beam core in a βph � 1 section (i.e., “deeper”
trajectories (3) versus trajectory (2) in Fig. 8. The presence of high-energy particles in the
beam can cause more severe effects for some application than the lost efficiency caused
by low-energy tails. For example, high-energy electrons can produce neutrons via nuclear
reactions [115, 116], which can lead to component activation [117]. For example, USDA
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limits the energy of electron beams to 10 MeV and X-rays to 5 MeV, for food treatment
[118]. The other problem is related to masking of detector signals in inspection systems by
either neutrons or high-energy bremsstrahlung X-rays [96]. In sensitive detection techniques,
such as enriched uranium detectors via beam-induced radiation [119], high-energy photons
(185 keV) can mask the passive decay of U-235.

Therefore, it is necessary to carefully control the beam quality during the accelerator
design even for industrial-class machines and to take into account the requirements of the
particular application and the accelerator operational environment. In the previous sections,
we have already discussed some techniques to reduce beam tails, such as the over-bunching
technique (see Sect. 3.3.2). In the following sections, we will discuss the other techniques
that can be used in bunchers to reduce the beam’s energy spread and beam tails.

4.1.1 RF chopper

The radical method to eliminate beam tails and reduce phase (and therefore energy) spread
is to physically remove part of the beam before injection into the waveguide bunching or
accelerating sections, i.e., right after DC gun or after the pre-buncher. Although this method
can significantly reduce the injected beam current, it eventually increases the accelerator
power efficiency since no power is wasted on accelerating low-energy tail particles.

In practice, the removal of the excessive particles can be achieved with the help of an RF
chopper (an RF cavity followed by a slit). The mechanism of the RF chopper is somewhat
similar to the pre-buncher, with the exception that the particles receive transverse velocity
modulation, instead of longitudinal. Transverse modulation is then transferred into deflection
after passing the drift space. If we place a mask screen with a hole in it, those particles whose
deflection (which is a function of RF phase) is larger than the slit will be eliminated.

In order to explain the transverse modulation process, we write below the equation of the
temporal transverse motion (along the y-axis, perpendicular to longitudinal z-axis,) of the
particles exiting the deflector [120]:

y(t) � k
eV0

p0c
cos(ωt) + k

eV0

p0c

2π

λ
sin(ωt)z (56)

where V0 is the peak RF deflecting voltage, p0 the particles momentum, c is the speed of
light, k is a constant depending on beam and lattice parameters (such as beam emittance and
beta function), and z is the direction of propagation. This is an approximated formula with
a first-order development of the sinusoidal transverse voltage. Notice that the further away
the location of the mask (z � zM ) is from the deflector, the wider the beam oscillation is. In
Fig. 40, we show an example of such a motion. The transverse sinusoidal behavior of the beam
exiting the deflector increases in amplitude until the mask is reached. By choosing the slit
diameter and deflecting voltage, it is then possible to chop the CW beam and obtain aligned
bunches of certain phase lengths at frequency 2f 0. In order to reverse the beam divergence,
a focusing element can be placed after the RF chopper.

Figure 41 provides an example of beam phase volume evaluation of a 100-kV DC beam
injected into a 10-MV/m S-band accelerating structure (similar to Sect. 3.1) with and without
phase chopping. Although RF choppers can significantly improve the quality of the beam,
they require a deflecting RF cavity operating at sub-harmonic frequency and additional beam
optics, which can significantly complicate the linac design and is usually utilized only in
high-current stationary accelerators.
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Fig. 40 Representation of RF chopper operation

Fig. 41 Energy spectra plotted at the end of the linac for 100-keV DC beams injected directly into 10 MV/m
S-band accelerating structure at π/2 central phase as is (a), and with 180-deg (b), 120 deg (c) and 90 deg
(d) chopping. Simulations performed in Hellweg

4.1.2 Amplitude jump technique

This technique significantly reduces the phase length of the bunch head, which will eventually
transform to reduced energy spread during acceleration. This method requires the beam’s
injection to the accelerating waveguide section with a matched velocity and low amplitude.
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Fig. 42 Bunch compression with the amplitude jump technique. A DC beam is injected into an accelerating
waveguide section with a matched phase velocity and low amplitude (a) and bunched into a minimum phase
length (b). The amplitude is increased by a factor of 5, and the phase velocity from 0.328 to 0.7. The resulting
bunch has smaller energy and phase spread than the one shown in Fig. 30

In this case, after passing a distance defined by the equation provided in “Appendix” C, the
bunch’s length will be minimized. At the same time, due to the low field amplitude, its energy
spread will also be small. If at this point, we sharply increase the amplitude of the field by
multiple times, the electrons inside the bunch head will find themselves inside the phase
trajectory with much smaller phase oscillation amplitude. Further motion in the accelerating
waveguide section will lead to the elimination of the beam tail. However, bunchers built
with this technique have poor RF efficiency since long sections with low phase velocities are
undesirable, as we discussed earlier.

A more practical implementation of this technique would be to sharply increase the phase
velocity simultaneously with the amplitude, as shown in Fig. 42. Most of the particles will
start accelerating on nearby phase trajectories, leading both to phase and energy spread com-
pression, compared to DC injection into a βph >β inj section. In this case, the first accelerating
waveguide section will play the role of an integrated pre-buncher.

