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Abstract In the present paper, reported literature data on the grain-size dependence of resis-
tivity of Ni and Cu are critically evaluated by two conceptually different methods. One is the
phenomenological approach of Andrews (Phys. Lett. 19: 558, 1965) according to which in a
polycrystalline metal there is a resistivity contribution inversely proportional to the average
grain diameter, the proportionality constant defined as the Andrews parameter A. The other
method is the customary Mayadas–Shatzkes (MS) model (Phys Rev B 1: 1382, 1970) yield-
ing a grain-boundary reflection coefficient R. During the analysis, special care was taken to
rely only on data for which the surface scattering resistivity contribution was definitely neg-
ligibly small and the grain size was determined by direct microscopy imaging. By sorting out
with this analysis the most reliable grain-size-dependent resistivity data for polycrystalline
Ni and Cu metals with random grain boundaries, we have then derived the current best room-
temperature values of the Andrews parameter A, the specific grain-boundary resistivity and
the reflection coefficient R. We have also found a fairly good relation between the parameters
A and R and compared the experimental values with their theoretical estimates reported in the
literature. Then, the conceptual differences between the two approaches are discussed and
the deficiencies of the MS model, especially in connection with the validity of Matthiessen’s
rule, are highlighted. A major conclusion is that by the Andrews method one can derive a
model-independent reliable parameter characterizing the grain-boundary contribution to the
resistivity of metals.

1 Introduction

The demand for the continuous downscaling of integrated circuits provides a permanent
driving force for deepening our understanding of the resistivity of metals, especially Cu
which is mainly used for fabricating interconnect lines. This well explains the recent interest
in studying, both experimentally and theoretically, the contributions to the resistivity of Cu
metal [1–4], although in search for alternative metals, general considerations have been
extended to several other metals as well [5].
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An inevitable resistivity contribution from surface scattering effects in finite-size con-
ductors such as thin films and wires, towards which currently used interconnect lines tend
to approach, has long been recognized experimentally and has been incorporated into the
model elaborated by Fuchs [6] and Sondheimer [7] and later further refined by including also
surface roughness effects [8–11]. The Fuchs–Sondheimer (FS) model predicts a resistivity
increase from surface scattering effects which is roughly proportional to the inverse of the
film thickness or the wire diameter. Below a certain cross-sectional size of the interconnect
lines, this geometrical size effect always contributes to the wire resistivity and its magnitude
can only be controlled by the degree of specular reflection at the outer surfaces of the wire,
mainly determined by the surface roughness. In recent decades, there has been a progress in
treating the surface scattering in the frame of several quantum versions of the FS model which
were summarized by Munoz and Arenas [2]. These authors have even further advanced the
lastly developed quantum FS model by removing the constraint of any adjustable parameter
and by using instead the currently available almost atomic-resolution surface roughness data
from experiments.

In polycrystalline materials, there are, furthermore, also internal surfaces mainly in the
form of grain boundaries. As any kind of lattice defects, also these two-dimensional lattice
imperfections give a contribution to the resistivity since they represent additional scattering
centers for the electrons carrying the current in metallic conductors [12].

A grain boundary constitutes a significant obstacle along the motion of the electrons. This is
because the crystal lattice orientation with respect to the wave vector of the incoming electron
is different on both sides of the grain boundary [12], so the electron should unavoidably
undergo an appreciable scattering event when impinging on a grain boundary. Therefore, the
smaller the grain size, the more grain boundaries are present in a crystalline material and,
then, the larger the resistivity is. Interconnect lines are predominantly produced via atom-
by-atom deposition processes such as sputtering, evaporation or electrodeposition. On the
other hand, it has long been known that such deposits typically exhibit an average lateral
grain size in the submicron range [13]. Thus, a significant resistivity contribution may also
arise due to the large amount of grain boundaries as a consequence of the small grain size
in these nanocrystalline (nc) metals. It is, therefore, inevitable to gather information on the
magnitude of the grain-boundary contribution to the total resistivity.

The grain-boundary contribution to the resistivity has been usually evaluated by the clas-
sical Mayadas–Shatzkes (MS) model [14] yielding a grain-boundary reflection coefficient
(R). The other approach to the grain-boundary resistivity derives from the observation of
Andrews [15] who demonstrated that in a polycrystalline metal, there is a resistivity con-
tribution (ρGB) proportional to the grain-boundary surface area per unit volume. Andrews
defined the proportionality constant as the specific grain-boundary resistivity ρSGBR which,
according to stereological considerations, is inversely proportional to the average grain diam-
eter d. In a recent paper [16], when analyzing the resistivity data for nc-Ni metal samples
with various grain sizes, we have introduced an Andrews parameter A via the relation ρSGBR

� A/d. The frameworks of the grain-boundary resistivity analysis of reported experimen-
tal grain-size-dependent resistivity data by the two approaches (Andrews method and MS
model) will be described in more detail in “Appendix A” where the connection between the
Andrews parameter A and the grain-boundary reflection coefficient R will also be discussed.

Unfortunately, when reviewing relevant data, one can find a very large scatter of the
reported parameters derived for characterizing the grain-boundary contribution to the resis-
tivity in metals. Therefore, one purpose of the present paper is (1) to carry out a systematic
analysis of the reported grain-size dependence of the resistivity data on two selected metals,
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namely Ni and Cu and (2) to point out the sources of error which may have caused the fairly
large scatter of the reported grain-boundary resistivity values.

Furthermore, particular attention will be paid to analyzing each data set by using both above
mentioned approaches (the MS model [14] and the Andrews method [15]). A comparison of
the grain-boundary resistivity parameters derived by these two approaches for a given metal
(grain-boundary reflection coefficient R and Andrews parameter A, respectively) has not yet
been made although this might greatly help us better identify the virtues and weaknesses of
the two approaches. It will turn out from this comparison that whereas the Andrews method
yields in a very straightforward manner a well-defined experimental parameter value for
characterizing the grain-boundary contribution to the resistivity, the application of the very
popular MS model [14] has not always been satisfactorily performed as pointed out already
by Sambles [17] and this fact may have also contributed to the large scatter of available
relevant R data for a given metal.

Therefore, for both metals, we will separately consider reported data for thin films and
massive samples, the latter ones having macroscopic dimensions (at least in the micrometer
range in every direction such as, e.g., typical for electrodeposited foils) so that the surface
scattering effects can be safely neglected which is not always the case for thin films. As to the
thin film data, they will be critically discussed and those data will only be included in the pro-
cess of evaluating the grain-boundary resistivity parameters for which we can be convinced
that the reported experimental results contain at most a negligibly small contribution from
surface scattering effects to the measured resistivity. This is because we are interested in this
paper in the resistivity contribution of a metal due to grain boundaries only. Furthermore,
it should be noted that the resistivity results to be analyzed were mostly obtained on poly-
crystalline samples. Therefore, the derived parameters refer to the grain-boundary resistivity
contribution averaged over all type and orientation of grain boundaries, i.e., these parameters
characterize the scattering properties of so-called random grain boundaries. Where data are
available for a specific type of grain boundary, we will mention it explicitly.

Another important issue is the microstructure evaluation method since, as pointed out in a
recent paper [16] and further elucidated in “Appendix B”, from the viewpoint of the electrical
transport, the relevant parameter is the mean grain size d obtained from directly imaging the
grains by, e.g., transmission electron microscopy (TEM) or electron back-scattering diffrac-
tion (EBSD) techniques. Therefore, in the main part of the paper, only those reported results
will be discussed where the grain size determined by such imaging methods was reported,
whereas an analysis of reports where X-ray diffraction (XRD) was only used for structural
characterization will follow in “Appendix B”.

It is also noted that there are several conceptual difficulties with the classical MS model
[14] which were raised in the literature already long time ago [18–20] and also more recently
by Munoz and Arenas [2] which authors have also elaborated a quantum theory of electron
scattering in the presence of grain boundaries. Nevertheless, we will rely on the classical
form of the MS theory since the vast majority of experimental results on grain-boundary
resistivity parameters have been evaluated in this model and we will often use the reported
MS parameters for reconstructing the evolution of resistivity with grain size if these data have
not been explicitly included in the report considered. A critical discussion of the classical MS
model including the conceptual difficulties of the model assumptions and the controversies
arising from the model will be presented in a separate section.

It is believed that the present analysis of the grain-size dependence of the resistivity data
for the two selected metals (Ni and Cu) will open up the way to collect more reliable data
for all other metals along the same line which then can be used as a proper basis for testing
theoretical models for calculating the grain-boundary contribution to the resistivity.
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The paper is organized as follows. In Sect. 2, available experimental data sets will be
analyzed for Ni and Cu metals by using both data analysis approaches (Andrews method and
MS model). The procedure will be that we shall start with the discussion of those reports
where direct resistivity (ρ) vs. grain size (d) size data were given. Then, we shall examine
works in which some deduced parameters were only given and will attempt to reconstruct the
original experimental ρexp(d) data sets from which the parameter extraction had been carried
out. Section 3 is devoted to comparing the parameters of the two approaches with each other
for a given metal and separately both grain-boundary resistivity parameters (A and R) for each
of the two metals Ni and Cu. In Sect. 4, the extracted experimental grain-boundary resistivity
parameters of Ni and Cu will be confronted with the results of theoretical calculations of the
specific grain-boundary resistivity for various types of grain boundaries for these two metals.
Some general comments with criticism will be given on the two data evaluation approaches
in Sect. 5 where some open issues will also be mentioned. A summary will then be given in
Sect. 6.

In “Appendix A”, the Andrews method and the MS model elaborated to deduce the
contribution of grain boundaries to the resistivity will be introduced and the relation between
their parameters will be discussed. In “Appendix B”, a comparison of the microstructural
parameters by TEM/EBSD and XRD will be made and those experimental reports will be
evaluated where only the XRD crystallite size x was provided. In “Appendix C”, an attempt
will be made to estimate the maximum resistivity which can be achieved in nc-Ni and nc-Cu
at the smallest grain sizes.

2 Evaluation of available grain-size-dependent resistivity data by the two approaches

2.1 Nickel

2.1.1 Ni resistivity data evaluated by the Andrews method

The currently available resistivity data for nc-Ni samples for which the grain sizes (d) were
determined by TEM imaging are displayed in Fig. 1. The data reported in Ref. [16] and
Refs. [21–25] were obtained on electrodeposited nc-Ni samples. For these data, an analysis
according to the Andrews method was performed in Ref. [16] by fitting to Eq. (6) of “Appendix
A” of the present paper. For the fitting, the standard value ρbulk(Ni;300 K) � 7.24 μ� cm [26]
was used for bulk Ni resistivity and the fit yielded for the Andrews parameter A(Ni;300 K)
� 14.7×10–16 �m2 [16]. The fit is displayed in Fig. 1 by the thin solid line extending from
10 nm up to the highest grain size.

After publishing Ref. [16], we have found further literature data for the grain-size depen-
dence of Ni obtained on thin films. Tochitskii and Belyavskii [27] investigated the room-
temperature resistivity of 120-nm-thick evaporated Ni films by varying the grain size with
substrate temperature during deposition or by gradually annealing the samples and the grain
size d was determined by TEM. By plotting the resistivity as a function of the inverse
grain size, i.e., according to the Andrews method (see “Appendix A.1”, Eq. 6), they derived
A(Ni;300 K) � 14.8×10–16 �m2 and the corresponding fit function is indicated in Fig. 1 by
the thick solid line over their grain size range (7 to 75 nm) which completely overlaps with
the fit function obtained for the electrodeposited nc-Ni data (thin solid line over the whole
grain size range).

We have evaluated also the data of de Vries [28] who investigated the resistivity of evap-
orated Ni thin films with various thicknesses from 10 to 80 nm both in the as-deposited and
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Fig. 1 Resistivity ρ at room temperature for Ni as a function of the grain size d. The thin solid line extending
over the whole grain size range represents the fit according to the Andrews method to Eq. (6) with fixed ρbulk
� 7.24 μ� cm and with fitted value A � 14.7×10–16 �m2 for the data of Ref. [16] and Refs. [21–25].
The thick solid line represents the fit result of Ref. [27] on Ni thin films with A � 14.8×10–16 �m2 in the
investigated grain-size range (7 to 75 nm). The solid circles are the experimental data of Ref. [28] on annealed
Ni thin films

annealed state (400 °C, 30 min in vacuum) as a function of temperature from 4 to 320 K.
To prevent oxidation and gas adsorption at the film surface, a 20-nm-thick protecting SiO2

layer was deposited in situ on top of the samples which is of great importance for the thinner
films studied. The grain size d was evaluated by TEM and although no direct grain size data
were reported, it was noted that for the annealed films the grain size was found to be 2.1
times the film thickness (for the as-deposited state, no quantitative data for the grain size
were given). The reported room-temperature ρexp(d) data for the annealed films of de Vries
[28] are displayed in Fig. 1 by the solid circles which match very well all the other data [16,
21–25, 27].

Although the data for the electrodeposited nc-Ni samples show a rather large scatter, it is
evident that a fit to these data (thin solid line) matches perfectly with the fit result from Ref.
[27] and the data points of Ref. [28] are also well compatible with these fit results. Therefore,
we can ascertain that the fit result A(Ni;300 K) � 14.7×10–16 �m2 properly represents the
best average value for the Andrews parameter characterizing the grain-boundary contribution
to the resistivity in polycrystalline Ni metal with random grain boundaries at room temper-
ature. Due to the good match of the nc-Ni thin film data [27, 28] with the average of the
electrodeposited nc-Ni data [16, 21–25] also suggests that the actual error of the A(Ni;300 K)
value is much less than indicated by the large scatter of the data in Fig. 1 and we may estimate
this error to be about±10%. The reliability of the above average A(Ni;300 K) value is further
justified by the fact that it was derived from the results of four independent laboratories (Erb
and coworkers [21, 25], Bakonyi and coworkers [22–24], Tochitskii and Belyavskii [27] and
de Vries [28]).
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There are numerous further reports on the resistivity of Ni thin films (see, e.g., the review
by Angadi [29]) which are not considered here individually. This is because the results are
mostly not presented in the form of resistivity vs. grain size data, but rather just some extracted
parameters (mostly grain-boundary reflection coefficient R) are given or the structural char-
acterization was performed by XRD only and, therefore, their discussion will appear in
“Appendix B”. Apart from the effect of possible gaseous impurities during thin film deposi-
tion on the resistivity as discussed, e.g., in Ref. [30], for very thin films also the geometrical
size effect comes into play and the evaluation was not always carefully carried out which
may have often led to incorrect deduced data as pointed out by Sambles [17].

It is noted that according to Eq. (6), ρGB � A/d predicts an extremely large resistivity for
very small grain sizes what is physically unrealistic. Therefore, in “Appendix C” we shall
make an estimate of the maximum possible room-temperature resistivity of Ni metal on the
basis of the above derived A value.

As to the temperature dependence of the Andrews parameter A, we have analyzed the
resistivity data for the annealed Ni films as reported by de Vries [28] for various temperatures.
By using his reported resistivity data as a function of the grain size, we deduced the following
values for the Andrews parameter: A(Ni;300 K) � 12.2×10–16 �m2, A(Ni;77 K) � 11.5×
10–16 �m2 and A(Ni;4 K) � 10.5×10–16 �m2. These data indicate an increase of A(Ni) by
about 10% from 4 to 77 K and by about 16% from 4 to 300 K. Since de Vries [28] actually
reported the temperature dependence of resistivity for various grain sizes, the dependence of
A(Ni) on temperature could also be traced out in detail from these data.

2.1.2 Ni resistivity data evaluated by the Mayadas–Shatzkes model

As already mentioned above, numerous studies have been reported on the resistivity of Ni
thin films and in most of these studies, a value of the grain-boundary reflection coefficient R
was also deduced in the framework of MS model [14]. However, there is a very large scatter
of the reported R(Ni) values ranging from 0.18 to 0.98 (see, e.g., the review by Angadi [29]
and references therein). Since by definition 0 < R < 1, such a broad range of the R values does
not provide any useful parameter if we want to compare the grain-boundary contributions of
different metals or the experimental data for a given metal to theoretically derived relevant
values. Therefore, we should look for possible sources of error resulting in the large scatter
of the R values reported for Ni metal and to deduce a reliable R(Ni) value if possible.

Our starting point for evaluating the grain-boundary reflection coefficient R of Ni metal in
the framework of the classical MS model [14] is the known experimental grain-size depen-
dence of the resistivity of polycrystalline Ni metal with random grain boundaries. This ρexp(d)
dependence was established in Sect. 2.1.1 and can be described by the average Andrews
parameter A(Ni;300 K) � 14.7×10–16 �m2 according to Eq. (6) where the total resistivity
ρA in the Andrews approach is given as ρA � ρbulk + A/d with the standard bulk resistivity
ρbulk(Ni;300 K) � 7.24 μ� cm [26]. This grain-size-dependent average resistivity of Ni
metal, ρexp(d), is given in Fig. 1 by the thin solid line.

