Skip to main content
Log in

Tracking quantum state evolution by the Berry curvature with a two-level system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate two kinds of topological structures (sphere and torus) spanned by the controlled parameters of a driven two-level system’s Hamiltonian and consider the connection between the structures and the system’s dynamics. We discuss the Berry curvature obtained through the dynamical response method, show the certain physical and observable manifolds including the gapped region probed by integrating the Berry curvature and demonstrate the system’s state evolution can be tracked and manipulated by extracting the Berry curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. While this paper was in preparation, we became aware of the interesting work published considering the similar Hamiltonian manifold transformation in Ref. [13].

References

  1. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392, 45 (1984)

    MathSciNet  MATH  ADS  Google Scholar 

  2. V. Gritsev, A. Polkovnikov, Dynamical quantum Hall effect in the parameter space. Proc. Natl. Acad. Sci. U.S.A. 109, 6457 (2012)

    Article  ADS  Google Scholar 

  3. M.Z. Hasan, C.L. Kane, Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  4. S. Sugawa, F. Salces-Carcoba, P.R. Perry, Y.C. Yue, I.B. Spielman, Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 6396 (2018)

    Article  MathSciNet  Google Scholar 

  5. N. Fläschner, B.S. Rem et al., Experimental reconstruction of the Berry curvature in a Floquet Bloch band. Science 352, 6289 (2016)

    Article  Google Scholar 

  6. J. Provost, G. Vallee, Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Z.L. Zhang, M.F. Chen, H.Z. Wu, Z.B. Yang, Quantum simulation of Abelian Wu–Yang monopoles in spin-1/2 systems. Laser Phys. Lett. 14, 045204 (2017)

    Article  ADS  Google Scholar 

  9. Z.L. Zhang, M.F. Chen, H.Z. Wu, Z.B. Yang, Quantum simulation of gravitational-like waves in minisuperspace with an artificial qubit. Phys. Rev. D 95, 046010 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  10. M.D. Schroer, M.H. Kolodrubetzet et al., Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. 113, 050402 (2014)

    Article  ADS  Google Scholar 

  11. M.V. Berry, J.M. Robbins, Chaotic classical and half-classical adiabatic reactions: geometric magnetism and deterministic friction. Proc. R. Soc. 442, 659 (1993)

    MathSciNet  ADS  Google Scholar 

  12. P. Roushan, C. Neill et al., Observation of topological transitions in interacting quantum circuits. Nature 515, 241 (2014)

    Article  ADS  Google Scholar 

  13. B. Mera, K. Sacha, Y. Omar, Topologically protected quantization of work. Phys. Rev. Lett. 123, 020601 (2019)

    Article  ADS  Google Scholar 

  14. D.J. Struik, Lectures on Classical Differential Geometry (Addison-Wesley Pub. Co., Boston, 1961)

    MATH  Google Scholar 

  15. C. Song, S.B. Zheng et al., Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun. 8, 1061 (2017)

    Article  ADS  Google Scholar 

  16. W. Ning, X.J. Huang et al., Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett. 123, 060502 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 11875108, 11405031, and the Natural Science Foundation of Fujian Province under Grants 2018J01412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Biao Yang.

Appendix A: A concise comparison between two approaches for calculating the Berry curvature

Appendix A: A concise comparison between two approaches for calculating the Berry curvature

In general case, the first Chern number of the ground state manifold is encoded in the gauge-invariant curvature 2-form which can be written as [3]

$$\begin{aligned} {\mathcal {B}=\textit{B}_{{\theta \phi }}\mathrm{d}\theta \wedge \mathrm{d}\phi ,} \end{aligned}$$
(A1)

where \(\textit{B}_{{\theta \phi }}\) is the conventional Berry curvature. For our two-level Hamiltonian, the conventional Berry curvature of the ground state in the gapped region can be expressed as

$$\begin{aligned} \textit{B}_{{\theta \phi }}=\frac{1}{2}\hat{x}\cdot \left( \frac{\partial \hat{x}}{\partial \theta }\times \frac{\partial \hat{x}}{\partial \phi }\right) \end{aligned}$$
(A2)

via the normalized vector component \(\hat{x}={\pmb {x}}/\Vert \pmb {x}\Vert \), which in the sphere and the torus cases are, respectively,

$$\begin{aligned} \pmb {x}_{\text {sph}}= & {} \left( {x}^{1},{x}^{2},{x}^{3}\right) _{\text {sph}} =\left\{ \hat{\sigma }^{\mu }\right\} _{\text {sph}} =\left\{ \hat{\sigma }^{x},\hat{\sigma }^{y},\hat{\sigma }^{z}\right\} _{\text {sph}}=\left( \Omega \cos \phi ,~\Omega \sin \phi ,~\Delta \right) \end{aligned}$$
(A3)

and

$$\begin{aligned} \pmb {x}_{\text {tor}}= & {} ({x}^{1},{x}^{2},{x}^{3})_{\text {tor}} =\left\{ \hat{\sigma }^{\mu }\right\} _{\text {tor}} =\left\{ \hat{\sigma }^{x},\hat{\sigma }^{y},\hat{\sigma }^{z}\right\} _{\text {tor}} =\left( \Delta \cos \phi ,~\Delta \sin \phi ,~\Omega \right) . \end{aligned}$$
(A4)