In general, the amplitude jump technique can be used multiple times during the bunching
in both directions to achieve very clean beams (no tails and small head size). However, this
method is technologically complex and can result in considerable beam losses after every
jump.
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Fig. 43 Illustration of beam phase jump concept. In the initial bunch (left), head particles receive higher
acceleration rate than tail particles, which leads to further bunch lengthening. By putting the bunch on the
opposite side of the crest (right), the force distribution changes, and the energy spread reduces

4.1.3 Phase jump technique

To achieve good acceleration efficiency, the bunch should be accelerated on the crest of the
wave (ϕ � 0, as shown in Fig. 8). This statement is particularly valid for bunches with short
phase length and small energy spread. However, some bunchers yield bunches with large
phase and/or energy spread. The best example of such a case is a βph � 1 buncher that
produces beams with continuous and very long low-energy tails, as shown in Fig. 27d. The
energy spread in such a beam will increase during acceleration since slower electrons occupy
phases further from the crest and thus receive a smaller energy gain.

To compensate for the energy spread and stop the beam widening, it is possible to shift
the bunch ahead of the crest (ϕ > 0), so that the slower particles are accelerated in higher
field regions as shown in Fig. 43. By utilizing the field temporal distribution nonlinearity
(phase-dependence as E·cosϕ), it is possible to choose the phase shift value such that the
slower particles shift to a higher field region than the faster particles, thus reducing the energy
spread in the bunch. This method can be particularly efficient for long bunches.

It should be mentioned that the phase shift can be obtained not by a sharp jump but
smoothly. To do this, a phase-shifting section with βph <βbeam should be inserted in the
accelerating waveguide. A smooth phase shift also provides better energy compression com-
pared to an acute phase change, and technologically it is easier to implement, since it does
not require extensive changes in the accelerating waveguide parameters.

Figure 44 presents a comparison of measured 4-MeV beam’s energy spectra for three
cases [24]: with no phase jump (black), with three-phase jumps, followed by acceleration in
the same-length accelerating waveguide (red), and an improved case with a smooth phase
shift (blue). These results demonstrate that a smooth jump technique compresses the bunch
better and improves its acceleration efficiency.

As an example of a combination of amplitude and phase jump techniques, it is interesting
to present the concept proposed by Prof. B.S. Ishkhanov et al. [121]. In their design, they
inject a 50-kV (β � 0.412) beam into a SW accelerating cell with a higher beta (βph � 0.75)
low-field (A � 0.38) cell, followed by a lower-beta (βph � 0.55 and 0.8) high-field cells
(A � 2.36), before entering the regular accelerating section. The phase jump is accomplished
by the insertion of a low-beta (0.55) cell in between the high-beta cells (0.75 and 0.8). This
design resulted in 64.5% beam transmission and 0.35 MeV FWHM energy spread at the end
of 10 MeV linac.

A similar technique was used in a C-band 5–10 MeV linac, developed by ScanTech
Sciences LLC for a cargo inspection system [123], shown in Fig. 45. Here, a low-beta
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Fig. 44 Energy spectra of bunches accelerated in a βph � 1 section with no phase jump technique (black) and
with sharp (red) and smooth (blue) jumps. The smooth jump not only compresses the bunch better but also
improves its acceleration efficiency

Fig. 45 3D model of the injector and bunching section of a SW C-band 5–10 MeV electron linac, using
amplitude and phase jump techniques, developed by ScanTech Sciences, LLC [122]

(βph � 0.42) cell is located between βph � 0.67 and βph � 0.78 cells to provide a phase jump.
The amplitude ratio between the first and second cells of 0.12 provides and amplitude jump
with an energy compression. This design provides 57.1% beam transmission with ~ 0.36 MeV
FWHM energy spread.

4.2 Beam interactions with accelerating structure

Since the bunchers are rarely self-consistent devices (except the cases where the whole struc-
ture represents a buncher, such as ultra-low-gradient or sub-MeV linacs), their performance
is closely related to further acceleration. This section will briefly discuss how the beam
parameters after the buncher can influence the accelerated beam parameters.
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The electrons become relativistic after the buncher and then accelerate in the sections with
βph � 1. Due to the small variation in the beam and phase velocities, the phase oscillations
stop, and the electrons slowly slide along the wave. For multi-MeV accelerators, the acceler-
ating section length significantly exceeds the buncher length. Therefore, it is fair to say that
the βph � 1 section is exclusively used for acceleration. To properly calculate beam dynamics
in this section, it is necessary to consider the following essential factors. The accelerating
field amplitude in TW structures attenuates via two mechanisms: (1) due to the power losses
in the accelerating waveguide walls and (2) because the wave transfers its energy to the beam:

dPE M

dz
� −2α · z − I · Ez (57)

Here α is the field attenuation decrement (see Fig. 14) and I is the current of the accelerated
beam.

These factors lead to the fact that the analytical equations of the electron motion become
much more complex and not very illustrative. For example, Eqs. (9) and (10) will now have
the form:

dβ

dζ
�
(
1 − β2

)
A cos ϕ

γβ
(58)

d A

dζ
� −α(A + IR cos ϕ) (59)

dϕ

dζ
� 2π

(
1

βph
− 1

β

)
+ �I sin ϕ (60)

Here R and Ω are the parameters that characterize the beam interaction with the EM wave.
More details, including their definition and calculation, can be found in [55, 87]. In order to
solve these equations, the designer must use numerical analysis tools. The attenuation effects
in TW structures can be compensated by a gradual increase of the “unloaded” amplitude,
realized via shrinking the beam apertures (so-called constant gradient structures). Although
this approach improves beam dynamics, it complicates the accelerating structure design.
More details of the DLS structure design, including a comparison of constant impedance and
constant gradient structures, can be found in [15].