The background and assumptions of the MS model [14] are summarized in detail in
“Appendix A.2”. Here we recall only that in the MS model [14] the resistivity ρMS(d)
depends on the grain size d through a parameter α only where α � (λbulk/d) R/(1 – R) as
defined by Eq. (10). In the last expression, ρbulk is the electron mean free path (emfp) in the
bulk state at the temperature of the experiment and R is the electron reflection coefficient
from a grain-boundary wall and R depends on the scattering potential of the grain boundary.
The simplest way of deriving the reflection coefficient R from the experimental ρexp(d)
data is to calculate the ρMS(d) resistivity as a function of the grain size d for various R
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values with constant λbulk corresponding to the mean free path of the metal under study at
the measurement temperature. These calculated ρMS(d) functions are then compared to the
measured ρexp(d) curves to find the R value for which ρMS(d) matches best the ρexp(d) data.

The most serious complication entering the reflection coefficient evaluation by the MS
model [14] is that, according to Eq. (10), the value of the electron mean free path (λbulk)
also determines the calculated value of the resistivity ρMS(d) for a given R value. When
reviewing the literature studies where R data were reported for Ni, it turns out that widely
different values were used for λbulk(Ni;300 K). The real value of this parameter is a critical
issue even today. Eq. (2.91) of the book of Ashcroft and Mermin [31] provides a formula
for the free-electron estimate of the electron mean free path from which, with the electron
density parameter they gave for Fe and with ρbulk(Ni,300 K) � 7.24 μ� cm [26], we get
λbulk(Ni;300 K) � 5.71 nm. This free-electron estimate is fairly close to the λbulk(Ni;300 K)
� 5.62 nm value derived from the calculated product [ρbulk λbulk]Ni � 4.07×10–16 �m2

of Gall [5]. The temperature-independent product [ρbulkλbulk]Ni was derived [5] from the
bulk electronic structure of Ni obtained from first-principles density-functional calculations
which correctly account for the anisotropy in the Fermi surface as well as the variation in the
electron velocity as a function of the electron wave vector.

Experimentally, the electron mean free path is determined, e.g., by measurements of the
resistivity of thin films in the thickness range where surface scattering is expected to be
significant and then applying the FS model [6, 7]. As already noticed by Sambles [17], this is
not a straightforward procedure since the unknown value of the surface scattering specularity
parameter enters the FS fit [6, 7] as well as simultaneously the influence of grain-boundary
scattering being usually significant for thin films and treated by the MS model [14] should
also be taken into account.

In order to simplify the problem, Milosevic et al. [32] made efforts to produce epitaxial Ni
thin films which were practically single crystals since in this case one gets rid of at least the
grain-boundary resistivity contribution. From this analysis, these authors [32] have derived
the mean free path values λbulk(Ni;295 K) � 26±2 nm and λbulk(Ni;77 K) � 350±20 nm.
In a more recent paper, Gall [33] has made serious considerations about the electron mean
free path and has come to the conclusion that the large discrepancy (a factor of about 4.5)
between the calculated and experimental value of λbulk(Ni) at a given temperature may
be due to a breakdown of the classical FS [6, 7] transport model for small dimensions or
imperfections of the experimental samples including crystalline defects, surface roughness, or
variations in the surface scattering specularity. Concerning the shortcomings of the classical
transport models [6, 7, 14], Gall [33] noted that these lead to an overestimation of the
λbulk value when applying the FS model to fitting the experimental ρ vs. layer thickness
data for small layer thicknesses. Therefore, the effective mean free path (λeff) determined
from such experiments is not necessarily an actual mean free path of the bulk metal, but
just a fitting parameter which describes properly the observed thickness dependence of the
resistivity. These difficulties were discussed also by Munoz and Arenas [2] when refining
the quantum mechanical extension of the FS model [6, 7] and relying on the experimental
surface roughness data.

After these introductory considerations, we will now evaluate the reflection coefficient R
of grain boundaries in Ni metal by carrying out an MS fit to the experimental ρexp(d) data.
As noted above, the average experimental resistivity of Ni metal, ρexp, depends on the grain
size d as represented by Eq. (6) ρexp � ρbulk + A/d with parameters ρbulk(Ni;300 K) � 7.24
μ� cm [26] and A(Ni;300 K) � 14.7×10–16 �m2. These ρexp(d) data represented by Eq.
(6) with the above two parameter values are displayed in Fig. 2 by the solid line.
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Fig. 2 Resistivity ρ at room temperature for Ni as a function of the grain size d. The solid line represents
the average experimental data ρexp(d) from a fit according to the Andrews method [15] to Eq. (6) with fixed
ρbulk � 7.24 μ� cm [26] and with fitted value A � 14.7×10–16 �m2 for the data presented in Fig. 1. The
open circles represent the ρMS(d) data according to Eq. (8) of the MS model [14] for a calculated electron
mean free path (emfp) value of 5.62 nm [5] with R � 0.717, which match very well the average experimental
data. The dash-dot line and the thin dashed line represent ρMS(d) curves for R � 0.6 and 0.8, respectively, for
the same emfp value. The arrow indicates the direction of the increase of R for a fixed emfp value. The open
triangles demonstrate that the average experimental data can be very well fitted to the MS model [14] also for
the experimental emfp value of 26 nm [32] if the reflection coefficient is chosen as R � 0.355

For a fit of the average resistivity vs. grain size data (ρexp) to the MS model [14], we
have calculated several ρMS(d) curves corresponding to Eq. (8) with different R values
first by using the theoretical value λbulk(Ni;300 K) � 5.62 nm by Gall [5]. One can see
in Fig. 2 that the ρMS(d) data with R � 0.717 (open circles) perfectly superimpose on the
solid line representing the average of the experimental data ρexp(d) for Ni. Therefore, the
grain-boundary reflection coefficient for Ni is found to be R � 0.717 at room temperature by
using the calculated mean free path of Gall [5]. We have carried out the same MS fit by using
the experimental mean free path of Ni λbulk(Ni;295 K) � 26 nm as given by Milosevic et al.
[32] and the resulting ρMS(d) data with R � 0.355 (open triangles) also nicely agree with
both the average experimental resistivity data ρexp (solid line) and the ρMS(d) data obtained
with the theoretical electron mean free path value (open circles).

With reference to Fig. 2, we can conclude that both the MS model [14] and the Andrews
method [15] describe equally well quantitatively the grain-size dependence of the resistivity
for Ni metal for various chosen values of the mean free path in the MS model. Nevertheless,
we should keep in mind that the fit parameters of the two data evaluation approaches have
different physical meanings and we will look for a relation between the Andrews parameter
A and the reflection coefficient R which will be done in “Appendix A.3”.

We can also infer from Fig. 2 that different assumed values of the electron mean free
path obviously lead to different R values (for the current choices of the mean free path, the
R values differ by a factor of about 2). We have also carried out a series of MS fits to the
average room-temperature experimental data ρexp(d) of Ni by using λ values ranging from
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Fig. 3 Dependence of the grain-boundary reflection coefficient R of Ni metal (open circles) on the assumed
value of the electron mean free path λ from fitting the average room-temperature resistivity data ρexp(d) for
Ni with the MS model [14]. The solid line over the R vs. λ data is just an empirical fit corresponding to the
relation R � − 0.2344·ln(λ) + 1.1212 where λ is taken in nanometer units

5 nm (close to the theoretically calculated value of Gall [5]) to 40 nm (somewhat beyond the
experimental value of Milosevic et al. [32]) and determined for each λ value the reflection
coefficient R for which the ρMS(d) curve matches the average experimental ρexp(d) data.

The dependence of the reflection coefficient R on the electron mean free path λ obtained
in this manner for Ni metal at room temperature is displayed in Fig. 3. There is a smooth
variation of R in a wide range as a function of λ and this variation can be described, just to
quantify it without any physical model, by the relation R � -0.2344·ln(λ) + 1.1212 where λ

is taken in nanometer units.
As was already noted, in previous studies of the grain-boundary scattering effect on the

resistivity of Ni, various electron mean free path values typically between the above two
extremes (λbulk(Ni;300 K) � 5.62 nm [5] and λbulk(Ni;295 K) � 26 nm [32]) were used.
Therefore, in view of the strong dependence of R on λbulk, these reported R values should be
considered with significant caution. Even from our average ρexp(d) data for Ni, we cannot
extract a correct value for R(Ni) until we cannot be sure about the real value of the electron
mean free path of bulk Ni.

As for the further literature data on the reflection coefficient of Ni metal, we will test first
the R(Ni,300 K) � 0.40 value reported by Tochitskii and Belyavskii [27] whose ρexp(d) data
for Ni films with a thickness of 120 nm completely agree with the reference experimental data
as is demonstrated in Fig. 1. These authors used λbulk(Ni;300 K) � 21.5 nm for carrying out
the MS fit to their resistivity data according to Eqs. (8)–(10). They have neglected any surface
scattering effects which is justified due to their high film thickness. When calculating the
R(Ni) value corresponding to this mean free path from the relation describing the dependence
of R on λ according to Fig. 3, we end up with exactly R(Ni,300 K) � 0.40. This shows the
consistency of the derived Andrews parameter and reflection coefficient data of Ref. [27]
although their derived R(Ni) value reflects only the arbitrary choice of the electron mean free
path. Since the experimental resistivity vs. grain size data of Tochitskii and Belyavskii [27]
match perfectly our reference data (see Fig. 1), the R(Ni) value of their samples is the same
as the reflection coefficient of random grain boundaries the actual value of which, however,
remains to depend on the choice of the electron mean free path of Ni.
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We note that since also the ρexp(d) data of de Vries [28] for the annealed Ni films fairly
well overlap with the reference data (see Fig. 1), the R(Ni) value of these films is expected
to have the same R(Ni) value. The reported result [28] was R(Ni) � 0.44 for the annealed
films due to the particular choice of the electron mean free path. The procedure of de Vries
[28] was that the temperature dependence of the resistivity from 4.2 K to 300 K was fitted
by using the MS model as given by Eqs. (8)–(10). It was mentioned that surface scattering
effects were found to be negligible. The electron mean free path λbulk(T ) at each measuring
temperature was calculated from the product [ρbulkλbulk]Ni � 8.17×10–16 �m2 assumed to
be temperature independent as is usually the case. By taking the standard ρbulk(Ni;300 K) �
7.24 μ� cm [26] value, the chosen product value corresponds to λbulk(Ni;300 K) � 11.3 nm.
With this electron mean free path, Fig. 3 suggests a reflection coefficient value of R(Ni) �
0.55 at room temperature, somewhat higher than deduced by de Vries [28] by relying on his
measured resistivity data over a large temperature range. Anyway, the uncertainty of R(Ni)
due to the unknown value of λbulk(Ni) remains further open.

We discuss briefly also the data of Islamgaliev et al. [34] who reported on a study of massive
Ni specimens which were first subjected to a severe plastic deformation procedure to reduce
the grain size and then gradually annealing to obtain various grain sizes. They evaluated the
grain size by TEM and measured the resistivity at 77 K at each annealing stage. No direct
grain size vs. resistivity data were given, they just reported a deduced value of R � 0.38 by
using λbulk(Ni;77 K) � 110 nm and ρbulk(Ni;77 K) � 0.72 μ� cm, the former derived from
the product [ρbulkλbulk]Ni � 8.17×10–16 �m2 and ρbulk(Ni;77 K) measured on a Ni sample
annealed at 1400 °C. By using the reported parameter values, we could reconstruct their
average resistivity data as a function of grain size and they were in relatively good agreement
with the resistivity data reported earlier for Ni at T � 77 K [21, 28] although in lack of
more details of the measured ρ (d) data of Ref. [34], we cannot extract more information.
Furthermore, similarly to the above discussed problem of the mean free path value of bulk
Ni at 300 K, we face the same situation at 77 K since the theoretically calculated value is
81.5 nm [5], the experimental value is 350 nm [32] and an intermediate value (110 nm) was
used by Islamgaliev et al. [34].

We could see above that the grain-boundary reflection coefficient of Ni can only deter-
mined via the classical MS model [14] if we shall have an exact value for the electron
mean free path of bulk Ni. By considering the available theoretical and experimental esti-
mates of λbulk(Ni;300 K), we could only establish a possible range for the R(Ni) value:
0.355≤R(Ni)≤0.717 even if we rely on the best average ρexp(d) data for Ni as determined
in the present paper. With reference to Fig. 2, it is clear that the even wider range of reported
R(Ni) values as mentioned at the beginning of this section may have occurred due to several
reasons. One evident reason comes from the various chosen values of the electron mean free
path. It is also clear that even for a fixed value of λbulk(Ni), if the measured resistivity for a
given grain size is larger than the reference ρexp(d) data represented by the solid line in Fig. 2,
the R(Ni) value from the MS fit will also be larger (and if the resistivity is smaller than the
reference ρexp(d) data, then the deduced R(Ni) value will also be smaller). It is well known
that any kind of impurities and an increased surface roughness contribute to an increase of
the resistivity. This is especially critical for thin films since the grain-boundary reflection
coefficients were mostly determined on such specimens. As pointed out by Sambles [17], the
evaluation of resistivity data for deriving the value of R(Ni) in the combined FS [6, 7] and
MS [14] models has not been always carried out with proper care. Furthermore, in addition
to emphasizing several aspects of the inadequacy of the classical FS and MS models, Munoz
and Arenas [2] also demonstrated that the application of these classical models can lead to
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ambiguous results in that several pairs of λ and R values give a MS fit of the experimental
data with the same accuracy.

It is noted finally that, as mentioned in the Introduction, any further reports on the resistivity
of Ni metal in which the grain size was not determined, only the crystallite size from XRD
experiment, will be discussed in “Appendix B”.

2.2 Copper

2.2.1 Cu resistivity data evaluated by the Andrews method

Andrews [15] investigated the grain-boundary contribution to the resistivity of on massive Cu
samples and derived a value for the specific grain-boundary contribution ρSGBR(Cu) with the
help of the formulae explained in “Appendix A.1”. The grain sizes being in the micrometer
range were determined by optical microscopy by not taking into account twin boundaries,
and the resistivity was measured at 4.2 K. Later, Andrews et al. [35] reported a refined value
ρSGBR(Cu;4.2 K) � 3.12×10–16 �m2 which can be converted, by using their proportionality
factor kGB � 2.7 in Eq. (3), to A(Cu,4.2 K) � 8.42×10–16 �m2.

Subsequently, there have been numerous studies for Cu mainly on thin film samples (see,
e.g., the review by Angadi [29]), most of which suffer from the same deficiencies as discussed
above for Ni thin films. Here, first we will rely on a recent study [1] in which the experimental
data were carefully analyzed and the results turn out to be in fairly good conformity with the
early findings of Andrews et al. [35]. Other results on Cu thin films and massive samples will
be considered thereafter only.

Sun et al. [1] reported a detailed study of the electrical resistivity of sputtered Cu thin films
with layer thicknesses in the range from about 27 to 158 nm and they have determined the
grain sizes by TEM by averaging over typically 500 to 1500 grains. The lateral grain size was
found to vary from about 35 to 425 nm, to some extent independently of the film thickness.
These authors performed the data analysis by various combinations and extensions of the
classical FS and MS models.

In this section, we shall analyze the data presented by Sun et al. [1] for Cu thin films by
the Andrews method [15] as described in “Appendix A.1” for evaluating the grain-boundary
contribution to the resistivity, similarly to the case of Ni in Sect. 2.1.1. The experimental data
of Sun et al. [1] are displayed in Fig. 4 for both 296 and 4.2 K. The inset shows the resistivity
results of another report (open triangles) for T � 273 K on sputtered nc-Cu films [36] with
grain sizes from TEM imaging. There is a relatively good match of the two independent data
sets (the difference being mainly due to the lower measurement temperature in Ref. [36]).

