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Abstract We consider light dark matter candidates originated from the evaporation of
Schwarzschild primordial black holes, with masses in the range 10−5–109 g. These can-
didates are beyond standard model particles with negligible couplings to the other particles,
so that they interact only gravitationally. Belonging to the category of warm dark matter,
they nevertheless spoil structure formation, with a softer impact for increasing values of the
candidate spin. Requiring such candidates to fully account for the observed dark matter, we
find that the scenario of black hole domination is ruled out for all spin values up to 2. For the
scenario of radiation domination, we derive upper limits on the parameter β (the primordial
black hole energy density at formation over the radiation one), which are less stringent the
higher the candidate spin is.

1 Introduction

Dark matter (DM) candidates must be beyond standard model (SM) particles, neutral and
stable. Having so far escaped detection, they must have tiny interactions with SM particles.
It would be even possible that they interact only gravitationally.

A possible production mechanism for DM particles, taking place in the early universe,
is via evaporation [1] of primordial black holes (BHs), with masses in the broad range
10−5–109 g. In this case, all particles with mass below the Hawking temperature of the
BH are emitted, with weights simply given by their number of degrees of freedom (dof).
It has been proposed that the particles produced via the evaporation mechanism might be
responsible for the excess of baryons over anti-baryons [2,3], for the observed dark matter
abundance [4–6] and, if sufficiently light, also for dark radiation [5,7–9]. Apart from the case
of gravitino production [10,11], the primordial BH density at formation for the range 10−5–
109 g is at present unconstrained, as reviewed, for example, in Ref. [12]. However, Ref. [13]
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(see also Ref. [14]) derives an upper bound on the fraction of the universe collapsed into
primordial BHs in this very mass range from possible backreaction gravitational waves from
primordial BHs. Ref. [15] considers constraints on DM particles charged under a hidden gauge
group.

Depending on the fraction of primordial BHs at formation with respect to radiation β,
there is a possibility that the universe was BH dominated before the evanescence of the BHs
[4,16,17]: this situation is referred to as BH domination. The case in which the BHs evaporate
before they dominate the energy content of the universe is called radiation domination.

Fujita et al. [4] calculated the contribution to DM by primordial BH evaporation into new
particles beyond the SM: they found that a significant contribution to DM could come from
stable particles that are either superheavy or light, that is, with masses in the MeV range. In
the light case, DM candidates would be warm, while in the superheavy case they would be
cold. Exploiting the warm DM velocity constraints available at that time [18], Ref. [4] first
discussed also the lower limits on the mass of the light DM candidates, using an order-of-
magnitude argument essentially based on the geometrical optics approximation for Hawking
radiation. This approximation ignores the low-energy suppression in the greybody factors
[19,20], accounting quite well for the case in which the warm DM candidate has s = 0,
but missing to reproduce the case of different spins. For an up-to-date presentation of this
argument, see [21,22].

A more sophisticated analysis was done by Lennon et al. [5]. They also adopted the
geometrical optics approximation, but included the redshift effect in the calculation of the
momentum distribution of the emitted particles. Their result is an estimate of the number of
particles that are still relativistic, with a spin dependence reintroduced a posteriori and based
on greybody factors derived from the older literature [20,23]. As a rough-and-ready criterion
for successful structure formation, they impose that when the temperature of the universe
drops below 1 keV (at which stage the horizon mass is about 109 solar masses), less than
10% of the DM is relativistic. The result of this ingenious, but quite arbitrary, argument is
that, for BH domination, warm DM candidates with s ≤ 1 are excluded, those with s = 3/2
are marginally allowed, while those with s = 2 naively survive. Summarizing, for the lower
spin values (say s = 0, 1/2, 1), the order-of-magnitude results of Ref. [4] were confirmed
by Ref. [5], but the latter analysis was, however, not fully conclusive for the higher spins
(s = 3/2, 2).