As was discussed in Introduction section, in the SW structure, the amplitude decay has a
different nature: the field does not decay as e−αz but is uniformly reduced in all accelerating
cells due to both RF losses and beam loading (see Fig. 15). This difference should be taken
into account for the proper linac design. More details on the difference between SW and TW
structures can be found in [10].

4.2.1 Beam loading effects

Acceleration of a high-current beam reduces the power flow in the accelerating waveguide,
the accelerating field amplitude, and by extension the output beam energy. For industrial
accelerators, the beam power constitutes a considerable fraction of the input RF power.
Also, high currents require proper consideration of the space charge forces acting on the
bunch, since they are comparable to the forces of the RF fields at low energy. Space charge
may influence the stability of longitudinal (phase) or transverse (radial) dynamics. Next, the
motion of grouped bunches along the waveguide can induce a reactive current component on
the waveguide walls, changing the phase velocity of the electromagnetic wave, which in turn
degrades the beam quality and acceleration efficiency. Finally, the particles traveling off-axis
can excite asymmetric waves with a transverse on-axis component. These waves deflect the
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beam away from the waveguide axis, which can lead to the beam-breakup (BBU) effect. This
tutorial will focus only on the longitudinal beam-induced effects.

When bunches of electrons pass through a disk-loaded waveguide, not connected to any
power source, they excite an electromagnetic wave inside this DLS with a phase velocity
equal to the velocity of the bunch [124]. This effect is called a “wake field.” In this excited
wave, the maximum of the decelerating field corresponds to the center of the bunch. A similar
effect is observed when the bunch passes through a SW cavity [125], with the exception that in
a TW cavity the bunch can excite any mode within the DLS bandwidth due to the continuous
dispersion curve, while in SW structures only discrete resonances are possible (see Sect. 2.5).

When the bunches pass through a powered accelerating structure, they still excite the
wake field, which now interacts with the accelerating wave. Since the bunch is accelerated
in the phase where ERF·cosϕ> 0, and its wake field is decelerating with a minimum always
following the bunch center, the effect of this field superposition will result in a decrease in
the accelerating field. As demonstrated in ref. [23], in stationary regime, the resulting beam
energy in a DLS with a uniform geometry (so-called constant impedance) can be calculated
as:

W �
√

2rsh PRF

α

(
1 − e−αL

)
− IbrshL

(
1 − 1 − e−αL

αL

)
(61)

Here rsh is the shunt impedance of the DLS, α is the attenuation factor, L is the length of the
structure, PRF is the input RF power and Ib is the average (per RF pulse) beam current. When
the current is high enough, both terms become equal and negate each other. This corresponds
to the theoretical maximum current that can be accelerated in a given structure:

Imax �
√

2αPRF

rsh

(
1 − e−αL

)
(62)

It is also helpful to provide expressions for the energy in a beam-loaded constant gradient
traveling wave structure [58]:

W �
√

rsh PRFL
(
1 − e−2αL

)− IbrshL

(
1

2
− αL · e−2αL

1 − e−2αL

)
(63)

and in a standing wave structure:

W �
√

rsh PRF L

Ib
2

√
rsh L
PRF

+

√
1 +

I 2
b
4

rsh L
PRF

(64)

The latter is provided for the optimal coupling strength between the accelerating structure
and the RF input coupler (see [10] for more details).

If the bunches are not located on the crest of the accelerating wave, the beam loading effect
will also cause the phase slippage of the beam, which is described in “Appendix” E. The effect
of beam-induced phase slippage implies that the accelerating section has a maximum length,
limited to the case when the beam slips into a decelerating phase. It is important to note that
this effect occurs if the bunch is located off the crest of accelerating wave. A similar effect
will happen if the frequency of the RF generator changes during the operation. This leads to
an effective change of the phase velocity and leads to phase slippage if the particles move
with a speed close to the speed of light. A similar effect also occurs when beam energy is
varied by the phase jump technique.
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Fig. 46 Temporal profiles of the RF power (black) and beam energy in a TW accelerator with a filling time
of ~ 600 ns. The beam is injected during the steady-state regime at t � 1 μs (red) or during RF transient at t �
150 ns (blue)

4.2.2 Transient processes and acceleration of short bunches

Since beam loading effects are caused by the interaction between the beam and the accelerat-
ing structure, they do not happen simultaneously but are defined by transient processes inside
the structure. Therefore, it is important to understand the time frame of these processes.