The solid lines in Fig. 4 obtained by fitting to Eq. (6) with fixed bulk Cu resistivity values
as specified in the figure caption describe very well the experimental data of Sun et al. [1] at
both temperatures. The normalized fit quality (NFQ) parameter provided by the Excel fitting
program as the square of the Pearson product moment correlation coefficient was fairly close
to unity in both cases (see caption to Fig. 4); the fit quality improved by less than 1% only
when the bulk resistivity was not fixed. By taking ρbulk(Cu;RT) � 1.72 μ� cm [26] and
ρbulk(Cu;4.2 K) � 0 μ� cm, we obtain the fit values as A(Cu,296 K) � 8.69×10–16 �m2

and A(Cu,4.2 K) � 7.22×10–16 �m2 for the experimental ρexp(d) data of Sun et al. [1]. For
the data of Fenn et al. [36], the same analysis with ρbulk(Cu;273 K) � 1.546 μ� cm [26]
yields A(Cu,273 K) � 8.77×10–16 �m2 (in the analysis, we have omitted the data for the
two smallest grain sizes since these refer to very thin films which were mentioned in Ref.
[36] to be eventually not continuous). The A(Cu,273 K) value for the Cu films of Ref. [36]
is in good agreement with the A(Cu,296 K) value on the Cu films of Ref. [1].
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Fig. 4 Resistivity ρ for sputtered Cu films as a function of the grain size d [1]. Key to symbols: open circles
(296 K); solid circles (4.2 K). The thick solid line represents a fit to Eq. (6) with fixed ρbulk(300 K) � 1.72
μ� cm value [26] and with fitted value A � 8.69×10–16 �m2 for the data at 296 K (normalized fit quality
parameter: NFQ � 0.968); the thin solid line represents a fit to Eq. (6) with fixed ρbulk(4.2 K) � 0 μ� cm and
with fitted value A � 7.22×10–16 �m2 for the data at 4.2 K (NFQ � 0.963). The dash-dot line represents
the resistivity data of Andrews et al. [35] obtained at 4.2 K on massive Cu samples with grain sizes from 30
to 100 μm when extrapolated to the nanometer grain-size range by using their A � 8.42×10–16 �m2 value.
The inset shows the data (open triangles) of another report on Cu films [36], being in good agreement with
the results of Sun et al. [1] by considering the difference in the measurement temperatures

Figure 4 reveals that the low-temperature data of Sun et al. [1] on thin films match fairly
well the dash-dot line representing the data of Andrews et al. [35] on massive Cu specimens
with A(Cu,4.2 K) � 8.42×10–16 �m2 if the latter data are extrapolated to the nanometer
grain-size range. This underlines, on the other hand, the conclusions of Sun et al. [1] in that
for their Cu films the grain-boundary scattering was the really dominant effect in influencing
the variation of resistivity with grain size and the surface scattering effects were practically
negligible even for the thinnest films. We can also conclude from the close quantitative
agreement of the low-temperature data of Sun et al. [1] and Andrews et al. [35] for a given
grain size and of the two corresponding A(Cu;4.2 K) values that the Cu thin films studied by
Sun et al. [1] were of high quality and free of the usual deficiencies, such as impurities and
large surface roughness, usually resulting in high resistivities of thin films.

We can also see that for the nc-Cu films investigated by Sun et al. [1], the A(Cu) value
increases by about 20% from 4.2 K to 296 K. It is noted that Andrews et al. [35] reported an
increase of A(Cu) by 20% when raising the temperature from 4.2 K to 85 K. We recall from
Sect. 2.1.1 that slightly smaller, but comparable increase of A(Ni) could be deduced from the
data of de Vries [28]. All these data indicate that there is a slight, but apparently measurable
temperature dependence of A for both Ni and Cu.
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Based on the good matching of the thin film data of Sun et al. [1] with the results of
Andrews et al. [35] on massive specimens at 4.2 K, we can consider the ρexp(d) data of Sun
et al. [1] for 296 K as well representing the real variation of the room-temperature resistivity
with grain size for Cu metal with random grain boundaries. This is further supported with
the good quantitative agreement of the Andrews parameter deduced from the data of Sun
et al. [1] at T � 296 K with that from the data of Fenn et al. [36] at T � 273 K. Therefore,
other reported results for the grain-size dependence of the resistivity of Cu will be discussed
with reference to the ρexp(d) data of Sun et al. [1] represented by the Andrews parameter
A(Cu,296 K) � 8.69×10–16 �m2.

We start with the resistivity results of Artunc and Öztürk [37] who established the grain size
of evaporated Cu films (thickness range: 17 to 301 nm) by TEM. The grain-size dependence
of the resistivity was found to agree fairly well for the as-deposited and annealed films as
Fig. 5 reveals (open triangles). Although the evolution of resistivity with grain size seems
to be very similar to that found by Sun et al. [1] whose results are considered as reference
ρexp(d) data for Cu and are represented by the thick solid line in Fig. 5, all the data of Ref.
[37] fall below the reference data.. The lower resistivity values of Ref. [37] for any given
grain size value can be related to the fact that these data could be fitted with the Andrews
method with good fit quality only by using a room-temperature resistivity of 1.51 μ� cm
for bulk Cu which is definitely smaller than the standard value (ρbulk(Cu;RT) � 1.72 μ� cm
[26]). It should be noted that the resistivity data of Artunc and Öztürk [37] at 100 K also
yielded a lower value for infinitely large grain sizes than the standard bulk value at that
temperature. A fit of Eq. (6) to the data of Artunc and Öztürk [37] yields a lower value
for the Andrews parameter [A(Cu,300 K) � 6.1×10–16 �m2] than the room-temperature
value A(Cu) � 8.69×10–16 �m2 derived from the reference ρexp(d) data for Cu. The lower
A(Cu) value from the data of Ref. [37] certainly comes partly from the fact that the Andrews
fit yields a too low bulk resistivity value which may be eventually from an underestimated
resistivity of these specimens.

Bruschi et al. [38] investigated evaporated Cu films with thicknesses 320 and 330 nm
both in the as-deposited and annealed states and determined the grain size by TEM. Their
data (open circles in Fig. 5) are somewhat above the reference ρexp(d) data, mainly because
of the larger fitted bulk resistivity (1.99 μ� cm) than the standard bulk value (the authors
ascribe the excess resistivity to the contribution of intragranular defects and impurities). On
the other hand, due to the apparently weaker dependence of the resistivity on grain size in
these samples, one can derive a much smaller value A(Cu,300 K) � 5.0×10–16 �m2 than
the reference value of A(Cu,296 K) � 8.69×10–16 �m2.

Riedel et al. [39] investigated evaporated Cu films with thicknesses ranging from 250
to 900 nm. The films were produced by chemical vapor deposition (CVD) from a metal-
organic precursor on Si wafers with various underlayers at a substrate temperature of 200
0C. The grain size established from TEM dark-field images ranged from 37 to 186 nm for
their films. They observed a linear dependence of ρexp(d) on 1/d from which the parameters
ρbulk(Cu;300 K) � 1.8 μ� cm and A(Cu,300 K) � 5.8×10–16 �m2 can be derived. The
evolution of the ρexp(d) data of Ref. [39] with grain size is displayed by the thin dashed line
in Fig. 5 and they are fairly close to, but somewhat below the reference ρexp(d) data.

Tochitskii and Belyavskii [27] reported an A(Cu,300 K) � 3.90×10–16 �m2 value for
evaporated Cu films with 90 nm thickness which were produced on substrates with various
temperatures or annealed after deposition in order to have a range of grain sizes. Their data
are represented by the thin solid line in Fig. 5 and they fall well below the reference ρexp(d)
data.
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Fig. 5 Room-temperature resistivity ρ for various physically deposited Cu films as a function of the grain size
d. Full circles are data at 296 K from Ref. [1] and the solid line represents a fit to Eq. (6) with fixed ρbulk �
1.72 μ� cm [26] and with fitted value A � 8.69×10–16 �m2 for these data. For the experimental data from
other studies, the end of the legend text provides the parameters of the Andrews fit according to Eq. (6) in the
same units as above. The thin dashed and solid lines represent the experimental data of Refs. [39] and [27],
respectively, over the investigated grain size range according to Eq. (6) with the reported parameter values

By looking at the data presented in Fig. 5, we can establish that the resistivity data of
other reported studies show a fairly similar evolution with grain size as the reference ρexp(d)
data of Sun et al. [1] although most of the former ones have a lower value for a given grain
size. We will come back to this point later, after discussing first the ρexp(d) data reported for
electrodeposited Cu layers [40–42] which are displayed in Fig. 6 where also the reference
ρexp(d) data obtained on evaporated Cu films [1] are included by the thick solid line.

Wu et al. [40] investigated narrow Cu strips with thicknesses in the range 100 to 300 nm
and widths ranging from 100 to 300 nm which were electrodeposited into patterned trenches.
The Cu strips were subsequently annealed at 250 °C for 30 s and the grain size was established
by focused ion-beam (FIB) imaging. The reported resistivity vs. grain size data displayed
by the large open diamond symbols in Fig. 6 are above the reference ρexp(d) line. From the
Andrews fit (thin line with small full diamond symbols), we obtain a resistivity ρbulk(Cu) �
1.91μ� cm for large grain sizes which is larger than the standard bulk value (1.72μ� cm [26],
whereas the Andrews parameter [A(Cu,300 K) � 9.7×10–16 �m2] is slightly higher than the
reference value [A(Cu,300 K) � 8.69×10–16 �m2]. It was noticed by Wu et al. [40] that there
was a resistivity contribution from sidewall surface scattering since the resistivity strongly
increased with decreasing strip width. This may partly explain their higher resistivities with
respect to the reference values although the authors have commented also on the possible
role of impurities which may have accumulated preferably in the grain boundaries upon
annealing and leading to higher grain-boundary resistivity contribution and also to a higher
A(Cu) value.

Woo [41] investigated the room-temperature resistivity of large-area electrodeposited Cu
layers with 25 μm thickness by using pulse-plating (PP) deposition. The grain size was
determined by TEM from dark-field images and the results are displayed in Fig. 6 by large
open squares. By performing the Andrews fit (thin line with small full square symbols), it
is surprising that whereas the resistivity for large grains (ρbulk(Cu) � 1.81 μ� cm) remains
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Fig. 6 Room-temperature resistivity ρ for various electrodeposited Cu films as a function of the grain size
d evaluated by TEM, EBSD or FIB imaging as indicated in the legend. The notations DC and PP refer to
direct-current and pulse-plating electrodeposition. The thick solid line represents the reference ρexp(d) data
at 296 K. The various data and their Andrews fits (thin lines with symbols) are discussed in the text

above the standard bulk Cu value, the Andrews parameter is extremely small [A(Cu) � 2.7×
10–16 �m2], it is less than one third of the reference value [A(Cu,300 K) � 8.69×10–16

�m2]. This indicates that the grain-boundary resistivity in these deposits is much smaller
than that of the average random grain boundaries in Cu.

After investigating in more detail the grain-boundary character distribution in these sam-
ples, Woo [41] came to the conclusion that the relatively small resistivity values at lower
grains sizes may be a result of a large fraction of such specific grain boundaries which are
usually termed as coincident site lattice (CSL) boundaries in which the two adjacent crys-
tallites share many common atomic positions, i.e., they are much more “ordered” than an
average random grain boundary. A larger degree of topological order in the grain boundary
naturally implies a lower resistivity contribution by the grain boundary. It has been, indeed,
pointed out by Nakamichi [43] via measurement of the grain-boundary resistivity of indi-
vidual grain boundaries in Al metal bicrystals that more ordered grain boundaries exhibit
a lower resistance than less ordered ones. Woo [41] found that by reducing the grain size,
the fraction of these special, more ordered grain boundaries increased in the investigated
samples. The presence of a large fraction of such more ordered boundaries then may explain
the much lower A(Cu) value obtained from these data.

Dela Pena and Roy [42] investigated the room-temperature resistivity for large area elec-
trodeposited Cu layers with 25 μm thickness and they determined the grain size by electron
backscatter diffraction (EBSD) imaging. Their results are displayed in Fig. 6 by large full
triangles and large open circles corresponding to samples produced by direct-current (DC)
plating and pulse plating (PP), respectively. It can be seen that at the same average grain size,
the PP samples exhibit lower resistivities. Both data sets could be well fitted with the Andrews
method according to the Eq. (6) as indicated by the thin lines with small full triangles and
circles, respectively, over the corresponding data points. The large-grain resistivity from the
fit was to be around 1.9 μ� cm for both the DC and PP samples, i.e., by about 0.2 μ� cm
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larger than the bulk value for pure Cu, whereas the Andrews parameter was quite different
for the two kinds of samples: A(Cu,DC) � 17.4×10–16 �m2 and A(Cu,PP) � 6.5×10–16

�m2. Apparently, in this case the deposition method (DC or PP) has significantly influenced
the average resistivity contribution by grain boundaries which may be due two reasons. If the
excess resistivity over the bulk value arises from eventual impurities in the deposit, then it
may be that the DC and PP deposition modes differently act on the nucleation process and this
leads then to a difference in the amount of impurities incorporated in the grain boundaries.
The other possibility is that the eventual presence of impurities in the grain boundaries is
roughly the same, but the DC and PP deposition modes lead to different fractions of the more
ordered and less ordered grain boundaries (see the above discussed work of Woo [41]). If
the latter is the case, then in the study of Dela Pena and Roy [42], PP deposition resulted
in a large fraction of ordered grain boundaries (the A value is even by 30% smaller than the
reference value for average random grain boundaries), whereas DC plating (the A value is by
a factor of 2 higher than the reference value for average random grain boundaries) resulted
in a very large fraction of high-angle grain boundaries, the latter having a relatively high
grain-boundary resistivity [43]. It may be worth to note that PP electrodeposition yielded in
both Refs. [41] and [42] A(Cu) values smaller than the reference value.

Returning to the results presented in Fig. 5, we may say that the resistivities observed to
be smaller than the reference data could be ascribed, based on the observation of Woo [41], to
the presence of a relatively large fraction of more ordered grain boundaries exhibiting a corre-
spondingly smaller contribution to the resistivity than the average (mainly more disordered)
grain boundaries. This hints at the necessity of carrying out more detailed investigations in
the future to what extent the preparation methods and preparation parameters can influence
the degree of disorder of grain boundaries in the nano-sized grain regime since this also could
give an important tool for reducing the resistivity of metallic conductors at small interconnect
line dimensions.

There is one more report on the resistivity of Cu thin films with detailed grain size study
and this deserves special attention to be discussed separately after the analysis of previous
results. Chawla et al. [44] carried out a detailed analysis of the room-temperature resistivity
of evaporated and subsequently annealed Cu films. These authors prepared 20-, 30- and 40-
nm-thick films first and then the thicker films were thinned down by sputtering to have the
same thickness for each of them. The grain size was established from EBSD analysis by
evaluating 5000 to 10,000 grains for each sample. An XRD study revealed a strong (111)
texture of the films. The resistivities were found to be higher in the samples of Chawla et al.
[44] (see open symbols in Fig. 7) than in the films of Sun et al. [1] for comparable grain sizes
(indicated by the thick line as reference data in Fig. 7). This means that there seems to be
some additional resistivity contribution in the films of Chawla et al. [44] the magnitude of
which varies from sample to sample. In addition to the film preparation methods (sputtering:
Ref. [1]; evaporation: Ref. [44]), a distinct difference between the films of the two reports
was that Sun et al. [1] deposited a SiO2 or a SiO2/Ta cap layer on top of the Cu films which
must have been very effective to prevent any later oxidation of the Cu thin films. On the
other hand, Chawla et al. [44] did not use a protecting cap layer and since they measured the
resistivities at ambient condition, an oxide layer on top of the Cu films may have resulted in
larger resistivities for comparable grain sizes than in the work of Sun et al. [1] due to surface
specularity differences. Another particular feature of the procedure of Chawla et al. [44] was
the thinning by sputtering which may also have changed the surface specularity, eventually
even in a random manner, explaining the scatter of the excess resistivity values over the grain
size range investigated.
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Fig. 7 Room-temperature resistivity ρ for Cu films as a function of the grain size d. The thick solid line
represents a fit to Eq. (6) with fixed ρbulk � 1.72 μ� cm [26] and with fitted value A � 8.69×10–16 �m2

for the reference ρexp(d) data (T � 296 K) of Ref. [1]. The experimental data (T � 298 K) of Ref. [44] are
indicated by the open triangle (original film thickness t � 20 nm), square (t � 30 nm) and diamond (t � 40 nm)
symbols. The full symbols represent data of the same specimens after a correction as described in the text.
The thin solid line represents a fit to Eq. (6) with fixed ρbulk � 1.72 μ� cm [26] and with fitted value A �
4.79×10–16 �m2 to the corrected data of Ref. [44]

We can proceed with the data analysis if we take into account that, in order to separate
thickness effects and differences in background resistivities, Chawla et al. [44] also investi-
gated single-crystal (SC) Cu films which were produced with the same thickness and thinned
in the same manner as the above discussed polycrystalline Cu films. Since the single-crystal
films did not have any grain boundaries, their resistivity contains contributions only from
the electron–phonon scattering as well as from surface scattering processes. Therefore, if we
subtract for each sample with different original film thicknesses the difference ρ(SC)−ρbulk

(where ρbulk(Cu;300 K) � 1.72 μ� cm) from the measured resistivity of the corresponding
polycrystalline film sample, then this value should reflect the grain-boundary contribution
above the bulk resistivity. After this correction of the experimental data, we get the resistiv-
ities for the polycrystalline Cu films of Chawla et al. [44] which are displayed in Fig. 7 by
the solid symbols.