The more recent analysis of Baldes et al. [22] goes some step further. As suggested in
[5], they include the redshift effect in the momentum distribution of the emitted particles at
evaporation and derive the related phase space distribution as an input for the Boltzmann code
CLASS [24–26]. The latter allows to extract the matter power spectrum for warm DM from
primordial BHs and to compare it to the standard cold DM case thanks to the transfer function.
This enables to constrain warm DM from primordial BHs using the structure formation
bounds from Lyman data already derived for the well-known case of DM thermal relics.
The analysis of Ref. [22], however, relies on the geometrical optics approximation and, in
particular, provides quantitative results only for the s = 1/2 case, which agree with previous
order-of-magnitude estimates [4,21], also based on the geometrical optics approximation.
The case for the higher spins could thus not be quantitatively clarified (apart from a qualitative
mention of the greybody effects in appendix A of Ref. [22]) with respect to the results of
Ref. [5].

Given the present lack of robust results about the fate of warm DM candidates with high
spin values, we think it would be useful and timely to make a dedicated study. The aim of
this work is precisely to provide a complete and updated study on the viability of warm DM
candidates from the evaporation of primordial BHs.
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In order to numerically account for the greybody factors associated with the different
spins, we use the recently developed and publicly available code BlackHawk [27]. We also
compare the numerical results from BlackHawk with the analytical ones derived in the
geometrical optics approximation. Taking into account the redshift effects as suggested in
Ref. [5], we study the impact on structure formation by calculating the transfer function with
CLASS, as suggested in Ref. [22]. We derive the transfer function for all spins values, finding
that, assuming BH domination, the scenario of warm DM from primordial BHs is excluded
for all spins and for all BH masses in the range 10−5–109 g. Our results for the s = 0
case agree with previous order-of-magnitude estimates [4,21]. For radiation domination,
we derive the upper limits on β (or, equivalently, on the warm DM mass) for the various
warm DM spins. For the case s = 1/2 (the only for which the comparison is possible), we
find conceptual differences with respect to the results of Ref. [22], but substantial numerical
agreement.

In this work, we consider BH evaporation as the only production mechanism. The conse-
quences of allowing for other production mechanisms have been recently explored in refs. [28]
and [29,30]. For a mixed model of DM production, Ref. [28] proved that a primordial BH
dominated period of DM creation by evaporation cannot explain the abundance observed
today. For an updated analysis of the possibility that the matter–antimatter asymmetry is
due to particles produced by primordial BHs evaporation, we refer the interested reader to
Ref. [31] for GUT baryogenesis and to Ref. [32] for leptogenesis. DM and baryogenesis in
the case of stable remnants from thermal 2-2-holes have been studied in Ref. [33].

The paper is organized as follows. In Sect. 2, we introduce our notation and review basic
ideas about formation and evaporation of primordial BHs. In Sect. 3, we discuss the instanta-
neous primary spectrum for the emitted particles. In Sect. 4, we discuss the dynamics of the
primordial BH abundance. Sect. 5 deals with the momentum distribution at evaporation and
Sect. 6 with the calculation of the DM phase space distribution. The calculation of the DM
abundance and the impact on structure formation are presented in Sects. 7 and 8, respectively.
The discussion of the results and our conclusions are presented in Sect. 9.

In order to have a better control of our formulas for dimensional analysis and numerical
computations, we do not use natural units.

2 Preliminaries on primordial BHs

The proposal of the early existence of collapsed objects, later called primordial BHs,
dates back to 1967 [34]. The formation of primordial BHs from early universe inhomo-
geneities was considered in refs. [1,35,36]. However, since inflation removes all pre-existing
inhomogeneities, any cosmologically interesting primordial BH density has to be created
after inflation. Various mechanisms have been proposed, as, for instance: that they formed
from large inhomogeneities arising through quantum effects during inflation or that some
sort of phase transition may have enhanced primordial BHs formation from primordial
inhomogeneities or triggered it. We refer to [12,37] for reviews of these proposals, with
proper references to the associated literature. In the following, we present our notation
for the early universe dynamics and review the primordial BH formation and evaporation
mechanisms.
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2.1 Radiation dominated era

According to the first Friedmann equation (neglecting the curvature and cosmological con-
stant terms), the early universe evolution is described by(

ȧ

a

)2

≡ H(t)2 = 8πG

3
ρ(t) , (1)

where a(t) is the scale factor, H(t) is the Hubble parameter, ρ(t) is the energy density of
the universe and G is the Newton gravitational constant, G � 6.674 × 10−11 m3/(kg s2).
Instead of G, it might be convenient to rather use the Planck mass, MPl ≡ √

h̄c/G ≈
1.221 × 1019 GeV/c2 ≈ 2.176 × 10−8 kg.