In TW structures the transient time (or “filling time,” i.e., the time required to fill the
structure with the RF power) depends only on the structure length L and group velocity as:

τTW � L

βgrc
(65)

When the structure is not homogenous, i.e., the group velocity changes from cell to cell
as in constant gradient structures, this formula take the differential form dt � dz

βgr(z)c
, and

will require integration. For example, if the group velocity changes linearly from the input
cell βgr,in to the output cell βgr,out, Eq. (65) can be rewritten as:

τTW �
L · ln

(
βgr, out
βgr, in

)

c · (βgr, out − βgr, in
) (66)

The filling time is both the time required for the accelerating fields to build up inside the
cavity after turning on the RF generator, and for the beam loading effects to be established
when the beam is turned on. For example, Fig. 46 demonstrates the beam energy profile in a
generic accelerator with a filling time of ~ 600 ns. The RF power is applied at t � 0 and starts
to fill the structure, with a steady state achieved by the end of the filling. In one case (red),
the beam is injected at t � 1 μs (at steady state) and it requires another 600 ns for the beam
loading effect to take place, resulting in high-energy particles in the accelerated beam. In the
other case (blue), the beam is injected during the filling time of the structure, which allows
to smoothen the overshoot effect and eliminate contamination of high-energy particles.
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At the same time, this effect can be used to accelerate short bunches of high beam current
without the need to provide the amount of RF power that would otherwise be needed in the
steady-state regime (i.e., Ib·W ). As shown in Fig. 46, if the beam duration is shorter than the
fill time of the structure, the beam loading will not have the full effect and the beam will get
maximum energy even at high currents [126]. The formula to calculate the maximum current
that can be accelerated in the short pulse regime is provided by [127]:

Imax � PRF

Wmax
· τfill

τbunch
(67)

Although similar effects are observed in SW structures, their mechanism of filling with
RF power is different. In particular, the filling time depends on the loaded Q-factor of the
cavity. The loaded Q-factor takes into account the coupling of the external waveguide to the
cavity, and the balance of RF power that flows into the cavity, RF power that reflects from
the cavity, RF power that dissipates in the cavity walls and RF power that is radiated from
the cavity back into the coupler [128]:

1

QL
� 1

Q0
+

1

Qext
(68)

Here Q0 is the intrinsic quality factor of the cavity, described in Sect. 1, which accounts for
RF losses in the walls, and Qext is the external quality factor that takes into account radiation
from the cavity into the external circuit. The ratio of intrinsic and external Q-factors is called
the coupling strength χ :

χ � Q0

Qext
(69)

When a beam is not present, this balance is achieved when Qext � Q0 (χ � 1, so called,
critical coupling). However, when the beam is present, it takes a part of stored energy from
the cavity and changes the balance, so that the radiated power becomes smaller. To restore
this balance, the cavity must be overcoupled by the following value [58]:

χopt �
⎛

⎝ IB

2

√
rshL

PRF
+

√

1 +
I 2

B

4

rshL

PRF

⎞

⎠
2

(70)

At the same time, the RF power delivered to the cavity will depend on time as [10]:

Pcavi t y(t) � PRF

{
1 −

[(
1 − e− t

τ

) 2χ

1 + χ
− 1

]2
}

(71)

where the time decrement τ can be found as [27]:

τ � QL

π · fRF
� Q0

π(1 + χ) fRF
(72)

The actual filling time of an SW structure depends on the desirable level of RF fields
that needs to be achieved and is usually τSW � (2 3)·τ . This expression sometimes leads
to a false conclusion that by artificially increasing the coupling strength χ , it is possible to
reduce the filling time of the cavity and therefore make it more efficient. These considerations
not only do not take into account the reflected power that will be wasted due to the cavity
coupler mismatch, but also that over-coupled cavity (without proper beam loading, according
to Eq. (70)) will have a temporal field profile as shown in Fig. 47, which means that although
the operational values of the RF fields are achieved sooner, they continue to rise, leading to a
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Fig. 47 Comparison of cavity power dependence in critically coupled (black) and overcoupled (red) S-band
SW cavities with Q0 � 15,000 after turning on RF power. It is clearly seen that the power overshoot can be
significant and delay the expected steady-state regime. Note that in this example > 60% of the RF power is
reflected for the case χ � 10

power overshoot as well as beam energy overshoot if injected simultaneously with RF power.
However, if the cavity is optimally coupled, the beam loading will smoothen this overshoot.

4.2.3 Phase slippage and optimal injection phase

Despite the problem’s complexity, we can provide some important results from numerical
analysis that can help with the accelerating section’s design. Let us assume that the buncher
accelerates the beam to the velocity β0 that differs from the speed of light by several percent
and has a small phase length. Then, in long accelerating sections, the bunch phase will be
sliding toward the asymptotic phase ϕa that can be found with [23]:

sin ϕa � sin ϕ0 − 2π

A

√
1 − β0

1 + β0
(73)

In this case, it is possible to consider that the energy gain in the acceleration section will
be:

�γ ≈ AM
L

λ
· cos ϕa (74)

Obviously,γ max �AM·L/λ is the maximal energy that electrons can gain is the accelerating
section and �γ takes into account the bunch phase slip from the wave crest. Now, considering
the expression for the asymptotic phase (16) that was obtained earlier, it is possible to calculate
the energy under-gain due to the phase mismatch of the bunched beam:

�γ

γmax
�
√√√√1 −

(
sin ϕ0 − 2π

A

√
1 − β0

1 + β0

)2

(75)

Assuming that β0 is defined and corresponds to γ � 6, we can plot the energy under-gain
as a function of the bunch phase for different accelerating field amplitudes (Fig. 48). For large
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Fig. 48 Energy gain related to the maximum possible gain as a function of the γ � 6 bunch injection phase
for different amplitudes of the EM wave. This plot demonstrated the importance of a proper injection phase
selection for efficient acceleration

amplitudes, the most efficient acceleration occurs at the wave crest. A somewhat counter-
intuitive result is obtained for low field amplitudes, where the most efficient acceleration will
be achieved if the bunch is injected into the wave node (ϕ0 � π/2). For moderate amplitudes,
the optimal phases are located ahead of the crest (π /6 for A � 1.0, π/9 for A � 1.8, and π/18
for A � 3.0). Another conclusion is that the bunches with shorter phase lengths will have
smaller energy spread at the accelerator’s exit. Figure 48 can be used to calculate the phase
to energy spread transformation in βph � 1 sections.