These data all falling below the reference data (thick solid line) show a continuous decrease
with increasing grain size and exhibit a very small scatter only. If we now perform an Andrews
fit according to Eq. (6) for these corrected data, we get A(Cu) � 4.79×10–16 �m2 by using the
standard Cu bulk value ρbulk(Cu;300 K) � 1.72 μ�cm. This low A(Cu) value in comparison
with the corresponding value for the average random grain boundaries [A(Cu) � 8.69×10–16

�m2] may indicate that in the evaporated thin Cu films studied by Chawla et al. [44] the
fraction of more ordered grain boundaries, either due to the film preparation details or due
to the applied subsequent annealing or both, was fairly large as was also the case for the
Cu electrodeposits investigated by Woo [41]. It is recalled, furthermore, that the Cu films
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studied by Chawla et al. [44] exhibited an almost perfect (111) texture as a consequence of
which the distribution of types of grain boundaries perpendicular to the film plane is probably
also not completely random and, in a favorable case, this may also lead to a reduced grain-
boundary contribution to the resistivity. This specific study calls attention to the importance
of studying more carefully thin film texture when analyzing the influence of grain boundaries
on the resistivity in polycrystalline samples. We will return to the results of Chawla et al. [44]
also in the next section when discussing the grain-boundary reflection coefficient results in
the MS model for Cu metal.

In summary, we may say that a deviation of the reported grain-size dependence of resistiv-
ity from the reference ρexp(d) data specified for polycrystalline Cu metal with random grain
boundaries (and the corresponding difference in the Andrews parameter values) can be due
to several reasons. A trivial source of error is if, although the experimental data can be well
fitted by the Andrews method, the fit results in a lower ρbulk value than the standard bulk
value ρbulk(Cu;300 K) � 1.72 μ�cm since this seems to indicate an improper calibration of
the absolute value of the resistivity which can then be made, at least partially, responsible
for the deduced lower A(Cu) value. If the fitted bulk resistivity is higher than the standard
bulk value, it may be again due to an improper resistivity calibration or due to impurities.
A predominance of grain boundaries with higher resistivity contribution may also lead to
higher background resistivity and/or higher A(Cu) value. We could also see above on the
example of the results from Ref. [27] that even if the experimental data could be fitted by the
Andrews method with the standard bulk value ρbulk(Cu;300 K) � 1.72 μ� cm, the A(Cu)
value was still lower than our reference value for Cu metal with random grain boundaries. As
discussed previously, this can be ascribed either to a preferential occurrence of special grain
boundaries with more order than the average random grain boundaries or to the presence
of a texture resulting predominantly in low-resistivity grain-boundaries in the path of the
electrons carrying the current to measure the resistivity.

By finishing the analysis of the resistivity data for Cu by the Andrews method, it is
noted that similarly to the case of nc-Ni, we will make an estimate of the maximum room-
temperature resistivity also for nc-Cu in “Appendix C”.

2.2.2 Cu resistivity data evaluated by the Mayadas–Shatzkes model

As discussed in Sect. 2.1.2 when evaluating resistivity data for Ni metal in the MS model, the
electron mean free path λ decisively influences, via Eq. (10), the value of the grain-boundary
reflection coefficient R derived from matching the calculated ρMS curves to the experimental
data. Concerning the electron mean free path, the situation is much clearer for Cu than was
for Ni. By using ρbulk(Cu,300 K) � 1.72 μ� cm [26], the free-electron estimate [31] and the
theoretical calculation of Gall [5] yield λ(Cu,300 K) � 38.1 nm and 39.0 nm, respectively.
Furthermore, there seems to be a general consensus [1, 5, 44, 45] that the experimental value
is λ(Cu,300 K) � 39.0 nm and we will use this latter value in evaluating experimental Cu
data with the MS model.

In spite of the well-defined value of the electron mean free path for Cu, there is still a large
scatter of the reported R values ranging from 0.1 to 0.8 as summarized in Refs. [45] and [46].
Since R is usually determined from resistivity vs. thickness data obtained on thin films for
which the evaluation should be based on a combination of the FS and MS models, the film
surface specularity parameter therefore also enters the problem. Since different combinations
of the specularity parameter and the reflection coefficient often yield an equally good fitting
of the experimental data [2], this procedure may easily result in an erroneous R value.
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In order to get rid of this problem, we should first concentrate on selecting reliable exper-
imental data where, in addition, the surface scattering is negligible or very small and, thus,
we can eliminate the uncertainty due to the choice of the specularity parameter.

It was demonstrated in the previous section that the experimental results of Sun et al. [1]
can be considered as reference resistivity vs. grain size data for Cu metal with random grain
boundaries. This is substantially supported by the fact that the low-temperature resistivity
vs. grain size data of Ref. [1] match very well the corresponding data of Andrews et al. [35]
on massive Cu specimens (at T � 4.2 K, the A(Cu) values from the two reports agree within
about 12%) since for the latter case, there is no concern of the surface scattering effects.
Therefore, we will start the discussion of the MS model evaluations with the data of Sun
et al. [1].

By using the MS model for grain-boundary scattering according to Eqs. (8) to (10) and tak-
ing the usual value of [ρbulkλbulk]Cu � 6.6×10–16 �m2, Sun et al. [1] deduced R(Cu;296 K) �
0.49 from their room-temperature experimental data (at T � 4.2 K, they obtained R(Cu;4.2 K)
� 0.45). Their ρexp(d) data considered as the reference resistivity data for polycrystalline Cu
metal with random grain boundaries are represented by the thick solid line in Fig. 8 which
corresponds to an Andrews fit with A(Cu) � 8.69×10–16 �m2. We have displayed a ρMS(d)
function with R(Cu;296 K) � 0.475 (represented by the open circles) which shows the best
agreement with the reference experimental data represented by the thick solid line and the
value of R(Cu;296 K) � 0.475 is close to that of Sun et al. [1]. Two other ρMS(d) functions
(thin solid lines with symbols) are also given to illustrate the evolution of these functions
with increasing R values.

Sun et al. [1] performed a careful evaluation of their data by using also a combination
of the FS and MS models and various extensions of them (the fit quality parameter was
evaluated also in a manner as to account for the number of fitted parameters). Somewhat
better fit quality was achieved in the extended models and the best R(Cu;296 K) value of 0.43
was obtained from three of these models which take into account some degree of surface
scattering as well. Nevertheless, this value is not very different from the above R(Cu;296 K) �
0.49 value which was derived from the application of the MS model only to the experimental
data and even this model led to a relatively high-quality fit. Our R(Cu;296 K) � 0.475 value
for the same data also matches well the results of Sun et al. [1].

We will pay some attention again to the data of Andrews et al. [35] on a massive Cu
specimen at T � 4.2 K which data were represented by the dash-dot line in Fig. 4. Due to
the macroscopic size of their specimen, the problem of surface specularity does not enter
the evaluation by the MS model since surface scattering can evidently be neglected here.
Andrews et al. [35] found that the bulk resistivity in their Cu specimen was ρbulk(Cu,4.2 K)
� 0.00079 μ� cm. By taking the calculated value of [ρbulkλbulk]Cu � 6.7×10–16 �m2 [5],
we get from this resistivity λbulk(Cu,4.2 K) � 83,500 nm for the bulk Cu mean free path in
their specimen at 4.2 K. Constructing ρMS(d) functions with this electron mean free path in
the MS model, we find a perfect match with their experimental data by choosing R(Cu;4.2 K)
� 0.49 for the grain-boundary reflection coefficient of Cu metal. This value matches fairly
well the low-temperature result derived above from Cu thin film data of Sun et al. [1].

In conclusion, from the grain-size dependence of those resistivity data which we consid-
ered as reference data, a reflection coefficient of R(Cu) � 0.46±0.03 can be deduced for
polycrystalline Cu metal with random grain boundaries. By considering the evolution of the
ρMS(d) functions with R for a constant value of the electron mean free path λ as shown in
Fig. 8, we can see that this behavior of R is very similar to that of the Andrews parameter
A.
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Fig. 8 Resistivity ρ at room temperature for Cu as a function of the grain size d. The thick solid line displays the
reference experimental data which are represented by the Andrews fit according to Eq. (6) with parametersρbulk
� 1.72 μ� cm [26] and A � 8.69×10–16 �m2. The open circles correspond to a calculated ρMS(d) function
according to Eq. (8) of the MS model [14] with R � 0.475 to best match the reference experimental data
with the specified bulk electron mean free path (emfp) value. The two thin lines with symbols represent the
calculated ρMS(d) functions with R values as given in the legend. The arrow indicates the direction of the
increase of R for a fixed emfp value. The diamond symbols display the corrected data of Ref. [44] as taken
from Fig. 7 and the thin dashed line is the best-matching ρMS(d) function with R � 0.32

This implies that if the experimental data are, for a given size, above or below the reference
ρexp(d) data, then both the R and A values will be usually larger or smaller than the value of
these parameters derived here for the random grain boundaries of polycrystalline Cu metal.
With reference to Figs. 5, 6, and 7, we have already seen in Sect. 2.2.1 that the reported
resistivity values in several cases deviated, mostly towards lower resistivity values, from the
reference ρexp(d) data for Cu metal. This deviation was naturally accompanied by a reduced
Andrews parameter value deduced from such data with respect to our reference value (A(Cu)
� 8.69×10–16 �m2). We will see now here below that the reported R(Cu) values of these
reports were also correspondingly smaller than our preferred R(Cu) � 0.46 value as specified
above.

Tochitskii and Belyavskii [27] reported an A(Cu,300 K) � 3.90×10–16 �m2 value and
their specified reflection coefficient deduced from the MS model according to Eqs. (8)–( 10)
by taking λbulk(Cu,300 K) � 39 nm was R(Cu) � 0.28. From the results of Artunc and Öztürk
[37], we derived A(Cu,300 K) � 6.10×10–16 �m2 and they reported R(Cu) � 0.38 for both
as-deposited and annealed films in the same manner as in Ref. [27]. By applying the same
method and using the same electron mean fee path, Bruschi et al. [38] obtained R(Cu) � 0.33
and Riedel et al. [39] obtained R(Cu) � 0.38; our corresponding deduced A(Cu) values from
these data were 5.0×10–16 �m2 [38] and 5.8×10–16 �m2 [39], respectively. The situation
is similar with the experimental data of Chawla et al. [44] who deduced R(Cu) � 0.25(5)
and we derived A(Cu) � 4.79×10–16 �m2. For the experimental data of Fenn et al. [36], we
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have deduced A(Cu) � 8.77×10–16 �m2 and by using Dimmich’s theory [47], these authors
derived an average value of R � 0.35 for their films by taking λbulk(Cu,273 K) � 38.3 nm.

We can see from the above listing that lower A(Cu) values are accompanied by lower
R(Cu) values in these reported cases. In the case of the reported results of Wu et al. [40], the
situation is the opposite, in that an A(Cu) � 9.7×10–16 �m2 value higher than the reference
value [A(Cu) � 8.69×10–16 �m2] was derived by us for their data and, correspondingly,
they obtained a fairly high reflection coefficient of about R(Cu) � 0.59. We could analyze
in the same manner also the results on electrodeposited Cu samples (see Fig. 6) although
for these cases the bulk resistivity was fitted by the Andrews method to yield a higher value
than the standard bulk value. Nevertheless, the deviation of the R(Cu) values in the above
discussed reports from the reference R(Cu) value derived here for polycrystalline Cu metal
with random grain boundaries can be explained in the same manner as we did for the A(Cu)
values at the end of Sect. 2.2.1.

In a similar manner as for Ni (cf. Figure 3), we constructed a room-temperature R vs. λ

plot also for Cu on the basis of the MS model and these data could be fitted with the relation
R � − 0.2337·ln(λ) + 1.3267. By recalling that for Ni we obtained R � − 0.2344·ln(λ) +
1.1212, we can see that, not surprisingly, the coefficient of the logarithmic term for Cu is
practically the same as for Ni.

As noted for Ni at the end of Sect. 2.1.2, reports on resistivity studies of Cu metal with
solely XRD-based microstructural characterization will be discussed in “Appendix B”.

3 Comparison of the Andrews parameter A and the reflection coefficient for Ni and Cu

3.1 Summary of A and R data for Ni and Cu as derived in the present work

It could be shown in Sect. 2 that a given experimental data set of resistivity vs. grain size
can be fitted both with the MS model [14] and the Andrews method [15]. We have derived
the Andrews parameter A (Andrews method) and the reflection coefficient R (MS model) for
Ni and Cu which are considered as quantities characterizing the grain-boundary resistivity
contribution in polycrystalline Ni and Cu metals with random grain boundaries. The best
A values deduced in the present paper from those experimental ρexp(d) results which were
considered as reference data for these metals are as follows: A(Ni;300 K) � 14.7×10–16

�m2 and A(Cu;300 K) � 8.69×10–16 �m2.
As discussed in “Appendix A.1”, the Andrews parameter A is a reliable experimental

quantity, being independent of any model assumption provided the measured resistivities
scale linearly with the inverse of the grain size as first observed by Andrews [15] and demon-
strated in Sect. 2 with results from many studies on both Ni and Cu metals. On the other hand,
the reflection coefficient R introduced in the MS model [14] is dependent, in addition to the
validity of the model assumptions, also on the electron mean free path at the temperature of
the measurement as discussed in “Appendix A.2”.

In Table 1, we have listed the room-temperature values of R for Ni and Cu both as obtained
from a direct fit of the MS model to the reference ρexp(d) data in previous sections and as
derived from Eq. (15) by using the above determined A(Ni) and A(Cu) values. It should be
noted that whereas there is a consensus in the literature about the electron mean free path
of bulk Cu as λbulk(Cu;300 K) � 39 nm [5] since the experimental and theoretical values
agree within a few percent, the reported theoretical (λbulk(Ni;300 K) � 5.62 nm [5]) and
experimental (λbulk(Ni;300 K) � 26 nm [32]) values are widely different for Ni. Therefore,
we provide the R(Ni) values in Table 1 for both above electron mean free path values of Ni.
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Table 1 Grain-boundary reflection coefficient R of the MS model [14] derived with λbulk values as specified
for Ni and Cu metals either by a direct ρMS(d) fit to the reference room-temperature ρexp(d) data or with the
help of Eq. (15) by using ρbulk(Ni,300 K) � 7.24 μ� cm [26] and ρbulk(Cu,300 K) � 1.72 μ� cm [26]

Metal Grain-boundary reflection
coefficient R

R source Condition for α

<< 1 (α < 0.1)

Ni R � 0.717 ρMS(d) fit to reference ρexp(d) data
with A(Ni;300 K) � 14.7×10–16

�m2 and with theoretical
λbulk(Ni;300 K) � 5.62 nm [5]

n.a

R � 0.707 From Eq. (15) with A(Ni;300 K) �
14.7×10–16 �m2 and with
theoretical λbulk(Ni;300 K) �
5.62 nm [5]

α < 0.1 if d
> 135 nm

Ni R � 0.355 ρMS(d) fit to reference ρexp(d) data
with A(Ni;300 K) � 14.7×10–16

�m2 and with experimental
λbulk(Ni;300 K) � 26 nm [32]

n.a

R � 0.342 From Eq. (15) with A(Ni;300 K) �
14.7×10–16 �m2 and with
experimental λbulk(Ni;300 K) �
26 nm [5]

α < 0.1 if d
> 135 nm

Cu R � 0.475 ρMS(d) fit to reference ρexp(d) data
with A(Ni;300 K) � 8.69×10–16

�m2 and with λbulk(Cu;300 K) �
39 nm [5]

n.a

R � 0.463 From Eq. (15) with A(Cu;300 K) �
8.69×10–16 �m2 and with
λbulk(Cu;300 K) � 39 nm [5]

α < 0.1 if d
> 335 nm

The application of Eq. (15) is valid only in the limit of α � (λbulk/d)[R/(1–R)] << 1.
n.a. � not applicable

Table 1 reveals that, for a given value of the electron mean free path, the reflection coefficient
values derived by the two methods agree fairly well with each other for both metals.

3.2 Discussion of the magnitude of the grain-boundary resistivity parameters A and R

3.2.1 Grain-boundary resistivity parameters A and R for Cu metal

We start the discussion with Cu for which the electron mean free path has a well-defined
standard value (λbulk(Cu;300 K) � 39 nm [5]). As demonstrated in Sect. 2.2.1, the reli-
able Andrews parameter for polycrystalline Cu metal with random grain boundaries is
A(Cu;300 K) � 8.69×10–16 �m2 which could be converted to R � 0.463 with this mean
free path value by using Eq. (15). By carrying out a matching of ρMS(d) functions (MS fit)
to the average experimental resistivity vs. grain size data of Sun et al. [1], we derived R �
0.475 which value agrees well with R � 0.49 as obtained with the MS model by Sun et al.
[1] for their data. These latter authors have carried out a detailed fitting by extending the
MS model in various ways by taking into account surface scattering and surface roughness
effects as well. They came to the conclusion that the best fit was obtained when the combined
MS and FS fit was applied which yielded R � 0.43 for the reflection coefficient. By taking
all these circumstances into account, we suggest herewith that the current best value for the
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reflection coefficient of Cu is R(Cu;300 K) � 0.46±0.03 which uncertainty range covers all
above specified R values.