In the early hot and dense universe, it is appropriate to assume an equation of state
corresponding to a fluid of radiation (or relativistic particles). During radiation domination,
ρ ∝ a−4, a(t) ∝ t1/2, and

H(t) = 1

2t
. (2)

At relatively late times, non-relativistic matter eventually dominates the energy density
over radiation. A pressureless fluid leads to the expected dependence ρ ∝ a−3, a(t) ∝ t2/3,
and

H(t) = 2

3t
. (3)

The radiation energy density (at high temperatures) can be approximated by including
only those particles which are in thermal equilibrium and have masses below the temperature
T of the radiation bath

ρR = π2g∗(T )

30

(kBT )4

(h̄ c)3 c2 , g∗(T ) =
∑
B

gB + 7

8

∑
F

gF , (4)

where kB is the Boltzmann constant, kB � 8.617 × 10−5 eV/K, h̄ is the reduced Planck
constant, h̄ � 6.582 × 10−16 eV s, c is the velocity of light in the vacuum, c � 2.998 × 108

m/s, and gB(F) is the number of degrees of freedom (dof) of each boson (fermion).
Below the electron mass, only the photon (gγ = 2) and three light left-handed neutrinos

contribute, so that g∗(T ) = 7.25. Below the muon mass, also the electron (and the positron)
has to be included, so that g∗(T ) = 10.75. For the full SM, here defined including three light
left-handed neutrinos, g∗(T ) = 106.75. Adding to the SM three light right-handed neutrinos
(as in the case of neutrinos with Dirac nature or in the case of a low-scale seesaw mech-
anism), g∗(T ) = 112. At higher temperatures, g∗(T ) will be model-dependent. Including
the massless graviton (gG = 2) has the effect of adding 2 units to the previously mentioned
values of g∗(T ).

2.2 Formation of primordial BHs

As reviewed, for instance, in Ref. [12], if a primordial BH forms at the time tf during the
radiation dominated era, typically its mass is close to the value enclosed by the particle
horizon near the end of inflation

MBH = γ
4π

3
ρR(tf ) (2 c tf )

3 = γ
4π

3
ρR(tf )

(
c

H(tf )

)3

, (5)

where γ � 1 is a numerical factor that depends on the details of the gravitational collapse,
ρR(tf ) and H(tf ) are, respectively, the radiation density and the Hubble parameter at the
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formation of the BH, and in the last equality, we used Eq. (2). Using Eq. (1), we can also
write

MBH = γ

2

(MPlc2)2

h̄ H(tf )

1

c2 ≈ γ
1010 GeV

h̄ H(tf )
104 g � γ

3
g , (6)

where the last lower bound follows from the fact that CMB observations put an upper bound
on the Hubble scale during inflation, h̄HI � 3×1014 GeV at 95% C.L. [38], and H(tf ) � HI.
In the literature, the value γ = 1/(3

√
3) ≈ 0.2 is usually taken as reference value [12]; in

this case, the lower limit would become MBH � 0.07 g. For values of γ smaller than 0.2,
the lower bound on the BH mass would get accordingly weaker. However, this constraint
applies only to conventional inflationary scenarios, i.e. the standard slow-roll models of
inflation with Einstein gravity (see, for example, the review [39] and references therein).
In more sophisticated scenarios, e.g. the recent model [40], the scale of inflation cannot be
determined by CMB observations. In any case, the mass of primordial BHs should be larger
than the Planck mass, namely MBH � 10−5 g. As is well known, there is also an upper bound
on the abundance of primordial BHs of mass MBH � 109 g (not a theoretical bound), because
of their effects on BBN yields, see, for example, Ref. [41] for a recent analysis. The range of
primordial BH masses between these bounds is at present generically unconstrained [12].