4.2.4 Energy under-gain due to RF frequency mismatch

In the conclusion of this tutorial, we will consider another effect that is common in industrial
accelerators. In the previous sections, we considered that the frequency of the electromagnetic
wave is constant and stable. However, in practice, the RF generator can have a frequency
jitter or change frequency during operation due to temperature variations. Also, the frequency
of the accelerating structure itself can change due to thermal effects [129]. The frequency
change leads to a change in the EM wave’s phase velocity since the disk-loaded waveguide
has a dispersion [15]. The phase velocity change will lead to a shift of the electron bunch
relative to the EM wave and, therefore, to energy under-gain.

Let us estimate the value of the energy under-gain, assuming that A(z) � const. For ultra-
relativistic electrons, the phase slippage of the particles is negligible. Therefore, it is possible
to assume that the electrons’ velocity equals the phase velocity of the EM wave. In this case,
the asymptotic phase equals the injection phase, which is reasonable to assume as ϕ0 � 0. A
frequency mismatch can change the phase velocity to be either higher or lower than the speed
of light, but still constant along the accelerating waveguide. Since the particle will move with
β≈1, its phase will change linearly with the travelled distance as ϕ � ϕ0 + k1·z, where:

k1 � dϕ

dz
� k

(
1

βph
− 1

β

)
≈ k

(
1

βph
− 1

)
(76)
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For ϕ0 � 0, the energy gain can be calculated as

�γ � A · sin k1L

k1
� A · L

sin �ϕ

�ϕ
(77)

The phase slippage �ϕ can be estimated by calculating the dispersion of the accelerating
waveguide dβw/df. The accelerator section length can be expressed in phase units as:

ϕ � 2π L

βphλ
� 2π f

βphc
L (78)

And therefore:

dϕ

d f
� 2π L

βphc

(
1 − f

βph

dβph

d f

)
(79)

Or

�ϕ � 2π L

βphc

(
1 − f

βph

dβph

d f

)
� f (80)

In order to calculate the energy deviation δγ � (γ max − �γ )/γ max, we rewrite Eq. (77)
as:

δγ � 1 − sin�ϕ

�ϕ
≈ (�ϕ)2

6
� 1

6

[
2π L

βphc

(
1 − f

βph

dβph

d f

)
� f

]2

(81)

This allows us to estimate the effect of the RF frequency deviation on beam energy.

5 Summary

This tutorial review provided an in-depth review of the beam dynamics aspects of buncher
design for industrial-grade low-to-medium energy electron linacs from fundamentals and
theory to practical design tips. From ballistic pre-bunchers to constant and tapered veloc-
ity bunchers, various bunching techniques were covered. The phase space concept was
introduced in this tutorial, which provides a clear and illustrative demonstration of the
bunching process. Finally, the advanced practical topics such as energy spectrum quality,
beam/structure interaction, transient processes, and influence of bunching on the accelera-
tion process were demonstrated.

6 Conclusion

The complexity of accelerator design for industrial applications is usually underestimated.
Although the beam quality and other parameters of such accelerators are not as extreme as
those developed for scientific facilities, free-electron lasers or ion accelerators, industrial
machines have to be commercially efficient. Therefore, besides the required parameters, the
designer must account for the complexity and the cost efficiency of the accelerator. Moreover,
some novel industrial accelerator application set requirements for rapid beam variability,
system compactness or high throughput, which conventional machines cannot satisfy. In this
view, the development of new efficient industrial accelerators is an important problem.

One of the key elements of an industrial accelerator is its frontend that includes the injection
and bunching systems, which greatly define the accelerated beam parameters and linac per-
formance in general. Unfortunately, most of the available textbooks on electron linac design
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and even some accelerator designers devote minimal attention to electron beam bunching,
which can lead to low efficiency, low output, or low beam quality of the accelerated beam in
improperly designed machines. We hope that the theory provided in the tutorial, the expla-
nation of the phase portrait concept, and the detailed overview of different buncher concepts
and techniques, along with practical guidance for their design, will allow the reader to design
accelerators with improved parameters for the next generation of industrial applications.
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Appendix A: Beam compression in ballistic bunchers

After passing the resonator, the electron’s initial velocity vinj �
√

2q
m UDC will change,

depending on the time when it enters the RF field as:

v �
√

2q

m
(UDC + URF sin ωRFt0) (82)

And the time, required for the particle to pass the drift space, can be calculated as:

�t � L
√

2q
m UDC

(
1 + URF

UDC
sinωRFt0

) (83)

The RF voltage of the cavity must be less than the injection voltage URF < U inj. Otherwise,
it will decelerate the particles too much, and some of them will be rejected back to the gun.
In this case, using a relationship 1√

1+x
≈ 1 − x

2 [132], we can approximate the expression
(83) to:

�t � L

vinj

(
1 − URF

2UDC
sin ωRFt0

)
(84)
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Here, the RF voltage URF also includes the cavity’s transit-time factor, which accounts for
the RF phase change during the electron motion within the resonator [58]. By replacing time
with phase (ϕ � 2π t

TRF
� 2π tc

λ
), we can rewrite this equation as �ϕ � ϕ0 − r·sinϕ0, wherer

depends on the pre-buncher parameters and defines its compression efficiency, which can be
calculated by using Eq. (34).