3.2.2 Grain-boundary resistivity parameters A and R for Ni metal

A well-defined experimental value of A(Ni;300 K) � 14.7×10–16 �m2 was derived above
for polycrystalline Ni metal with random grain boundaries. Due to the fact that there is a
large difference between the theoretical and experimental electron mean free paths for Ni
metal, we could derive, both by a direct MS fitting to the experimental data and by using
Eq. (15), two values (ca. 0.35 and ca. 0.7, respectively) for R(Ni) as can be seen in Table
1 which values differ roughly by a factor of 2. The real bulk electron mean free path for
Ni is expected to lie somewhere between the theoretical and experimental values, but at the
moment we cannot make any definitive statement about it. Therefore, we can only say that
the real value of R(Ni) is possibly in the range from 0.35 to 0.70.

3.2.3 Comparison of the grain-boundary Andrews parameter A for Ni and Cu metals

As far as the above derived values of the Andrews parameters A(Ni;300 K) � 14.7×10–16

�m2 and A(Cu;300 K)�8.69×10–16 �m2 are concerned, there is no doubt that they correctly
describe the measured ρexp(d) data for the two metals without any model assumptions. These
data imply that A(Ni) � 1.7 A(Cu) which qualitatively corresponds to expectation in that Ni
is considered as a “more resistive” metal than Cu on the basis of their bulk resistivities [26]:
ρbulk(Ni,300 K) � 7.24 μ� cm and ρbulk(Cu,300 K) � 1.72 μ� cm. However, we can also
see that ρbulk(Ni,300 K) � 4.2 ρbulk(Cu,300 K) which is larger by more than a factor of 2 in
comparison with the ratio of the Andrews parameters of these metals.

We may perhaps proceed also along another route of thinking. According to Eq. (5),
A is proportional to ρSGBR, the specific grain-boundary resistivity which is the resistivity
contribution per unit grain-boundary area when a grain boundary is considered as a resistive
wall of finite thickness with a well-defined resistivity per surface area. In this sense, the
Andrews parameter A is a measure of the specific resistivity of the grain boundary as a wall
through which the electron should pass along its way towards the lower electric potential. (Of
course, the value of parameter A derived from measurements on polycrystalline specimens
represents a mean value of the grain-boundary resistivities averaged over different types of
grain boundaries and over different relative orientations of the grain-boundary plains with
respect to the electron trajectory.) Both Ni and Cu metals have an fcc crystal structure, so we
may assume in a first approximation that they have the same degree of atomic disorder in the
grain boundaries. This disorder is the basic source of excess resistivity due to the presence
of grain boundaries beyond the background resistivity within the crystallites (ρbulk). As we
discuss in “Appendix C”, the structural disorder from the perfect crystal to the structurally
disordered (amorphous) state induces roughly the same amplification of the resistivity at
300 K for Ni and Cu (by a factor of 9.7 and 7.1, respectively). Therefore, the difference in the
A(Ni) and A(Cu) values cannot be ascribed to structural differences, but rather to the different
resistivities of the two metals and this can be rationalized in the following manner.

The different resistivities of Ni and Cu can be understood by the model of Mott [48]
who realized that transition metals like Ni have a large d-band density of states at the Fermi
level, whereas noble metals have only s-electron density of states at the Fermi level. The
resistivity can be considered as being proportional to the scattering probability of the current-
carrying conduction electrons (mainly s-electrons). In other words, the resistivity arises from
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scattering of electrons on any obstacles along the electron pathways. According to Fermi’s
“golden rule” as formulated by Rossiter [49], the scattering probability depends not only on
the matrix element of the scattering potential between the initial and final electron states, but
it is also proportional to the total electronic density of states at the Fermi level. This latter
condition arises because electrons at the Fermi energy only can participate in the conduction
process and they can be scattered to energy states only in the immediate vicinity of the Fermi
level; therefore, the probability of scattering should depend on the amount of vacant states
which are available to accept electrons after scattering. The high d-band density of states in
Ni explains [48] the higher resistivity of Ni in comparison with Cu at a given temperature,
quantitatively given by the relation ρbulk(Ni,300 K) � 4.2 ρbulk(Cu,300 K).

We may try in the same picture to rationalize also the fact that we have found above
experimentally for the Andrews parameters of the two metals the relation A(Ni) � 1.7 A(Cu).
Since A was above identified as characterizing the resistivity of the grain boundary as a
resistive wall, this means that the grain-boundary (wall) resistivity is not so “efficient” in
Ni than in Cu, at least in comparison with their bulk resistivities in the perfect crystalline
state (bulk). On the other hand, it is usually known that any distortion of the crystal lattice
and/or reduction of the nearest-neighbor numbers may lead to a broadening of the peaks
of the density of states and this broadening can be expected to result in a decrease of the
d-band density of states at the Fermi level. Since these effects due to the inherent disorder
may evidently occur in the grain boundaries, they naturally lead to a reduction of the vacant
states available for the scattered electrons in Ni and thus the resistivity of grain boundary may
less effectively increase in the grain boundaries in Ni than in Cu, the latter having practically
no d-band density at the Fermi level. We should also recall that the topological disorder in
the grain boundaries is expected to be the same for the two metals due to their common fcc
structure.

If the above reasoning prevails, we could explain why the ratio of the Andrews parameters
of Ni and Cu is smaller (1.7) than the ratio of their room-temperature bulk resistivities (4.2).
Since according to Eq. (5) the specific grain-boundary resistivity ρSGBR is proportional to
the Andrews parameter A, the ratios of both quantities are identical for the two metals (since
the proportionality factor kGB is a topology-dependent quantity). All these considerations
based on the experimental data for the two selected metals (Ni and Cu) also imply that the
resistivity increment due to the presence of grain boundaries is not directly proportional to
the bulk resistivity although a larger ρbulk seems to result in larger A and ρSGBR values.

It may be appropriate at this point to summarize in some way the essence of the Andrews
approach for evaluating a grain-boundary resistivity parameter. It is important to emphasize
that no model assumptions were necessary in setting up the formulas in Eqs. (1) to (6) of
“Appendix A”, these equations simply correspond to the experimental observation in that the
variation of the resistivity of a metal can be described as the sum of a bulk resistivity and a
term due to the presence of grain boundaries which is proportional to the inverse of the mean
grain diameter d. As discussed in “Appendix A.1”, stereological considerations suggest that
the grain-boundary surface area per unit volume (SGB/V ) is proportional to 1/d, the quantity
SGB/V is also proportional to the total resistivity contribution by the grain boundaries. This is
expressed by Eq. (2) which immediately definesρSGBR, the specific grain-boundary resistivity
which represents the resistivity increment due to the grain-boundary surface area per unit
volume. All in one, both A and ρSGBR are a measure of the specific resistivity contribution
of grain boundaries. In this sense, we may consider a polycrystalline specimen as consisting
of a bulk material component characterized by ρbulk which component is connected in series
with a grain-boundary component ρGB which is characterized by ρSGBR. The smaller the
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grain size, the larger the amount of grain boundaries in the specimen and this leads then to a
larger ρGB, whereas the contribution ρbulk remains unchanged with varying grain size.

In this phenomenological type of description of the experimental results, the strongly
temperature-dependent electron mean free path does not enter the picture and, therefore,
we may not expect a significant temperature dependence of the Andrews parameter A. In a
simple picture, the Andrews parameter A measures the strength of the hindrance of electron
flow through a grain boundary whereby the topological disorder of the grain boundary is
mainly responsible for this hindrance. However, whereas this topological disorder is static at
low temperatures (liquid helium temperature range), it may exhibit a dynamic component as
well at elevated temperatures due to the excitation of phonons. Therefore, a small increase
of A with increasing temperature would be physically realistic although it would be hard to
predict the degree of this temperature dependence. In any case, the weak but still measurable
temperature dependence of A reported for both Ni an Cu metals in several cases (about 20%,
from 4.2 K to 300 K, see Sects. 2.1.1 and 2.2.1 as well as “Appendix B”) could be explained
with the previously described picture.

The physical reality of the picture about the grain-boundary contribution to the resistivity,
i.e., that we can assign a definite resistivity value to a grain boundary as a wall of finite
thickness was first evidenced by the delicate efforts of Nakamichi [43] who was able to
measure the resistivity contribution of a single grain boundary.

Nakamichi [43] investigated the resistivity of small strip-shaped bicrystals containing a
single grain boundary of various known orientations by measuring the resistivity increment
over the bulk resistivity in a segment of the strip which contained one grain boundary only.
The large cross-Sect. (1×3 mm2) of the high-purity Al specimen (99.9999%, RRR � 30,000)
ensured that, in spite of the long mean free path (ca. 500 �m) at 4.2 K, the surface scattering
effects still remained negligible. The specific grain-boundary resistivity was mapped out
for various grain boundary types as defined by their tilt and twist angles. An important
outcome of this work was that the results obtained lend themselves to a picture that the grain-
boundary resistivity arises from the electron scattering by the dislocations constructing the
grain boundary. The conclusions in general are, of course, valid for other metals as well.

3.2.4 Comparison of the grain-boundary reflection coefficient R for Ni and Cu metals

We should start discussion by noting that the grain-boundary reflection coefficient is a natural
ingredient in the Mayadas–Shatzkes model [14] in which the Boltzmann equation was solved
in the relaxation time approximation. The relaxation time is defined as the average time
between two scattering events of an electron and it is directly related to the electron mean
free path which is the average distance traveled by the electron between two scattering
events. The solution of the Boltzmann equation was found [14] in a specific form in which
only the ratio of the mean free path and the average distance between the locations of the grain
boundaries as scattering walls appeared (see Eq. (10) in “Appendix A”). The average distance
between the locations of the grain boundaries was then identified as the mean grain diameter
[14]. In the MS model [14], the grain boundaries are considered as planes characterized
by a potential on which the electrons can be scattered and a scattering results either in
a reflection or a transmission of the electron impinging on the potential wall. Evidently, a
resistivity contribution arises which is proportional to the probability of the electron reflection
characterized by the reflection coefficient R. Evidently, R is a monotonically increasing
function of the grain-boundary scattering potential. In this manner, the reflection coefficient
R which contains information on the scattering potential of the grain boundaries should also
appear in the resistivity term characterizing the grain-boundary contribution [c.f. in Eqs.
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(8) to (10)]. The total resistivity formula in the MS model, ρMS(d), indeed results in larger
resistivity for larger R as is demonstrated in Figs. 2, 3, 4, 5, 6, 7, and 8.

As discussed above, we could derive for Cu a well-defined value for the grain-boundary
reflection coefficient: R(Cu;300 K) � 0.46±0.03. On the other hand, it was found that the
possible range of R(Ni) extends from 0.35 to 0.7. Intuitively, we may expect that the scattering
potential of a grain boundary is larger in Ni than Cu. Therefore, the first expectation is that
the relation R(Ni) > R(Cu) should hold. This would imply that the possible real R(Ni) value
should be between about 0.5 and 0.7.

Nevertheless, it can be revealed from Figs. 2, 3, 4, 5, 6, 7, and 8 that for a given metal,
the larger the Andrews parameter A as derived via Eq. (6) from the ρexp(d) data, the larger
reflection coefficient results from the ρMS(d) fit to the same data set. Therefore, we should
expect that if one metal (M1) has a larger A value than another metal (M2), the same should
hold for their R values as well, i.e., if A(M1) > A(M2), then R(M1) > R(M2) holds. This is
not surprising actually since both parameters are thought of as a quantity characterizing the
strength of the hindrance of electron motion through the grain boundary.

In the previous section, we attempted to rationalize the difference in the relations
ρbulk(Ni,300 K) � 4.2 ρbulk(Cu,300 K) and A(Ni) � 1.7 A(Cu). The smaller proportion-
ality factor in the second relation tells us that the same type of grain boundary in Cu provides
a larger contribution to the resistivity than it would expected on the basis of the bulk resis-
tivity of Ni and Cu. There have been recently some theoretical efforts [3, 50] that provide
some further microscopic background which help us understand this apparent discrepancy in
addition to the arguments given in the previous section on the basis of the different electronic
density of states at the Fermi level for the two metals. It turned out namely [50] that due to
the much smaller bulk modulus of Cu than that of Ni, there is an excess free volume in the
grain boundaries of Cu with respect to the same grain boundary type of Ni. This excess free
volume is associated with a larger energy density in the grain boundaries of Cu [50]. On the
other hand, it was also demonstrated [3] that a larger energy density in the grain boundary
results in a larger resistivity contribution by the given grain boundary. One may perhaps
formulate all this also in a manner that the excess free volume causes a larger disorder in
the grain boundary of Cu since the excess free volume is distributed over a larger distance
on both sides of the grain boundary due to the smaller bulk modulus, i.e., weaker bonds.
Therefore, a given type of grain boundary in Cu represents a larger topological disorder from
the viewpoint of electrical transport than in Ni.

4 Comparison of experimental and theoretical data on the grain-boundary resistivity
contribution for Ni and Cu metals

4.1 Experimental A and ρSGBR data for Ni and Cu

In Sect. 2, we have analyzed available electrical resistivity vs. grain size data reported in the
literature for Ni and Cu metals. Our guiding principle was to reconstruct, if not explicitly
given, the ρexp(d) data from the provided derived parameters (Andrews parameter A, specific
grain-boundary resistivity ρSGBR or grain-boundary reflection coefficient R) and then to
compare them with each other as well as to check the reported data for reliability, confidence
and conformity with other relevant data. On this basis, we have established the resistivity
vs. grain size data sets which were considered as reference data and from these, we have
derived the current best room-temperature values of the Andrews parameter A and reflection
coefficient R for Ni and Cu metals which are summarized in Table 1. As already mentioned,
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Table 2 Specific grain-boundary resistivity ρSGBR data from room-temperature experiments for Ni and Cu

Metal Experimental parameter A (10–16 �m2) Experimental parameter ρSBGR (10–16 �m2)

Ni (pc) 14.7 [this work] 4.5 to 6.2 (derived from A)

Cu (pc) 8.7 [this work] 2.7 to 3.7 (derived from A)

Cu – 19.0, 23.3 and 25.9 [51] (directly measured on
three different single random grain
boundaries)

Cu – 20 to 29 [52] (directly measured on several
single random grain boundaries)

Cu – 1.06(10) [53] (average of directly measured
values on seven different single incoherent
�3 {211} grain boundaries)

The Andrews parameter A (cf. Table 1) was obtained from resistivity data on polycrystalline (pc) Ni and Cu
specimens with random grain boundaries. Equation (5) A � kGB ρSGBR was used to convert A to ρSGBR (the
range given for ρSGBR corresponds to the possible range of the proportionality constant 2.37 < kGB < 3.24,
see “Appendix A.1). The last three rows provide the results of direct measurements of ρSGBR on single grain
boundaries

since the ρexp(d) data were obtained on polycrystalline specimens, these parameters are
average values over all possible grain boundary types and orientations, i.e., they represent
data for random grain boundaries. As discussed in Sect. 3, these average A and R values
are well defined for Cu and also the A value for Ni, but there is some ambiguity with the
value of R for Ni due to the widely different mean free path values derived from theory and
experiment for this metal [5].

In theoretical approaches to account for the grain-boundary contribution to the resistivity
of a metal, the calculated results are mostly given in the form of the specific grain-boundary
resistivity ρSGBR. According to Eq. (5), we have the relation A � kGB ρSGBR, so in principle it
is straightforward to convert the experimentally derived A values into specific grain-boundary
resistivity data. However, the proportionality factor kGB as defined in Eq. (3) may have dif-
ferent values depending on the particular stereological model used to calculate the relation
between the grain-boundary surface area per unit volume and mean grain diameter. As dis-
cussed in “Appendix A.1”, in previous studies various values in the range 2.37 < kGB < 3.24
were used for the proportionality factor. When converting A to ρSGBR for a comparison of
experiment and theory, we will also use these two extreme values to provide the best possible
range of ρSGBR for Ni and Cu. In Table 2, we provide the average experimental value of A
and ρSGBR for Ni and Cu metals obtained on polycrystalline specimens as described above.

In addition, there are results on the resistivity of single grain boundaries in Cu and these
data are also included in Table 2. Kim et al. [51] determined ρSGBR(Cu;300 K) of single grain
boundaries in a four-pin scanning tunneling microscope (STM) with finely spaced contact
pins via measuring the resistance as a function of the position of the voltage-contact pin
over microfabricated Cu nanowires of rectangular cross section with widths and thicknesses
of several hundreds of nanometers. The Cu nanowires contained several grain boundaries
extending through the whole cross section of the wire. The grain boundary types were identi-
fied with the help of EBSD maps showing the crystallographic orientations of the individual
grains. From the discrete resistance jumps when the voltage-detection pin passed a grain
boundary, the authors deduced ρSGBR(Cu;300 K) values for three different high-angle ran-
dom grain boundaries. Kitaoka et al. [52] also observed a discrete resistance jump when
passing through a grain boundary in a similar experimental arrangement, but they have not
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reported any ρSGBR values. However, the experimental results of Kitaoka et al. [52] were
re-evaluated by Kim et al. [51] to yield ρSGBR(Cu;300 K) values in agreement with their own
results and the data of both studies are included in Table 2.