Recalling Eq. (2), the primordial BHs formation time is easily calculated from Eq. (6)

tf
h̄

= 1

γ

MBHc2

(MPlc2)2 . (7)

As for the radiation temperature at formation, combining Eqs. (1), (4) and (6), we have

kBTR(tf ) =
(

45γ 2

16π3g∗(tf )

)1/4 (
MPl

MBH

)1/2

MPlc
2 . (8)

The temperature and the time at formation of primordial BHs, as a function of the their mass
at formation, are plotted, for example, in Fig. 1 of Ref. [21].

It is useful to introduce the parameter β defined as the BH energy density over the radiation
energy density at the formation time

β ≡ ρBH(tf )

ρR(tf )
= MBH

nBH(tf )

ρR(t f )
, (9)

where nBH(tf ) is the primordial BH number density at formation and the last equality holds
only for a monochromatic mass distribution.

2.3 Evaporation of primordial BHs

Here, we review the basic formulas describing the evaporation mechanism, in the case of a
Schwarzschild (that is, uncharged and non-rotating) primordial BH.

Consider a Schwarzschild BH of mass MBH(t). (We neglect the time dependence only
when we refer to the formation time.) Hawking radiation mimics thermal emission from a
blackbody with a temperature TBH(t), given by [1]

kBTBH(t) = 1

8π

(MPlc2)2

MBH(t) c2 . (10)

Hereafter, we denote by TBH the Hawking temperature at formation, namely TBH = T (tf ).
As discussed, for example, in [42], at the time t , such a hole emits particles of type i and spin

123



  261 Page 6 of 24 Eur. Phys. J. Plus         (2021) 136:261 

si and total energy between (E, E + dE) at a rate, per dof, given by

1

gi

d2Ni

dt dE
= d2N

dt dE
= 1

2π h̄
�si (E, TBH((t))

1

e
E

kBTBH(t) − (−1)2si
, (11)

where E2 = p2c2 +m2c4, the greybody factor �si is a dimensionless absorption probability
for the emitted species (it is in general a function of E , MBH(t) and the particle’s internal
dof and rest mass) and gi are the internal dof of the i th particle, which account for spin,
polarization and colour. For the counting of the internal dof, we follow the notation of [27]
(see their table 3).

Let us consider in some detail the SM. For the Higgs boson (s = 0), gh0 = 1. For
the massless (s = 1) photon and the 8 gluons, gγ = 2 and gg = 16. For the massive
(s = 1) W± and Z bosons, gW+ = gW− = gZ = 3. As for the fermions (s = 1/2):
the charged leptons, being Dirac fermions, have ge = gμ = gτ = 4; the neutrinos have
gνe = gνμ = gντ = 2(4) in the case they are Majorana (Dirac) particles, respectively; the
quarks have gu = gc = gt = gd = gs = gb = 12. Finally, one might also include the
graviton (s = 2), with gG = 2.

As E → +∞, each species approaches the geometrical optics limit

�si(E, TBH(t)) → 27
E2(MBH(t)c2)2

(MPlc2)4 = 27

(8π)2

(
E

kBTBH(t)

)2

, (12)

but falls off more quickly as E → 0, with the higher spins producing the stronger cut-offs.
When a massless particle scatters off a non-rotating, uncharged hole, the low-energy (that
is GME/h̄c3 � 1) analytical form of �si , averaged over all orientations of the hole with
respect to the spin-weighted spherical harmonics and angular momentum quantum numbers
of the incoming field, has been computed in Ref. [19] (see also [20]). The nonzero rest mass
mDM of the DM particles acts as a cut-off in their emission at low energy, but the precise
shape of the greybody factor around this cut-off is not relevant here since kBTBH � mDMc2

at all times.

2.4 Rate of mass loss and BH lifetime

The rate of mass loss for an evaporating BH is proportional to the total power emitted

− c2 dMBH

dt
= dE

dt
=

∑
i

∫ ∞

0
dE E

d2Ni

dt dE
. (13)

To parametrize this, Page [20] introduced the adimensional Page function f (MBH) such that

dMBH

dt
= −c2M4

Pl

h̄

f (MBH)

M2
BH

, (14)

where the time dependence of MBH is understood.
The BH lifetime τ is

τ

h̄
= 1

c2M4
Pl

∫ MBH

0
dM

M2

f (M)
. (15)

Defining tev as the time of the BH evanescence, we practically have τ = tev .
For the SM, the function f (MBH) is constant over the range of BH masses we are interested

in, namely 10−5 − 109 g, because all SM dof are already radiated by a 109 g BH. Its value
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(not including gravitons) is f (MBH) = 4.26 × 10−3. This is the value that we are going to
use in the following.