To estimate the percentage of particles located within the bunch, we need to find the
original phase of the particle that arrived at the pre-buncher behind the crest ϕ0 < − π/2 but
now meets the most decelerated particle (ϕ0 � π/2)—point A in Fig. 18. This condition can
be described as:

ϕA − r · sin ϕA � π

2
− r (85)

Similarly, for the particle that arrived ahead of the negative crest ϕ0 >π/2 that reaches the
most accelerated particle (ϕ0 � −π/2) we can write:

ϕB − r · sin ϕB � −π

2
+ r (86)

And the bunched particle ratio will contain kN � (ϕB − ϕA)/2π particles. Unfortunately,
these equations are transcendent and do not have an analytical solution. Figure 19 presents
the plot of numerically calculated bunch phase lengths (�ϕ) and number of particles in in
the bunch (kN) for different values of parameter r.

Appendix B: Frequency of phase oscillations

If the electrons’ equilibrium phase is equal to π/2, then expression (13) can establish the
relationship between the particle’s phase and energy. In other cases, more general expressions
should be used. The speed of particle rotation along phase trajectories is defined by the
frequency of phase oscillations, which can be calculated by combining Eqs. (9)–(13) in the
form ϕ̈ + �2 sin ϕ � 0 and applying the small-amplitude approximations [7, 10, 25], which
results in the following expression [23]:

� � ωRF

√√√√√
A

√(
1 − β2

ph

)3

2πβph
sin ϕs (87)

The dependence of this frequency on the RF field amplitude for different phase velocities
is presented in Fig. 49 and demonstrates that the frequency of phase oscillations is comparable
with the EM field frequency. The frequency of oscillations grows with the field amplitude,
and for low phase velocities, it can become faster than the RF frequency. For the phase
velocities close to the speed of light (βph � 1), this frequency reduces to zero, which means
that no phase oscillations occur in the pure acceleration regime. Equation (87) is valid in
the assumption of small amplitude of phase oscillations. With an increase of oscillation
amplitude, their frequency is reduced and approaches zero near the separatrix.

For an equilibrium phase of ϕs � π/2, the dependence of phase oscillation frequency on
field amplitude can be defined by the coefficient [23]:

K ph �
√

cos
ψ

2
(88)

where ψ is the amplitude of phase oscillations. The expression assumes that phase oscilla-
tions are harmonic for all amplitudes. This assumption is valid for small amplitudes and is
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Fig. 49 Relative frequency of phase oscillation as a function of field amplitude and phase velocity

approximately valid for large amplitudes at phase velocities that are not very close to the
speed of light. In the general case, Kph is a complex function of multiple parameters, such as
field amplitude A, phase velocity, and electron phase [24], since the instantaneous frequency
in the top part of the trajectory is slower than for the lower part, as can be observed in Fig. 22.
This relativistic effect is related to the considerable variation of electron’s mass and velocity
in these two regions. However, the correction (88) is usually sufficient. By combining (87)
and (88), formula (35) can finally be derived.

Appendix C: Phase and velocity spread in waveguide bunchers

It is interesting to calculate when the maximum number of particles is bunched into the
minimum phase interval. This happens when the particles, initially equidistant from both
ends of the equilibrium phase (ϕ1 � π /2−�ϕ0 and ϕ2 � π /2 + �ϕ0 as shown in Fig. 22b),
simultaneously reach the same phase ϕ3 (as shown in Fig. 22c). For harmonic oscillations,
the relationship between these phases can be calculated as [24]:

�ϕ � 1

2
ϕ1 cos

(√
cos ϕ1

2

cos ϕ2
2

a cos
ϕ3

ϕ1

)
(89)

The numerical solution to this equation is presented in Fig. 19 (blue line).
Now we find the length of a bunching section (Lb) required to compress the bunch into a

specific phase width. This length is related to the equilibrium particle’s time-of-flight (t0) as
L � t0·βph·c. By applying Eq. (35), we can find the time of flight for a particle with initial
phase ϕ2. This time will be equal to the phase shift from ϕ2 to ϕ3, obtained by a combination
of (35) and (89):

t2 � a cos ϕ3
ϕ2

ωRF�Kph
(90)
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A particle with initial phase ϕ2 will enter the bunching section earlier than the equilibrium
particle by the time �t2 � ϕ2/ωRF, and will exit later by �t3 � ϕ3/ωRF. Therefore, the time
t2, defined by Eq. (90), is larger than t0 by the value of �t � �t2 − �t3 � ωRF(ϕ2 − ϕ3).
Finally, by combining these relations, it is possible to calculate the required length of the
buncher:

Lb

λ
� βph

2π

( r

�
− ϕ2 + ϕ3

)
(91)