We can see that the ρSGBR(Cu;300 K) values reported in the latter studies [51, 52] from
measurements on single random grain boundaries are larger by nearly an order of magnitude
than the experimental value deduced from measurements on polycrystalline Cu as given in
the second row of Table 2. There is no explanation at the moment why the experimental
ρSGBR(Cu) values obtained in the studies on individual high-angle grain boundaries [51,
52] are much larger than the reference specific grain-boundary resistivity value (Table 2) as
deduced in the present work from the average A(Cu) value based on the results of several
studies for polycrystalline samples with random grain boundaries. Kim et al. [51] discussed
the possible role of impurities which are very prone to accumulate at grain boundaries and
may eventually lead to higher ρSGBR values; however, they have not found any direct evidence
for an increased impurity concentration in the grain boundaries in their samples.

There may be a concern, however, that these very large ρSGBR values [51, 52] measured
on single random grain boundaries do not correspond to the real specific resistivity of random
grain boundaries if we consider the corresponding results of Nakamichi [43] on single grain
boundaries of very high purity Al metal. Namely, Nakamichi [43] found that the typical
ρSGBR(Al) values for various single random grain boundaries were scattered in the range
3 to 5×10–16 �m2. These data are not very much different from the range 2×10–16 �m2

<ρSGBR(Al) < 3.0×10–16 �m2 that we can derive from the measured grain-size dependence
of resistivity which were reported on polycrystalline Al bulk [35] and thin film [27] specimens.
There is no reason to believe that if the ρSGBR data measured on single random grain-
boundaries and on polycrystalline samples with random grain boundaries match each other
so well for Al, they could be different by nearly an order of magnitude for Cu since both
metals have the same fcc structure and their room-temperature resistivities differ by 50%
only. It should be noted, furthermore, that the Cu nanowires investigated in Refs. [51] and
[52] were prepared by electrodeposition as in Ref. [40] and we should recall the discussion in
connection with Fig. 6 where we could see that significant differences (by a factor of 6) were
found in the values of the Andrews parameters for the various electrodeposited Cu samples
and the apparently too large grain-boundary resistivities reported in Refs. [51] and [52] may
be connected with the preparation method.

In a very recent paper, Bishara et al. [53] reported on a new experimental setup for
measuring the resistivity of single grain boundaries with the help of four independent micro-
manipulator tips inside a scanning electron microscope. By FIB milling, narrow wires with
600 nm width and typically 50 mm length were cut from sputtered high-purity Cu films with
a thickness of 500 nm on an insulating substrate and the grain boundaries were located and
identified by EBSD in the wires. By arranging the four micromanipulator tips along a line
over the wire, they could detect a discrete resistance jump when passing with the mobile
voltage tip over a grain boundary. By averaging over seven measurements in different wires,
they obtained a grain-boundary resistivity value ρSGBR � 1.06(10)×10–16 �m2 for the
incoherent �3 {211} grain boundary. In view of the <ρSGBR(Cu) > ~ 3×10–16 �m2 value
for average random grain boundaries (see Table 2), the result of Bishara et al. [53] is very
reasonable (we will later compare it also to available theoretical values).
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Table 3 Specific grain-boundary
resistivity ρSBGR for random
grain boundaries from theoretical
calculations for Ni and Cu metals

Metal Theoretical specific grain-boundary resistivity, ρSBGR
(10–16 �m2)

Brown [54] Karolik and
Luhvich [55]

Valencia
et al. [56]

Kim et al
[51]

Ni 1.9 6.2
(low-angle:

1.5
high-angle:

7.6)

– –

Cu 2.2 2.1
(low-angle:

0.5
high-angle:

2.5)

ca. 5.5±1
(random

single
grain
bound-
aries)

13
(random

single
grain
bound-
aries)

It is noted that the value from
Ref. [51] was obtained from a
free-electron estimate

4.2 Theoretical ρSGBR data for Ni and Cu

4.2.1 Calculations for random grain boundaries

For the theoretical treatment of the contribution of general random grain boundaries to the
resistivity, we will first refer to the results of Brown [54] and Karolik and Luhvich [55].
Brown [54] calculated the grain-boundary resistivity under the assumption that the scattering
is primarily due to the core of dislocations which constitute these grain boundaries. The later
experimental conclusions of Nakamichi [43] give some support for this approach. In this
treatment, Brown [54] first calculated the dislocation resistivities and then the dislocation
densities in various grain boundaries, from which data the grain-boundary resistivity was
then derived.

Karolik and Luhvich [55] started first from the same approach, but they have noticed that
the dislocation description of grain boundaries is correct only for low-angle grain bound-
aries (tilt angle < 15o–20°). In the high-angle region, the dislocation cores are converted into
cylindrical pores and, therefore, the dislocation description of large-angle grain boundaries
by Brown [54] may not be valid. Therefore, Karolik and Luhvich [55] applied the dislocation
model for the low-angle grain boundaries and elaborated a model for treating the resistiv-
ity contribution of the more porous high-angle grain boundaries. So they have separately
calculated the specific grain-boundary resistivity for both low-angle and high-angle grain
boundaries and then calculating a mean value for a random polycrystalline specimen by
properly averaging over all possible grain-boundary angles. From their reported calculated
values, we can see that the average values were obtained approximately as <ρSGBR > �
0.161 <ρSGBR > low-angle + 0.805 <ρSGBR > high-angle.

The calculated ρSGBR values from these studies [54, 55] are given in Table 3. By com-
paring them with the experimentally deduced ρSGBR values (Table 2), we can see that the
approach of Brown [54] strongly underestimates the experimental ρSGBR(Ni) value, whereas
the theoretical result of Karolik and Luhvich [55] for Ni is just at the upper limit of the exper-
imentally derived range set by the uncertainty of kGB. On the other hand, the two theoretical
values for Cu [54, 55] are close to each other, whereas both theoretical values are somewhat
below the possible range of the experimental ρSGBR(Cu) value.
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More recently, Valencia et al. [56] have carried out first-principles calculations with various
methods for random single grain boundaries in Cu. As Table 3 shows, their ρSGBR values
are larger by about a factor of 2 than the experimental values obtained for polycrystalline
samples as well as the results of early calculations [54, 55] on random grain boundaries. On
the other hand, they are also much lower (by about a factor of 5) than the experimental results
[51, 52] measured on single random grain boundaries. It is noted that Kim et al. [51] has
made a free-electron estimate for random grain boundaries in Cu metal and obtained a higher
value than that of Valencia et al. [56] (see Table 3). At the moment, we cannot comment more
on these discrepancies in the measured and calculated values.

4.2.2 Calculations for coincidence-site lattice type single grain boundaries

Although the theoretical calculation of ρSGBR for random grain boundaries is still apparently
a challenging task, there is some progress for interfaces that can be described by coincident-
site lattice (CSL) models which are characterized by the parameter �N where a larger value of
N implies a higher complexity of the grain boundary [3, 57]. The simplest case is the coherent
twin boundary (�3) for which several calculations have been carried out and the results for
Cu are in fairly good agreement with each other as demonstrated in Fig. 9 where we can
also see that the calculated values for the coherent �3 boundary match well the experimental
value (ρSGBR(Cu) � 0.17×10–16 �m2 [58]). We have included here the very recent result
(ρSGBR(Cu) � 1.06(10)×10–16 �m2) of Bishara et al. [53] obtained by averaging data
measured for seven single incoherent �3 boundaries in Cu. This value is significantly larger
(by about a factor of 5) than the reported theoretical and experimental data for the coherent �3
boundary which is certainly mainly due to the much larger atomic disorder in an incoherent
�3 boundary with respect to the coherent counterpart.

There have been further reports on the theoretical calculations of ρSGBR(Cu) also for more
complex CSL boundary types and the results are summarized in Fig. 9 which show that the
ρSGBR values are mostly scattered between about 1.5 and 2.5×10–16 �m2, although with
a monotonically increasing trend. The results of these first-principles based calculations for
single CSL grain boundaries are, especially for higher �N values, fairly close, except for
�11 boundaries, to the theoretical values for Cu obtained by Brown [54] as well as by Karolik
and Luhvich [55] for random distribution of grain boundaries which are shown in Table 3.
However, they are still well below the range (2.7×10–16 �m2 <ρSGBR(Cu) < 3.7×10–16

�m2) deduced from measured resistivity data on polycrystalline Cu specimens with random
grain boundaries. It is noted, with reference to the discussion at the end of Sect. 3.2.4, that
the exceptionally low resistivity of the �11 boundaries could be explained [3] with the low
interfacial energy of this specific grain boundary due to its highly symmetric character.

Dixit et al. [61] have made first-principles calculations of ρSGBR(Cu) for several symmetric
tilt grain boundaries (from �3 to �73) with various grain-boundary planes and tilt angles
from 13° to 86°. For these symmetric tilt boundaries, the obtained results were all about
ρSGBR(Cu) � 1.0(5)×10–16 �m2 which values are just intermediate between the calculated
results shown in Fig. 9 for the coherent twin boundary (�3) and for the grain boundaries with
higher �N values. These authors have also calculated the specific grain-boundary resistivity
for a non-twin grain boundary with (111)/(110) interface and obtained ρSGBR(Cu) � 2.5×
10–16 �m2 which is close to the highest values shown in Fig. 9.

It should also be noted in this context that according to the calculations of Lee et al.
[60] for several non-symmetric CSL type �N boundaries, ρSGBR(Cu) can have very high
values in specific transport directions with respect to the crystal axes. This underlines again
the importance of texture investigations of samples from which grain-boundary resistivity
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Fig. 9 Results of theoretical calculations of ρSGBR for various CSL boundary types for Cu metal from reports
as indicated in the legend. Experimental results for coherent (♦ [58]) and incoherent (˛ [53]) �3 boundaries
are also included

parameters are to be derived as noted already in Sect. 2.2.1 in connection with the results of
Chawla et al. [44].

4.3 Grain-boundary reflection coefficient R for Ni and Cu: experiment vs. theory

As far as the grain-boundary reflection coefficient R is concerned, we have summarized the
relevant experimental data in Table 1. According to this, the value of R(Ni) can be expected to
be between 0.35 and 0.70, depending on what is the real value of the electron mean free path
for Ni metal. This range of possible R values was derived in this paper from the experimental
A(Ni) value as well as from the MS fit in this work to the reference ρexp(d) data for Ni.

Based on the data in Table 1 and the discussion in Sect. 3.2.1, in our opinion the best
experimental value of the grain-boundary reflection coefficient for Cu metal is R(Cu) �
0.46(3). This data and its error range comprises the R(Cu) values derived by various careful
MS and MS + FS fits of Sun et al. [1] to their experimental resistivity vs. grain size data on
Cu films and is also conform to the experimental resistivity vs. grain size data of Andrews
et al. [35] on massive Cu specimens.

As to the theoretical assessment of R for metals, Zhu et al. [46] set up a model by assuming
that R can be related to the bonding energy between the atoms of the given metal. As a measure
of the bond strength, they took the melting temperature Tm. They started by considering that
if R is the reflection coefficient, then 1-R is the tunneling probability of an electron with a
kinetic energy smaller than the potential barrier represented by a grain boundary. Making the
rather arbitrary assumption that the width of the potential barrier is 1/3 of the bond length
and using average values of some thermodynamic parameters for metals, after numerous
simplifications they arrived at a relation according to which R is a function of the melting
temperature only: R � 1 – 4/[exp(Tm

1/2) + 2] where Tm is taken in kelvin units. By using
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the standard melting temperatures [62] Tm(Cu) � 1358 K and Tm(Cu) � 1728 K, their
formula yields R(Cu) � 0.372 and R(Ni) � 0.450. Although it is hard to conceive that such
a simple treatment can really properly account for the grain-boundary resistivity, the derived
R values are at least qualitatively compatible with the above derived experimental values of
the reflection coefficients of Ni and Cu.

We are furthermore aware of a few more theoretical attempts [3, 61, 63] to derive R(Cu)
for various CSL type grain boundaries on the basis of first-principles calculations of the
electronic transport. Apart from the case of the twin boundary (�3), the other R(Cu) data of
these calculations [3, 61, 63] mainly fall in the range 0.1 to 0.2 which is at least by a factor
of 2 below the average value R(Cu) � 0.46(3) we derived above from available experimental
data on polycrystalline Cu specimens with random grain boundaries. The much lower grain-
boundary reflection coefficient R(�3) � 0.0164 [3] calculated for the coherent twin boundary
complies well with the correspondingly low value of ρSGBR(�3) both from experiments and
theory (cf. Fig. 9).

It may be illuminating to reveal a correlation between the calculated ρSGBR(Cu) and R(Cu)
values of César et al. [3]. A correlation between the calculated values of the two parameters
(open circles) is clearly seen in Fig. 10 where we can observe that the calculated data follow
a linear variation of R with ρSGBR as indicated by the thin solid line getting well through
the calculated values. Although not in a linear fashion, but a monotonous increase of R
with increasing ρSGBR could already be anticipated via Eq. (15) by noting that ρSGBR ∝A
according to Eq. (5). Using Eq. (15) with the average value of the stereological proportionality
factor <kGB> � 2.82, we calculated the R values from the theoretical values of ρSGBR and
these data are shown by the solid circles in Fig. 10. The extrapolation of these latter data
indicated by the thick solid line goes smoothly towards the experimental data pair of R and
ρSGBR. This might be interpreted in a manner that, by assuming that the theoretical ρSGBR

values [3] correctly correspond to the specific grain-boundary resistivity of the increasingly
more complex CSL type grain boundaries considered in the theoretical analysis, these ρSGBR

values can be converted into R values approaching properly the grain-boundary reflection
coefficient of Cu metal as derived in the present work for polycrystalline Cu specimens with
random grain boundaries.

A further justification for this interpretation may be taken from the results of Dixit et al.
[61] since by adding their calculated R(Cu) and ρSGBR(Cu) data pair to Fig. 10 (solid triangle),
it fits well into the trend of the already displayed data.

It may still be worth mentioning the theoretical efforts of Rickman and Barmak [64] who
examined the impact of microstructural features on the electrical conductivity of metallic
thin film by using Monte Carlo simulations. They calculated the conductivity of a model
structure with various numbers of cells (grains) as a function of the grain-boundary electron
transmission coefficient. Their model result for R was in fairly good agreement with the
corresponding experimental value of Sun et al. [1] derived from experiments on thin Cu
films.

5 General comments on the two data evaluation approaches and on Matthiessen’s rule

The basic feature of the approach of Andrews [15] was his experimental observation that
besides the bulk resistivity ρbulk due to phonons and lattice defects, there is a resistivity
contribution (ρGB) proportional to the amount of grain-boundary surface area per unit volume
of the specimen. According to stereological considerations (see “Appendix A.1”), the latter
quantity is inversely proportional to the average grain diameter. Therefore, the total resistivity
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Fig. 10 Correlation between the grain-boundary reflection coefficient R and the specific grain-boundary resis-
tivity ρSGBR from experiments and theory for Cu metal. The diamond symbol represents the best experimental
value for the two parameters as derived in the present work for random grain boundaries in polycrystalline Cu
specimens. The open circles are the calculated values for specific individual CSL grain boundaries of various
types in Cu [3]. The thin solid line indicates a linear trend between the two theoretically derived parameters.
The solid circles were obtained by us from the theoretically calculated ρSGBR values of Ref. [3] via Eq (15)
by using <kGB> � 2.82. The thick solid line represents the trend of the solid circles and their extrapolation
towards the experimental data pair. The solid triangle indicates the theoretically calculated data of Dixit et al.
[61] for a non-twin grain boundary with (111)/(110) interface

of a specimen containing also grain boundaries can be written as ρ � ρbulk + ρGB � ρbulk +
A/d [see Eqs. (1) and (6)]. This relation was shown to be valid in the present paper for both
Ni and Cu under conditions when surface scattering due to the finite specimen dimensions
can be neglected. It is important to emphasize for the approach of Andrews [15] that no
model assumptions are necessary to quantitatively describe the grain-size dependence of the
resistivity and to extract an experimental parameter (A) characterizing the grain-boundary
resistivity.

The physical picture behind the Andrews approach [15] is that we can assign a definite
resistivity value to the unit surface area of a grain boundary, the latter considered as a wall of
finite thickness. As discussed above, delicate measurements [43, 51–53] have demonstrated
that, indeed, there is a definite resistivity increment when measuring the resistivity of a
thin strip specimen containing a single grain boundary in comparison with an identical strip
without grain boundary.