Assuming f (MBH) constant over the BH lifetime, the latter is easily found to be

τ

h̄
= 1

3 f (MBH)

(MBHc2)3

(MPlc2)4 , (16)

which corresponds to the following time dependence of the BH mass,

MBH(t) = MBH

(
1 − t

τ

)1/3

. (17)

3 Instantaneous primary spectrum

In this paper, we consider the possibility that, on top of the SM, a DM candidate of massmDM

is produced in the evaporation process. It is well known that there are two possible solutions,
denoted as “light” and “heavy” DM, according to the fact that the particles are produced
during all the BH lifetime or just in its final stages (see, for example, [21] and references
therein). If mDMc2 < kBTBH, the DM candidate belongs to the “light” category, otherwise
to the “heavy” one. In this paper, we focus on light DM.

Equation (11) gives the instantaneous spectrum of the particles of type i emitted by a
single BH. The maximum of the energy distribution is at E ∼ kBTBH. For sufficiently light
DM, the ultra-relativistic limit, E ≈ pc > mDMc2, is thus justified. As the BH evaporates,
its temperature increases, and the relativistic limit is satisfied a fortiori. In the relativistic
limit, the instantaneous distribution of emitted momentum, per dof, is

d2N

dt d(cp(t))
(cp(t), TBH(t)) = 1

2π h̄
�s(cp(t), TBH(t))

1

e
cp(t)

kBTBH(t) − (−1)2s
, (18)

where we introduced explicitly the time dependence for the sake of clarity and s is the spin
of DM.

To obtain the number densities (per dof) of the emitted particles, one has to multiply the
above expression by the number density of the BHs nBH(t)

d2n

dt d(cp(t))
(cp(t), TBH(t)) = nBH(t)

d2N

dt d(cp(t))
(cp(t), TBH(t)) . (19)

3.1 Instantaneous distribution: geometrical optics approximation

Using Eq. (18) with the geometrical optics limit, Eq. (12), at a fixed time t , the instantaneous
distribution (per particle dof) has the form

d2N

dt d(cp(t))
(cp(t), TBH(t)) = 1

2π h̄

27

(8π)2

(
cp(t)

kBTBH(t)

)2 1

e
cp(t)

kBTBH(t) − (−1)2s
. (20)

Consider for definiteness the formation time tf . It is useful to introduce the quantity

x(tf ) ≡ cp(tf )

kBTBH
, (21)
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Fig. 1 Left: instantaneous distribution as a function of x(t f ) in the geometrical optics approximation. Right:
the same using the numerical results from BlackHawk

as it allows to get rid of the BH mass dependence. Indeed, the instantaneous distribution
becomes

d2N

dt d(cp(t))
(cp(t), TBH(t))

∣∣∣∣
tf

= 1

2π h̄

27

(8π)2 x(tf )
2 1

ex(tf ) − (−1)2s
. (22)

In the left plot of Fig. 1, we show the instantaneous momentum distribution, as a function of
x(t f ), for bosons (B) and fermions (F), respectively, in the geometrical optics approximation.

3.2 Instantaneous distribution: numerical results from BlackHawk

This has to be confronted with the corresponding numerical results obtained using
BlackHawk [27], which provides the instantaneous momentum distribution at various times,
from formation to evaporation. BlackHawk has been modified to obtain the additional DM
spectra, a modification already highlighted in the manual and which will be incorporated
in a future version of the public code. In particular, greybody factors for the spin 3/2 case
have been computed. For a direct comparison with the geometrical optics approximation,
the distributions in the right panel of Fig. 1 are normalized per particle dof. We can see that
the s = 0 case is quite similar with respect to the geometrical optics limit for the boson,
while the s = 1/2 case is a bit suppressed with respect to the geometrical optics limit for the
fermion. The higher the spin is, the more the distribution is suppressed at low energies, so
that the mean momentum gets higher.