Here the parameter r has a similar meaning as for pre-bunchers and is defined as [23]:

r � a cos ϕ3
ϕ2√

cos ϕ2
2

(92)

Its values can be found using Fig. 19 (blue line), while � can be found from (35).
During the electron bunching process, along with phase compression, energy spread also

develops. The highest energy spread is observed for particles with initial phases close to 0
and π. It can be estimated by the maximum and minimum values of the energies on the top
and bottom points of the separatrix at π/2 using formulas (13) and (17):

1 − βphβ√
1 − β2

− Aβph

2π
�
√

1 − β2
ph +

Aβph

2π
(93)

It is convenient to introduce the parameter a as:

a �
√

1 − β2
ph +

Aβph

2π
(94)

So that Eq. (93) takes the form of:

1 − βphβ � a
√

1 − β2 (95)

which is now can be solved for β:

β1,2 �
βph ±

√
β2

ph +
(
a2 − 1

)(
a2 + β2

ph

)

a2 + β2
ph

(96)

The difference between the two values of β characterizes the energy spread at the exit of
the buncher.

Similarly, we can calculate the buncher length and the energy spread for a buncher with
βph >β inj. First, we will calculate when the particle with the initial phase ϕ � π/2 returns to
the same phase after half a period of phase oscillations (Fig. 23c). By using Eq. (13), written
for the ϕ � π/2:

H1 � 1 − βphβ√
1 − β2

− Aβph

2π
(97)

Considering Eq. (87) for the phase oscillation amplitude of ψ � ϕ2 − π/2, it is easy to
calculate the latter:

ψ � a cos

⎡

⎣ 2π

Aβph

⎛

⎝
√

1 − β2
ph − 1 − βphβinj√

1 − β2
inj

⎞

⎠ + 1

⎤

⎦ (98)

123



  446 Page 66 of 73 Eur. Phys. J. Plus         (2021) 136:446 

The time of flight for the considered particle is half of the phase oscillation period and is
equal to t1 � T

2 � π
ωRFωph

, and the buncher length can be calculated as:

Lb

λ
�
√√√√√

πβ2
ph

2Acos ψ
2

(
1 − β2

ph

)3/2 (99)

The same methodology allows us to calculate the energy gain of this particle as we used
for (96):

βout �
βph +

√
β2

ph +
(
b2 − 1

)(
b2 + β2

ph

)

b2 + β2
ph

(100)

b � 1 − βphβinj√
1 − β2

inj

(101)

Appendix D: Parameters choice in Lomnev’s buncher design approach

Let us demonstrate the optimization process with an example of a low-power buncher design
with DC injection at 50 keV. The starting phase velocity is chosen to match this energy (βph

� 0.413) and the amplitude AM � 0.52. In this case, the middle section is within the 15 to
30 cm range, with the whole buncher length of 60 cm. Figure 50 provides the dependences
of phase and energy spread on the coefficients m and n.

These results can be explained by looking at Eqs. (9) and (10). The value of βph defines the
intensity of phase oscillations and the rate of their attenuation. It can be seen from Eq. (48)
and Fig. 50 that for fast changes of velocity (∂βph/∂z), the oscillations quickly decay, and
the particles start to accelerate in an under-bunched configuration. If the accelerator length is
small, this strategy leads to large bunches with relatively small energy spread. However, this
method is very approximate. Figure 50, left, shows that there is a region for βph variation
where �ϕ is minimal. In this case, the phase velocity changes such that the particle with the
initial phase of ϕ � π shifts below the equilibrium phase at the middle section entrance and
above the equilibrium at its end. Another observation is that phase oscillations’ amplitude
also decays with amplitude growth (∂A/∂z). The amplitude variation changes the energy
spread more than the phase length, as shown in Fig. 50, left. In practice, the optimal n is
chosen to achieve the shortest phase length, and then m is optimized to improve the energy
spread.

Finally, the initial section of the buncher (I) can be designed. This section plays the most
significant role in the beam bunching, so the relationship between ∂βph/∂z and ∂A/∂z is
significant. For slow amplitude variation, phase bunching dominates the energy bunching.
The opposite scenario is realized for considerable amplitude variation. A reasonably uniform
phase and energy spread can be achieved for n and m, corresponding to the phase trajectories’
maximal stability during the capture. Such an initial part will provide the best initial conditions
for the following sections.

To study the influence of the phase velocity and amplitude variation, we provide the
results of beam dynamics simulations [26] with the buncher parameters designed according
to Eqs. (48), (49), and for the same linac that was described above. Both the middle and
end sections have the same parameters n � 0.25, m � 0.11. The results of these studies are
presented in Fig. 51. These plots allow making conclusions similar to those for the middle
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Fig. 50 Dependence of phase length (blue) and energy spread (read) on n and m parameters in Eqs. (48), (49)
for the middle section design. Left: m � 0.11. Right: n � 0.25. In both cases k1 � 0.6435, k2 � 0.7126

Fig. 51 Phase length (blue) and energy spread (read) dependence on n and m parameters in Eqs. (46), (47)
for the initial section design. Left: m � 0.11. Right: n � 0.25. In both cases k1 � 0.6435, k2 � 0.7126

section: small variations of βph(z) lead to short phase length of the bunch, while large phase
velocity variations lead to smaller energy spread. Since the velocity variation range in the
initial part should be small to provide the maximum capture, it is more important to choose
the proper amplitude variation A(z), since this function will influence the bunching process
in all following buncher sections. A sharp amplitude change leads to elongation of the bunch
(large �ϕ).