As far as the Mayadas–Shatzkes model [14] is concerned, it relies on the introduction
of a reflection coefficient R characterizing the reflecting capability of grain boundaries for
conduction electrons. In this model, the grain boundaries are considered as planes character-
ized by a potential on which the electrons can be scattered and the scattering results either
in a reflection or a transmission of the electron impinging on the potential wall. Thereby, a
resistivity contribution arises which is proportional to the probability of the electron reflec-
tion characterized by the reflection coefficient R. Evidently, R is a monotonically increasing
function of the grain-boundary scattering potential. In this manner, the reflection coefficient
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R which contains information on the scattering potential of the grain boundaries should also
appear in the resistivity term characterizing the grain-boundary contribution. The total resis-
tivity formula in the MS model, ρMS(d), indeed results in larger resistivity for larger R as is
demonstrated in Figs. 2, 3, 4, 5, 6, 7, and 8.

We should also make some notes on the reliability of the two approaches used for evaluating
the experimental data. As mentioned above, the phenomenological Andrews approach does
not require any model assumptions and as long as the resistivity vs. grain size data can be
described by the empirically found formula of Andrews [15], i.e., Eq. (6), the analysis yields
a reliable experimental parameter for the grain-boundary contribution to the resistivity.

On the contrary, there is a basic problem with the MS model already from the starting point.
Namely, Mayadas and Shatzkes [14], while attempting to solve the Boltzmann equation for
electron transport, made the assumption that the scattering of electrons on grain boundaries
can be characterized by a relaxation time, similarly to the background (bulk) scattering
events and, thus, there is an effective relaxation time for the whole conduction process. This
treatment is equivalent to the assumption of the validity of Matthiessen’s rule. On the other
hand, Landauer [65] pointed out already more than a decade before the work of Mayadas
and Shatzkes [14] that if grain boundaries imagined as reflecting walls are also present, there
is no single relaxation time for the whole conduction process which statement is just in
opposition to the basic assumption of Mayadas and Shatzkes [14]. Particularly Vancea and
coworkers [18, 19] gave strong arguments towards the inappropriateness of the MS model
due to the Landauer-type deficiency. We have also raised already this issue [20] by noting that
the reason for the fact that no relaxation time can be defined for the grain-boundary scattering
event may be that this type of scattering process cannot be treated on equal footing with the
stochastic processes such as scattering on point or line defects and phonons. This is because
at the grain boundaries which are two-dimensional defects, an electron always undergoes a
scattering when it impinges on the grain boundary after having travelled a distance equal to
the average grain diameter if the latter is smaller than the electron mean free path.

We should refer at this point to the work of Munoz and Arenas [2] which provided a
quantum approach to the theory of the transport properties in nanometric metallic structures,
including also scattering at grain boundaries. These authors also formulated a strong criticism
towards the foundations of the MS model and this criticism confirms the above described
concerns about its reliability. An important issue in the work of Munoz and Arenas [2] is the
question of the validity of Matthiessen’s rule. They point out properly that the MS model
[14] actually assumes the validity of Matthiessen’s rule when an effective relaxation time is
introduced. Furthermore, Munoz and Arenas [2] found that the quantum mechanical treatment
of simultaneous bulk and grain-boundary scattering leads to a violation of Matthiessen’s rule.

On the other hand, we have demonstrated in the present paper that the Andrews method
properly describes the experimental grain-size dependence of the resistivity in the form ρ

� ρbulk + ρGB � ρbulk + A/d which formally looks as if Matthiessen’s rule were valid for
the resistivity of a metal in which not only bulk scattering events occur, but also scattering
on grain boundaries. A key point is, however, that the Andrews method does not rely on the
relaxation time approximation and on the electron mean free path concept, but rather simply
formulates the empirically observed fact about the additivity of two resistivity contributions
in accounting for the resistivity in the presence of grain boundaries. So the agreement with
a Matthiessen’s rule type behavior of the Andrews approach [15] is only formal since the
description in the Andrews method does not consider the electron scattering event at grain
boundaries as a stochastic process in contrast to the MS model [14] relying on the relaxation
time approximation.
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The above discussed controversial issue is certainly strongly connected with another con-
cern related to the electron mean free path λ. For a metal with a given average grain size,
when reducing the temperature T , one would expect a signature in the evolution of the ρ (T )
curve somewhere at the temperature where λ becomes smaller than the average grain size,
whereas experimentally there is no such signature around this critical temperature. Similarly,
when at constant temperature we vary the grain size d, one cannot see again any irregularity
of the ρ (d) curve around the grain size where d becomes comparable with or equal to λ.
A theory describing the resistivity as a function of grain size or temperature should account
also for the lack of such signatures in the ρ (d) or ρ (T ) curves around the critical grain size
or temperature, respectively.

Another related evident controversy arises also from the reflection coefficient data of
Table 1. Namely, when using the experimentally derived electron mean free path values
for Ni and Cu, we arrived at R(Ni) ~ 0.35 and R(Cu) ~ 0.46. It follows from these data that
R(Ni) < R(Cu) what strongly contradicts to expectation about the relation between the grain-
boundary reflection coefficients of these two metals by considering that at finite temperatures,
the resistivity of Ni is much larger than that of Cu and, also, A(Ni) ~ 2 A(Cu).

It is clear from the foregoing discussion that although a lot of issues have already been clar-
ified concerning the electron transport processes in nanometric and nanocrystalline metallic
structures, there are still some controversies which require further efforts to understand their
origin.

6 Summary

In the present paper, reported literature data on the grain-size dependence of resistivity of Ni
and Cu metals were critically evaluated. In this evaluation, the results of those reports were
only considered where direct imaging by various microscopy methods was used to deter-
mine the grain size (reports with XRD-based structural characterization only are discussed
separately in “Appendix B”). By this careful data analysis, we have selected those ρexp(d)
data sets which can be considered as reference data characterizing the grain-size evolution
of resistivity in polycrystalline Ni and Cu metals with random grain boundaries. From these,
we have then derived the current best room-temperature values of the Andrews parameter A,
the specific grain-boundary resistivity ρSGBR and the reflection coefficient R for Ni and Cu
metals which are summarized in Table 1. Since the ρexp(d) data were obtained on polycrys-
talline specimens, the deduced parameters represent average values over all possible grain
boundary types and orientations.

Particular attention was paid to analyzing each reported data set, for the first time,
by using both customarily applied approaches, namely the Andrews method [15] and the
Mayadas–Shatzkes model [14] which represent conceptually different approaches in account-
ing for the contribution of grain boundaries to the total resistivity as discussed in Sect. 5.

The experimental data were also confronted with theoretical calculations of the specific
grain-boundary resistivity and the reflection coefficient of various types of grain boundaries
and, apart from the twin-boundary resistivity, there is still room for improving the theoretical
calculations for achieving a better matching with experiments.

An important suggestion from our analysis is that due to the uncertainties of the data
extraction in the MS model, for the evaluation of the experimental resistivity data in metal-
lic specimens with various grain sizes, the Andrews method should always be tested first.
Namely, if this method describes well the grain-size dependence of the resistivity, then we
can derive a reliable experimental parameter characterizing the resistivity contribution of
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grain boundaries for that particular metal. This parameter can then be safely compared with
similar results for other metals or with results of theoretical calculations.

As to the MS model, it is emphasized again that although we are aware of the deficiencies
of its foundations as discussed both in the Introduction and in Sect. 5, we still used it in data
evaluation for completeness since many literature results were reported in this framework.
A comparison with the Andrews approach revealed that there is often a good correspon-
dence between the parameters of the two data evaluation approaches in spite of the apparent
deficiencies of the classical MS model.

It is hoped that the outlined considerations will instigate further experimental and theo-
retical efforts to clarify the microscopic features of the transport processes in the presence
of grain boundaries.
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Appendix

A. Frameworks for evaluating grain-boundary resistivity contributions in metals
from experimental data

A.1 Andrews method

The first attempt to account for the grain-boundary resistivity contribution was the work of
Andrews [15] who noticed that, while studying the resistivity of massive Cu metal sam-
ples with various grain sizes in the micrometer range, there was a resistivity contribution
proportional to the grain-boundary surface area (SGB) per unit volume, i.e., to SGB/V .

The total resistivity ρA in the Andrews approach is written as

ρA � ρbulk + ρGB (1)

where ρbulk is the resistivity of the defect-free and impurity-free state with large grains (this
will be referred to as the bulk state) and ρGB is the total grain-boundary contribution to
the resistivity. The grain boundaries were considered as walls which are characterized by a
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certain resistivity contribution per unit grain-boundary area. Accordingly, ρGB is proportional
to SGB/V and, thus, we can write

ρGB � ρSGBRSGB/V (2)

which expression is used to define the specific grain-boundary resistivity ρSGBR, i.e., the
resistivity increment due to the grain-boundary surface area per unit volume.

According to stereological considerations [66, 67], SGB/V is generally considered to be
inversely proportional to the average grain diameter d, i.e.,

SGB/V � kGB(1/d) (3)

with the constant proportionality factor kGB. Then, the total grain-boundary resistivity is

ρGB � ρSGBR kGB/d � A/d (4)

where we have introduced the Andrews parameter

A � kGBρSGBR (5)

Accordingly, in the Andrews approach, we have for the total resistivity

ρA � ρbulk + A/d (6)

As demonstrated in Sect. 2 on the basis of numerous reports on Ni and Cu, the grain-size
dependence of the resistivity can be well described by Eq. (6) and in such cases, the Andrews
parameter A is an experimentally well-defined quantity.

There have been various approaches to determine the proportionality factor kGB relating
the quantity SGB/V with the mean grain diameter d, which relation is an important topic
in the field of stereology, but a few of them are only mentioned here. According to Smith
and Guttman [66], for a random three-dimensional structure of contiguous grains, the grain-
boundary surface area per unit volume can be expressed as SGB/V � 2/c where c is the
mean linear intercept distance or mean chord length which is the average distance between
the intercepts of a randomly directed line with successive grain boundaries as often applied
when evaluating grain-size images. Furthermore, for a wide range of size distributions of
nearly equi-axed (i.e., not severely elongated) grains, Hensler [67] found that the conversion
from the mean chord length c to the mean grain diameter d is given by the expression d
� 16 c/π2 ≈ 1.62 c. Combining the two above expressions, we finally arrive at the relation
SGB/V � 32/(π2 d) ≈ 3.24/d., i.e., kGB � 3.24 in this case. In contrast to this general treatment
for any general grain shape, Table 4–1 of the book of DeHoff and Rhines [68] gives SGB/V
values for specific regular, equal-sized and space-filling grain shapes (cube, hexagonal prism,
rhombic dodecahedron and truncated octahedron) not in terms of the overall grain diameter,
but rather expressed with a linear dimension on one of the flat faces of the polyhedron.
Later some authors [69, 70] used kGB � 2.37 in Eq. (3), whereas others [15, 35] used kGB

� 2.7 when converting their experimental data into ρSGBR. Due to these differences in the
kGB factors applied in various studies when relating SGB/V and d, evidently, care should
be exercised when comparing results of different studies on a given metal or results on
different metals to reveal what was the actual value of kGB when converting between A and
ρSGBR. Therefore, it is emphasized again that our suggestion is to use primarily the Andrews
parameter A when discussing experimental data for the grain-boundary resistivity since in
this case the stereological problem of converting the measured average grain diameter into
surface area per unit volume (i.e., the exact value of the proportionality factor kGB) does not
interfere with the evaluation of experimental data.
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A.2 Mayadas–Shatzkes (MS) model

While studying the resistivity of Al thin films, Mayadas [71] realized that the thickness
dependence cannot be described by the Fuchs–Sondheimer (FS) model [6, 7] with a con-
stant intrinsic (bulk) resistivity. It was necessary to assume a thickness-dependent intrinsic
resistivity which was ascribed to the presence of grain boundaries due to the small grain
size in the film. This conclusion prompted Mayadas and coworkers [14, 72] to elaborate a
model for thin film resistivity in order to account not only for the scattering of electrons at
external surfaces (FS model), but also at internal surfaces (such as grain boundaries). The
basic features of the MS model can be summarized as follows.

The thin film is considered as consisting of columnar grains extending from the bottom
to the top of the film. Those grain boundaries are taken only as effective scatterers the plane
of which is perpendicular to the electron flow direction and they are characterized with a
short-ranged scattering potential of given height (δ-function potential). The positions of the
two-dimensional grain-boundary planes are randomly distributed along the electron pathway
with an average separation d corresponding to the mean column diameter (or grain size) and
between the grain-boundary positions an isotropic background scattering caused by point
defects and phonons is assumed, corresponding to the scattering in the bulk state of the film
material.

After formulating the Boltzmann equation in the relaxation time approximation for the
above outlined model of the resistivity of a thin film, Mayadas and coworkers [14, 72]
found a solution under the condition that there is a single effective relaxation time τ* for the
simultaneous background (bulk) scattering and grain-boundary scattering and τ* is given by

1/τ ∗ � 1/τbulk + 1/τGB (7)

where τbulk and τGB are the relaxation times for the background and grain-boundary
scattering, respectively.

Along this line, the total resistivity ρMS(d) in the MS model could finally be written as

ρMS(d) � ρbulk f (α) (8)

where the function f (α) is defined as

f (α) � [1 − (3/2)α + 3α2 − 3α3 ln(1 + 1/α)] − 1 (9)

with

α � (λbulk/d)R/(1 − R). (10)

In the last expression, λbulk is the electron mean free path in the bulk state at the temperature
of the experiment and R is the electron reflection coefficient from a grain-boundary wall
characterized by the chosen scattering potential (by definition, we have the relation 0 < R
< 1). Accordingly, the MS model treats the grain boundaries as potential walls on which
the impinging electrons are scattered and, upon scattering, the probability of reflection is R,
whereas the transmission probability is 1 – R. Since the total resistivity in the presence of
grain boundaries is larger than the bulk value (ρMS >ρbulk), it follows that f (α) > 1. We can
also see that according to Eq. (8), the total resistivity in the presence of grain boundaries is
proportional to the bulk resistivity in the MS model.

It should be noted that Eq. (8) describes the thin film resistivity only in the case when
surface scattering by the FS model can be neglected, e.g., for sufficiently thick films. Of
course, the effects of surface scattering and grain-boundary scattering can also be combined
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as formulated already by Mayadas and Shatzkes [14], but in the present paper we restricted
discussion to experimental studies only in which the surface scattering can be neglected in
comparison with the background and grain-boundary scattering, i.e., for massive specimens
and not too thin films.

The derivation of the reflection coefficient R from experimental data proceeds in a manner
that one first calculates the ρMS(d) resistivity as a function of grain size d for various R
values with constant λbulk corresponding to the mean free path of the metal under study at
the measurement temperature. Then, these calculated ρMS(d) functions are compared to the
experimentally measured ρexp(d) curves to find the R value for which ρMS(d) agrees with
ρexp(d). This evaluation can be performed either for massive materials or for thin films with
negligible surface scattering, the latter condition strongly varying with temperature due to
the strong increase of the electron mean free path with decreasing temperature in pure metals.

A.3 Relation between parameters A and R

It was pointed out by Mayadas and Shatzkes [14] that in the limit of α < < 1, their function
f(α) as given in Eq. (9) simplifies to [1 + (3/2)α]. Therefore, in this limit, Eq. (8) can be
written as

ρMS(d) � ρbulk[1 + (3/2)α]. (11)

Expanding this expression and substituting α from Eq. (10), we end up with

ρMS(d) � ρbulk + (3/2)(ρbulkλbulk/d)R/(1 − R). (12)

It is easy to recognize that Eq. (12) corresponds to Eq. (1) of the Andrews method if
we identify the second term of Eq. (12) with the total grain-boundary contribution to the
resistivity:

ρGB � (3/2)(ρbulkλbulk/d)R/(1 − R). (13)

Furthermore, from Eq. (13) we can deduce, by comparison with Eq. (4), that the Andrews
parameter can be expressed with the help of R as follows:

A � (3/2)ρbulkλbulk R/(1 − R). (14)

We can also reverse this expression and then get

R � [1 + (3/2)ρbulkλbulk/A]−1. (15)

We have applied Eq. (15) to calculate the R(Ni) and R(Cu) values by using the correspond-
ing A values determined from an Andrews fit to the experimental data for Ni and Cu. As can
be seen in Table 1, we obtained in this manner R values which are only slightly smaller than
the corresponding values of R obtained from a direct ρMS(d) fit to the experimental ρexp(d)
data for both metals. This demonstrates that once we have reliable experimental resistivity
vs. grain size data sets for a given metal, and the data can be fitted by the Andrews method
(i.e., the resistivity contribution due to grain boundaries scales with the inverse of the grain
size), we can then derive the grain-boundary reflection coefficient with Eq. (15) provided,
furthermore, that we also know the electron mean free path at the measurement temperature.
If there is any uncertainty in the mean free path value, the Andrews parameter still cor-
rectly characterizes the grain-boundary resistivity contribution for the given metal without
any model assumption. It should also be noted that the validity of the application of Eq. (15),
i.e., to convert the A value to an R value, depends on the fulfillment of the condition α �
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(λbulk/d)R/(1 – R) < < 1. In the last column of Table 1, we have determined the fulfillment
of this condition for those R values which were derived from Eq. (15). The data in the last
column indicate that this condition is fulfilled only if d > 135 nm for Ni and if d > 335 nm
for Cu. In spite of this restriction, the A values derived from experimental resistivity data
either below or above the limit for Cu and mainly below the limit for Ni can be fairly well
converted to practically the same R value as obtained from a direct MS fit (i.e., by applying
Eq. 8) to the experimental data. This implies that the validity of Eq. (15) may extend also
beyond the fulfillment of the condition α < < 1.