A more precise comparison with the geometrical optics approximation can be established
by studying the ratio of the instantaneous distributions at formation for BlackHawk over
the corresponding geometrical optics limit, as shown in Fig. 2. As is well known (see, for
example, [20] and references therein), the ratio for s = 0 and s = 1/2 at low energy is a
constant, respectively, equal to 16/27 and 2/27; the figure correctly reproduces this low-
energy behaviour.

4 From formation to evaporation

Let us define f (t) ≡ ρBH(t)/ρR(t) ∝ a(t). As time increases, it is then possible that
BHs come to dominate the energy content of the universe before they completely evaporate
[4,16,17]: this situation is referred to as BH domination. The scenario of evaporation before
this happens is referred to as radiation domination.
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Fig. 2 Ratio of the instantaneous
distributions at formation as
given by BlackHawk over the
corresponding geometrical optics
limit

Fig. 3 Left: the solid (red) line is β̄, and the dashed (blue) line separates regions where the change in the
scale factor during BH domination period is smaller (mild) or greater (strong) than the change during the
radiation domination period. Right: g∗(tev) for radiation domination (clearly, this is an approximation by a
step function, while the real function g∗(tev) is a smooth continuous function)

4.1 Radiation versus BH domination

4.1.1 Radiation domination

The BHs evaporate during the radiation epoch if f (tev) � 1. We define β̄ the maximum value
of β corresponding to radiation domination, namely the value of β leading to f (tev) � 1;
this value can be obtained from the following relation

β̄ � f (tf )

f (tev)
= a(tf )

a(tev)
=

(
tf
tev

)1/2

=
(

3 f (MBH)

γ

)1/2 MPl

MBH
, (23)

where we used Eqs. (7) and (16) to obtain the last equality. The value of β̄ as a function of
the BH mass is shown in Fig. 3, taking for definiteness f (MBH) as in the SM and γ = 0.2.
For all the values of β � β̄ (red solid line), the primordial BHs evaporate before they come
to dominate the energy content of the universe and, also in this case, the increase in the scale
factor is

a(tf )

a(tev)
= β̄ . (24)

4.1.2 BH domination

In the case of BH domination, we have instead to consider: first, the radiation dominated
period from the formation time, tf , to the time when BHs start to dominate, tBH, such that
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f (tBH) � 1; and second, the matter dominated period from tBH to tev. The first period is
characterized by the following increase in the scale factor

β � f (tf )

f (tBH)
= a(tf )

a(tBH)
=

(
tf
tBH

)1/2

. (25)

The second period is characterized by

a(tBH)

a(tev)
=

(
tBH

tev

)2/3

=
(

1

β2

tf
tev

)2/3

= 1

β4/3

(
3 f (MBH)

γ

)2/3 (
MPl

MBH

)4/3

=
(

β̄

β

)4/3

.

(26)
Putting together,

a(tf )

a(tev)
= a(tf )

a(tBH)

a(tBH)

a(tev)
= 1

β1/3

(
3 f (MBH)

γ

)2/3 (
MPl

MBH

)4/3

= β̄4/3

β1/3 . (27)

Notice also that the two periods have the same increase in the scale factor, a(tf )
a(tBH)

= a(tBH)
a(tev)

,

if β = β̄4/7, so that tBH = tf/β̄8/7. We can define as mild and strong BH domination the
regions where the increase in the scale factor in the first period is, respectively, larger and
smaller than the second one, as shown in Fig. 3. Notice that in the very strong BH domination
region (close to β ∼ 1) one can neglect the first period of radiation domination, having

a(tf )

a(tev)
=

(
3 f (MBH)

γ

)2/3 (
MPl

MBH

)4/3

∼ β̄4/3 . (28)

4.2 Radiation temperature at evaporation

For radiation domination, combining Eqs. (1) and (2), we have

8πG

3
ρR(tev) = 1

4τ 2 . (29)

Using also Eqs. (4) and (16), we obtain

kBTR(tev) = (3 f (MBH))1/2
(

45

16π3g∗(tev)

)1/4 (
MPl

MBH

)3/2

(MPlc
2) . (30)