Since the phase velocity changes slowly in the buncher’s initial part, the outmost particles
with the phases −π/2 and 3π/2 and the particles near π/2 have amplitude and phase variations
close to zero. Therefore, it is not reasonable to increase the field amplitude until these particles
exit these phase regions. Due to the limited range of possible amplitudes in a DLS structure,
defined by the available RF power, it is reasonable to start amplitude variation at a point
when the electron with the initial phase ϕ � 3π/2 reaches a phase slightly exceeding π/2.
A further variation of A(z) should be performed in connection with phase velocity variation
βph(z) according to Eqs. (48), (49).

It is also worth mentioning the influence of the initial amplitude on the bunching efficiency,
as demonstrated in Fig. 52. In this case, the phase velocity profile remained the same for all
cases, and the amplitude linearly changed from A(0) at the beginning to A � 0.52 at 20 cm.
This plot demonstrates that the broader range of amplitude variation improves the bunching
properties of the buncher. For smaller initial values of the amplitude, the energy spread
becomes smaller. Smaller amplitudes are also beneficial for the capture ratio. Simultaneously,
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Fig. 52 Dependence of phase length (blue) and energy spread (red) on the field amplitude at the beginning of
the bunching section (I) A(z � 0)

operation at low-fields does not increase the overall buncher length since it is possible to move
the phase oscillations to the region of smaller ϕ, where the decay is faster.

Appendix E: Phase shift caused by the beam loading effect

If the bunches are not located on the crest of the accelerating wave, there will be a phase
difference between this field and the wake field, which will result in a change in the phase
velocity of the resulting wave. This case is illustrated in Fig. 53 as a representation of the

field vector sum (called phasor). Here
−→
Eeff � −→

ERF +
−−−→
Ebeam or Eeffeiψ � ERFeiϕ − Ebeam.

Since the wake field phase always follows the beam, its complex amplitude will always have
a negative real value. This plot demonstrates that beam loading leads to a phase shift of the
effective accelerating field by a value of χ � ψ−ϕ.

Since ERF(z) � ERF(0)e−αz and d ERF
dz � −αERF, it is possible to write the equation for

the effective field as:

d Eeff

dz
� −α(Eeff + I · rsh cos ψ) (102)

Fig. 53 Vector diagram (phasor) of accelerating (blue), wake (red) and the resulting (black) fields. ϕ corre-
sponds to the phase of the RF wave, relative to the bunch, and ψ to the resulting wave. The wake field phase
is always decelerating and follows the bunch center
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Eeff
dψ

dz
� α · I · rsh sin ψ (103)

By combining these two equations, it is possible to write the following differential equa-
tion:

d2ψ

dz2

dψ
dz

− 2 cot ψ · dψ

dz
� α (104)

which can be integrated according to the initial conditions Eeff(0) � ERF(0) � E0 and
ψ(0) � ϕ:

dψ

dz
� αr sh Ib

E0
· sin2 ψ

sin ϕ
eαz (105)

This demonstrates that the effective phase ψ is not constant during acceleration, even
when the phase of the RF field is constant. Since dψ/dz is proportional to the beam current,
this value is called phase slippage due to beam loading. This phase slippage is different from
that caused by the difference in phase and particle velocities that was considered in Chapter 2.
The effect of beam loading phase slippage can be converted to an equivalent change of phase
velocity. To do that, we need to rewrite Eq. (8) as:

dψ

dz
� k

(
1

βph + �βph
− 1

β

)
≈ k

(
1

βph
− 1

β
− �βph

β2
ph

)
� −k

�βph

β2
ph

(106)

Since the phase velocity of the wake field is equal to the beam velocity as discussed above.
Here k is the wave number. By comparing (105) and (106), we can write the expression for
the effective phase velocity change due to beam loading:

�βph

β2
ph

� −αrsh Ib

k E0
· sin2 ψ

sin ϕ
eαz (107)

This equation can be integrated with the same initial conditions to obtain the function of
the phase change:

cot ψ � cot ϕ − Ib · rsh

E0 · sin ϕ

(
1 − eαz) (108)

If ϕ ��0 the phase slippage can eventually reach the value ψ � π/2, which defines the
length of the accelerating section after which acceleration ceases. For lengths beyond this
value, the beam will slip into decelerating phase. This length can be obtained by applying ψ

� π/2 in Eq. (108):

Lmax � 1

α
ln

(
1 +

E0 · cos ϕ

Ib · rsh

)
(109)

The existence of a maximum length means the beam can reach only a limited voltage gain
in such an accelerating section and that a part of the RF power will always be unused and
will go into the load. This unused part of the RF power can be found as [23]:

Therefore, a field approach allows more accurate description of the processes in acceler-
ating structures due to beam loading: the equivalent phase velocity change, phase slippage,
power efficiency, and transient behavior. Similar effects occur due to the RF frequency change.

Pload � 1

2α · rsh
E2

eff(Lmax) � E2
0 · sin2 ϕ

2α · rsh

[
1 + E0·cos ϕ

Ib ·rsh

]2 � PRF · sin2 ϕ
[
1 +
√

2α·PRF
rsh

cos ϕ
Ib ·
]2 (110)
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