On the other hand, particular care should be exercised when converting the parameters of
the Andrews method and the MS model as we can see on the example of the erroneous deriva-
tion of the grain-boundary reflection coefficient of Cu by Mayadas and Shatzkes [14] from the
experimental data of Andrews et al. [35]. Mayadas and Shatzkes [14] used the correct value
[ρbulkλbulk]Cu � 6.6×10–16 �m2, but mistakenly put ρSGBR(Cu;4.2 K) � 3.12×10–16 �m2

[35] equal with the right hand side of Eq. (14), i.e., they replaced in this equation the Andrews
parameter A(Cu;4.2 K) � 8.42×10–16 �m2 [35] with ρSGBR(Cu;4.2 K) which quantities
differ by the factor kGB � 2.7 [35] and so Mayadas and Shatzkes arrived at R(Cu;4.2 K) �
0.24. If we calculate R correctly, i.e., we put in Eq. (14) the value A(Cu;4.2 K) � 8.42×10–16

�m2 [35], then we get R(Cu;4.2 K) � 0.460. A comparison of the above correctly deduced
R(Cu;4.2 K) � 0.460 value with the R(Cu,300 K) values in Table 1 reveals a good agreement.
Furthermore, Mayadas and Shatzkes [14] made the same error when calculating R(Al;4.2 K)
� 0.17 (with the help of [ρbulkλbulk]Al � 8.2×10–16 �m2) since by using the experimental
value A(Al;4.2 K) � 6.61×10–16 �m2 [35] instead of ρSGBR(Al;4.2 K) � 2.45×10–16 �m2

[35], we get the correct value as R(Al;4.2 K) � 0.350. It should be noted that by using the
recent theoretical value [ρbulkλbulk]Al � 5.01×10–16 �m2 [5] and the experimental value
A(Al;4.2 K) � 6.61×10–16 �m2 [35], we get R(Al;4.2 K) � 0.468.

B. Comparison of structural parameters deduced from XRD line broadening and direct
microstructure imaging

It has been pointed out in our previous work [16] that from the viewpoint of electrical transport
the average grain size d as deduced from direct imaging by various microscopy methods
(optical microscopy, TEM, EBSD or FIB imaging) is the relevant structural parameter and
not the mean crystallite size x which can be derived by various methods from the broadening
of XRD lines [16, 73–77]. This is because the grains directly imaged and measured by
TEM contain also coherency-breaking intragrain defects such as, e.g., small-angle grain
boundaries, twin boundaries and stacking faults. In addition to the XRD line broadening due
to the small grain size (i.e., due to the finite size of the coherently scattering domains [73]),
the intragrain defects also contribute to the XRD line broadening and, thus, have an effect
on the mean crystallite size x. On the other hand, these defects have a much smaller specific
resistivity than the grain boundaries as evidenced both experimentally [35, 43, 58, 78–80]
and theoretically [3].

Furthermore, for film or foil samples which are typically used for measuring the resistivity,
the commonly applied XRD techniques performed in reflection mode provide the crystallite
size x only in the direction perpendicular to the film/foil plane. On the other hand, from the
viewpoint of electron scattering, the grain boundaries perpendicular to the film/foil plane are
the really important features since the measuring current flows in the plane and the average
distance between these latter grain boundaries, i.e., lateral grain size, cannot be revealed by
these conventional XRD methods. Therefore, in the core part of the present paper, we have
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Fig. 11 Resistivity ρ at room temperature as a function of the TEM grain size d (open circles) and/or the XRD
crystallite size x (full circles) for electrodeposited nc-Ni from our previous work [16]. Arrows connecting an
open and a full circle indicate that the XRD and TEM study was carried out on the same sample. The thin
solid line represents a fit according to the Andrews method to Eq. (6) with fixed ρbulk � 7.24 μ� cm [26]
and with fitted value ATEM � 13.4×10–16 �m2 for the data points displayed as a function of the TEM grain
size and the thick solid line is the same with AXRD � 7.95×10–16 �m2 for the data points displayed as a
function of the XRD crystallite size. The full triangles [69, 70] and squares [81] are also XRD-based data on
electrodeposited nc-Ni

evaluated the data of only those resistivity reports where the lateral grain size was determined
by direct microscopy imaging.

Before discussing here those reports where XRD was only used for structural charac-
terization, first we demonstrate what is the consequence of displaying resistivity data as a
function of the mean crystallite size x on the evaluation of the grain-boundary resistivity
contribution as often has been made in the past. At this point, we should note that the mean
crystallite size is usually smaller than the average grain size (x < d) [16, 74–77] due to the
additional broadening caused by the intragrain defects. To illustrate this, Fig. 11 displays the
room-temperature resistivity data from our previous study [16] on electrodeposited nc-Ni as
a function of the grain size d (open circles) derived from TEM imaging and/or the crystal-
lite size x (full circles) derived from XRD patterns recorded with high accuracy in a wide
angular range which were evaluated with the help of the extended Convolutional Multiple
Whole Profile (eCMWP) fitting method [75–77]. For most of the samples, both XRD and
TEM studies were carried out and these data pairs are connected by arrows in the plot, in
addition to the results on a few samples with one kind of structural investigation only. It can
be seen that the mean crystallite size x is systematically smaller than the grain size d for the
same samples and also the other samples exhibit the same trend.

If we carry out now an Andrews fit according to Eq. (6) separately for the XRD-based
and TEM-based data, we obtain the thin solid (TEM) and thick solid (XRD) fit lines with
Andrews parameter values as ATEM(Ni) � 13.4×10–16 �m2 and AXRD(Ni) � 7.95×10–16

�m2. Evidently, the XRD-based resistivity data for the same samples not only appear as
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shifted to the left, but their A(Ni) value deduced from the Andrews fit is also smaller by
nearly a factor of 2 than the value obtained for the TEM-based data.

McCrea and coworkers [69, 70] also applied the Andrews method for analyzing their
resistivity data on electrodeposited nc-Ni with crystallite sizes ranging from 17 to 55 nm
which were determined by the Scherrer method [73] from the broadening of the main XRD
line and their results are displayed by the full triangles in Fig. 11. By fitting their data to Eq. (6)
and using kGB � 2.37, McCrea and coworkers [69, 70] reported ρSGBR(Ni;295 K) � 2.74×
10–16 �m2 from which we can deduce AXRD(Ni;295 K) � 6.49×10–16 �m2. Madduri
and Kaul [81] studied the resistivity of PP nc-Ni electrodeposits which were structurally
characterized by recording XRD patterns evaluated by the Halder–Wagner method [82] to
deduce the crystallite size and their results are represented by the full squares in Fig. 11.

According to Fig. 11, the XRD-based data by McCrea and coworkers [69, 70] and Madduri
and Kaul [81] fall rather close to our XRD-based data (full circles) [16]. The differences
between various reports [16, 69, 70, 81] are due to the fact that the various XRD evaluation
methods applied in all these works lead, as discussed in Ref. [16], to a different crystallite
size due to the different weighting procedures.

Nevertheless, Fig. 11 clearly demonstrates that evaluating the resistivity on the basis of the
crystallite sizes derived from XRD leads to an underestimated value of the grain-boundary
contribution to the resistivity with respect to an evaluation of the resistivity data on the very
same specimens on a correct basis by using the directly imaged grain sizes.

Even if the absolute value of A(Ni) is incorrect when evaluated on the basis of the crystallite
size, by using the low-temperature resistivity data reported in Refs. [69], [70] and [81], we
have estimated from these data that the observed increase of A(Ni) from the liquid He range
to room temperature is about 29% [69, 70] and 26% [81]. These results are somewhat larger
than the other findings discussed in Sect. 2.1.1 for Ni and in Sect. 2.2.1 for Cu, but we should
keep in mind that A(Ni) values deduced from the XRD-based data of Refs. [69, 70, 81] have
certainly larger errors due to the lower number and larger scatter of these data (see Fig. 11)
in comparison with the TEM-based data (see Figs. 1 and 4).

In the following, we discuss briefly the report of Wissmann [83] on evaporated Ni films
for which the microstructure was studied by XRD to deduce the crystallite size x and the data
were displayed as ρ·x vs. x which yielded a fairly linear plot. Fitting a straight line to these
data, Wissmann [83] determined parameters which we converted into data corresponding to
Eq. (6): ρbulk � 12 μ� cm + A/x with AXRD(Ni;300 K) � 28.8×10–16 �m2. In Fig. 12,
the solid squares represent the resistivity variation of the Ni films of Wissmann [83] with
these parameters in the investigated crystallite size range and the corresponding Andrews
method fit to these data is displayed by the thick dashed line. The A value derived from the
experimental data of Wissmann [83] is definitely too large by a factor of 2 with respect to the
reference value on the basis of the TEM grain sizes [ATEM(Ni;300 K) � 14.7×10–16 �m2].
The reason for the much higher value of A(Ni) for the samples of Wissmann [83] comes
partly from the fact that the bulk Ni resistivity value of ρbulk � 12 μ� cm deduced from the
results on his samples is also well above the bulk Ni value of ρbulk � 7.24 μ� cm [26]. This
is further underlined by the fact that, e.g., Reale [84] reported a resistivity value for a 10-nm-
thick evaporated Ni film that was about half of the value obtained by Wissmann [83] for the
same thickness. It is not clear what is the origin of the too high resistivities of the Ni films of
Wissmann [83], but an increased surface roughness or an incidental contamination/oxidation
of the films may have easily resulted in the excess resistivity observed. We mention this
clearly overestimated A(Ni) result of Ref. [83] with emphasis since it was often cited in
previous works as an experimental basis for comparison with theoretical calculations on Ni.
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Fig. 12 Resistivity ρ at room temperature for Ni as a function of the TEM grain size d or the XRD crystallite
size x. The solid line represents the fit according to the Andrews method to Eq. (6) with fixed ρbulk � 7.24
μ� cm and with fitted value ATEM � 14.7×10–16 �m2 for the TEM-based data as obtained in this work
(see Fig. 1). The solid squares represent the average XRD-based data on Ni thin films of Ref. [83] in the
investigated crystallite size range. The dashed thick line corresponding to ρbulk � 12 μ� cm and AXRD �
28.8×10–16 �m2 represents the fit according to Eq. (6) for the XRD-based data on Ni thin films of Ref. [83].
The solid triangle symbols and the open diamond symbols represent the XRD-based data of Ref. [85] and Ref.
[86], respectively, on Ni thin films

The solid triangle symbols and the open diamond symbols in Fig. 12. are the data from
Ref. [85] and [86] on evaporated Ni thin films, respectively, for which the microstructural
characterization was performed by XRD. The resistivity data of Ref. [85] are close to the
data of Wissmann [83] and are again evidently too large with respect to the TEM-based
reference ρexp(d) data (thick solid line in Fig. 12). On the other hand, we can see that the
data of Ref. [86] are mostly close to the XRD-based data on Ni in Fig. 11 although some
data points of Ref. [86] strongly deviate from the common trend (e.g., at about x � 10 nm,
there are resistivity data with both 10 and 30 μ�·cm). This fact and, furthermore, the large
difference in the resistivity values of Refs. [85] and [86], although reported from the same
laboratory, underlines that in the case of thin films, sample preparation details influencing
deposit quality may strongly influence the actual measured resistivities and, thus, also the
deduced grain-boundary resistivity parameters.

We make a note also on the resistivity results of Mannan and Karim [87] on 100-nm-thick
evaporated Cu films. These authors determined the XRD crystallite size x by the Scherrer
method [72]. If we put their room-temperature resistivity values in Fig. 13 (solid circles),
we can see that they fall well below the TEM-based reference data, a situation similar to
what we could already see in Fig. 11 for Ni. Therefore, the grain-boundary resistivity data
underestimated from the experimental results of Mannan and Karim [87], although also
often referred to in the literature, once more underline the importance of the difference in the
microstructure evaluation when performed by TEM and XRD.
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Fig. 13 Room-temperature resistivity ρ for Cu films as a function of the TEM grain size d or XRD crystallite
size x as indicated in the legend. The solid line represents a fit to Eq. (6) with fixed ρbulk � 1.72 μ� cm [26]
and with fitted value A � 8.69×10–16 �m2 for the TEM-based data of Ref. [1] as obtained in this work. The
solid circles represent the XRD-based data of Ref. [87]

C. Estimating the maximum resistivity of nc-Ni and nc-Cu

According to Eq. (6), the resistivity of a nc metal can be extremely large for very small grain
sizes, but this is certainly unphysical. Therefore, in Ref. [16], we estimated the maximum
possible resistivity for nc-Ni and this is briefly recalled here. By extrapolating the reported
temperature dependence of the resistivity of liquid Ni metal to room-temperature, it was
established [16] that the resistivity of the hypothetical amorphous Ni metal would be about
70 μ� cm (uncertainty:±10 μ� cm). This means that a massive Ni specimen at room
temperature cannot have a resistivity larger than this value of the structurally most disordered
(amorphous) state of Ni. Evidently, any crystalline state of Ni must also not exceed this limit
at room temperature. Taking our best A(Ni;300 K) � 14.7×10–16 �m2 value as determined
in the present paper, with the help of Eq. (6) we can estimate that the room-temperature
resistivity of nc-Ni reaches 70 μ�cm at a grain size of about d � 2.3 nm (due to the above
specified uncertainty of the room-temperature resistivity of amorphous Ni, the corresponding
possible d range is from 2 nm to 2.8 nm). Based on the known models for the grain-boundary
and intercrystalline volume fraction [88] and taking 1 nm for the grain boundary thickness,
we could then deduce [16] that at a grain size of d � 2.3 nm, the fraction of atoms within the
crystallites reduces to about 20%, whereas the fraction of atoms in both the grain boundaries
and in the triple-line junctions amounts to about 40%. This means that in nc-Ni at 2.3 nm
grain size most of the atoms are in a topologically rather disordered state eventually very
similar to an amorphous state so the material can indeed have a resistivity corresponding to
that of amorphous Ni.

We will now make the same estimate for the maximum room-temperature resistivity of a
massive Cu specimen with decreasing grain size. Similarly as we did above for Ni, we will
rely on the measured temperature dependence of the resistivity of liquid Cu [89] which is
then extrapolated to room temperature. It is obtained from this extrapolation that the room-
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temperature resistivity of the hypothetical amorphous Cu metal would be about 12.2 μ� cm.
This means that a massive Cu specimen at room temperature cannot have a resistivity larger
than this value of the structurally most disordered (amorphous) state of Cu. Taking our best
A(Cu;300 K) � 8.69×10–16 �m2 value as deduced in the present paper, with the help of Eq.
(6) we can estimate that the room-temperature resistivity of nc-Cu reaches 12.2 μ�cm at a
grain size of about d � 8.5 nm. By assuming again a grain-boundary thickness of 1 nm and
using the model of Palumbo et al. [88] on the grain-boundary and intercrystalline volume
fraction, we can deduce that at a grain size of d � 8.5 nm, the fraction of atoms within the
crystallites reduces to about 65%, and it is about 31% in the grain boundaries and about 4% in
the triple-line junctions. This means that in nc-Cu at 8.5 nm grain size, about one third of the
atoms are in a topologically rather disordered state and this seems to be sufficient to induce
a resistivity increase making the total resistivity comparable to the resistivity of amorphous
Cu. It follows from the above data that at T � 300 K, the resistivity of crystalline Cu increases
upon complete structural disorder by a factor of 7.1 (� 12.2/1.72). This compares well to the
corresponding resistivity increase of Ni at T � 300 K upon structural disorder by a factor of
9.7 (� 70/7.24).

By having a very similar relative resistivity increase of Cu and Ni upon structural disor-
dering (with ratios 7.1 and 9.7, respectively), it is not a straightforward task to rationalize
the different critical grain sizes of the two metals (Ni: 2.3 nm; Cu: 8.5 nm) at which the nc
state reaches a resistivity equal to that of the amorphous (i.e., the structurally most disor-
dered) state until we do not have a more detailed theoretical understanding of the influence
of structural disorder on the electrical resistivity in Ni and Cu.
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