We can then calculate the conventional Berry curvatures of the two families via Eq. (A2) to be

$$\begin{aligned} \textit{B}_{{\theta \phi }}^\mathrm{{S}^2} =\frac{\Omega _1^2\sin \theta \left( \Delta _2\cos \theta +\Delta _1\right) }{2\left[ \left( \Delta _1\cos \theta +\Delta _2\right) ^2+\Omega _1^2\sin ^2\theta \right] ^{3/2}} \end{aligned}$$
(A5)

and

$$\begin{aligned} \textit{B}_{{\theta \phi }}^\mathrm{{T}^2}=-\frac{\Omega _1\left( 2\left( \Delta _1^2+\Delta _2^2\right) \cos \theta +\Delta _2 \Delta _1(\cos 2\theta +3)\right) }{4\left[ \left( \Delta _1\cos \theta +\Delta _2\right) ^2+\Omega _1^2\sin ^2\theta \right] ^{3/2}}. \end{aligned}$$
(A6)

The corresponding first Chern number of them can be calculated as

$$\begin{aligned} \mathbb {C}_1\left( \text {S}^2\right) =\frac{1}{2\pi }\int _{0}^{\pi }\mathrm{d}\theta \int _{0}^{2\pi }\mathrm{d}\phi ~\textit{B}_{\theta \phi }^\mathrm{{S}^2} =\frac{1}{2}\left( \frac{\Delta _1-\Delta _2}{\sqrt{\left( \Delta _1-\Delta _2\right) {}^2}}+\frac{\Delta _1+\Delta _2}{\sqrt{\left( \Delta _1+\Delta _2\right) {}^2}}\right) \end{aligned}$$
(A7)

and

$$\begin{aligned} \mathbb {C}_1\left( \text {T}^2\right) =\frac{1}{2\pi } \int _{0}^{2\pi }\mathrm{d}\theta \int _{0}^{2\pi }\mathrm{d}\phi ~\textit{B}_{\theta \phi }^\mathrm{{T}^2}=0. \end{aligned}$$
(A8)

From Eq. (A7), we notice that the first Chern number is not well defined for \(\Delta _1=\pm \Delta _2\).

We now numerically calculate the Berry curvature using the dynamical method as follows [2]:

$$\begin{aligned} \textit{B}_{{\theta \phi }}^{\text {sph}}= & {} \frac{\langle \psi (t)|\partial _{\phi }\hat{\textit{H}}_{\text {sph}}|\psi (t)\rangle }{\theta _t^{\text {sph}}}\nonumber \\= & {} \frac{1}{2\theta _t^{\text {sph}}} \bigg \langle \psi (t)\bigg |\partial _{\phi }\left( \begin{array}{cc} \Delta &{} \Omega {\textit{e}}^{-\textit{i}\phi } \\ \Omega {\textit{e}}^{\textit{i}\phi } &{} -\Delta \\ \end{array} \right) \bigg |\psi (t)\bigg \rangle =\frac{\Omega _1\sin \theta }{2\theta _t^{\text {sph}}} \bigg \langle \psi (t)\bigg |\left( \begin{array}{cc} 0 &{} -i \\ i &{} 0\\ \end{array} \right) \bigg |\psi (t)\bigg \rangle \end{aligned}$$
(A9)
$$\begin{aligned}= & {} \frac{\Omega _1\sin \theta }{2\theta _t^{\text {sph}}} \langle \hat{\sigma }^y\rangle =\frac{\Omega _1\sin \theta }{2\theta _t^{\text {sph}}} \text {Tr}\left( \hat{\rho }\hat{\sigma }^y\right) \end{aligned}$$
(A10)

and

$$\begin{aligned} \textit{B}_{{\theta \phi }}^{\text {tor}}= & {} \frac{\langle \psi (t)|\partial _{\phi }\hat{\textit{H}}_{\text {tor}}|\psi (t)\rangle }{\theta _t^{\text {tor}}}\nonumber \\= & {} \frac{1}{2\theta _t^{\text {tor}}} \bigg \langle \psi (t)\bigg |\partial _{\phi }\left( \begin{array}{cc} \Omega &{} \Delta {\textit{e}}^{-\textit{i}\phi } \\ \Delta {\textit{e}}^{\textit{i}\phi } &{} -\Omega \\ \end{array} \right) \bigg |\psi (t)\bigg \rangle =\frac{\Delta _1\cos \theta +\Delta _2}{2\theta _t^{\text {tor}}} \bigg \langle \psi (t)\bigg |\left( \begin{array}{cc} 0 &{} -i \\ i &{} 0\\ \end{array} \right) \bigg |\psi (t)\bigg \rangle \nonumber \\ \end{aligned}$$
(A11)
$$\begin{aligned}= & {} \frac{\Delta _1\cos \theta +\Delta _2}{2\theta _t^{\text {tor}}}\langle \hat{\sigma }^y\rangle =\frac{\Delta _1\cos \theta +\Delta _2}{2\theta _t^{\text {tor}}} \text {Tr}\left( \hat{\rho }\hat{\sigma }^y\right) ,\nonumber \\ \end{aligned}$$
(A12)

where \(\hat{\rho }\) is the density matrix of the lower dressed state \(|\psi (t)\rangle =|\psi _g\rangle \) in Eq. (22). Equations (6), (A9) and (A11) show the approach to measure Berry curvature is a leading order approximation, good to the first order in the ramping rate \(\theta _{t}\) (sphere case). However, we notice that the first Chern number in the torus case is no longer a constant number outside the gapped region. The various oscillations in Figs. 3 and 5 noted in the text could not happen in the case of the conventional Berry curvature. From Ref. [2], we know that the method is not that perfect when the ramp velocity is sufficiently large (large deviation from the linear response regime). Therefore, the dynamically non-adiabatic response method we adopt here actually is not equivalent to the conventional one under certain circumstances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZL., Xu, P. & Yang, ZB. Tracking quantum state evolution by the Berry curvature with a two-level system. Eur. Phys. J. Plus 136, 270 (2021). https://doi.org/10.1140/epjp/s13360-021-01258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01258-6

Navigation