The values of g∗(tev) as a function of the BH mass are shown in the right panel of Fig. 3.
For full BH domination, we can grossly assume that all the energy stored in the BH density

goes, after their evaporation, into the radiation energy density of the (SM and possibly beyond
SM) particles emitted by the BHs. These particles rapidly thermalize as soon as they are
emitted, so that ρR(t+ev) ≈ ρBH(t−ev). Combining Eqs. (1) and (3), we have

8πG

3
ρR(t+ev) = 8πG

3
ρBH (t−ev) = 4

9τ 2 . (31)

We then have
T R

R (tev)

TBH
R (t+ev)

=
(

9

16

)1/4

. (32)

For BH domination, the radiation temperature after evaporation gets slightly enhanced with
respect to radiation domination, the difference is about 15%.
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5 Distribution at evaporation

The distribution of DM momentum at evaporation F(cp(tev), tev) is a superposition of all
the instantaneous distributions, each redshifted appropriately from its time of emission tem
(see, for example, Ref. [43])

F(cp(tev), tev) =
∫ tev

tem

dt
d2N

dt d(cp(t))

⎛
⎜⎜⎜⎝cp(tev)

a(tev)

a(t)︸ ︷︷ ︸
cp(t)

, TBH(t)

⎞
⎟⎟⎟⎠

a(tev)

a(t)
. (33)

Notice that tem might be larger than t f if the initial BH temperature is smaller than the particle
mass. Since we are interested in light DM, we have tem = tf .

For radiation domination from formation to evaporation, the ratio of scale factors in
Eq. (33) is

a(tev)

a(t)
=

(
tev

t

)1/2

. (34)

For BH domination, the integral of Eq. (33) should be split into two contributions, corre-
sponding to a first period of radiation domination, and a second of BH domination

F(cp(tev), tev) = FR(cp(tev), tev) + FBH(cp(tev), tev) . (35)

For the second period of BH domination, starting at tBH = tf/β2 and ending at tev, the ratio
of scale factors to be put in the integrand is

a(tev)

a(t)
=

(
tev

t

)2/3

. (36)

For the first period of radiation domination, starting at t f and ending at tBH, the ratio of scale
factors to be put in the integrand is rather

a(tev)

a(t)
= a(tev)

a(tBH)

a(tBH)

a(t)
=

(
tev

tBH

)2/3 (
tBH

t

)1/2

. (37)

For very strong BH domination, the dominant contribution comes from FBH .
In order to get rid of the BH mass dependence, it is useful to define (as suggested by

Lennon et al. in Ref. [5]) the adimensional momentum (notice that it is not the same as in
Eq. (21))

x(tev) ≡ cp(tev)

kBTBH
, (38)

with the related adimensional momentum distribution at evaporation

F̃(x(tev)) ≡ (kBTBH)3

(MPlc2)2 F(cp(tev), tev) . (39)

5.1 Distribution at evaporation: geometrical optics approximation

In the geometrical optics limit of Eq. (20), Eq. (33) becomes

F(cp(tev), tev) = 27

2π h̄

1

(MPlc2)4

∫ tev

tf
dt (MBH(t)c2)2

(cp(tev)
a(tev)
a(t) )2

e
cp(tev)

a(tev)
a(t)

kBTBH(t) − (−1)2s

a(tev)

a(t)
. (40)
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Fig. 4 Left: Solid (dotted) lines: Momentum distribution at evaporation including redshift and assuming
radiation (BH) domination, in the geometrical optics approximation. Right: Solid (dotted) lines: Momen-
tum distribution at evaporation including redshift and assuming radiation (BH) domination, calculated with
BlackHawk, for various spins, and normalized to the number of dof

We derive simplified analytical expressions in the case that f (MBH ) is constant over the
BH lifetime: using Eqs. (10), (16) and (17), we obtain

F(cp(tev), tev) = (cp(tev))
2 9

2π

1

f (MBH)

(MBHc2)5

(MPlc2)8 I (x(tev)) , (41)

where for full radiation domination

IR(x(tev)) =
∫ 1

tf/tev

dy
(1 − y)2/3

y3/2

1

e
x(tev)

(1−y)1/3

y1/2 − (−1)2s

, (42)

while for full BH domination

IBH(x(tev)) =
∫ 1

tf/tev

dy
(1 − y)2/3

y2

1

e
x(tev)

(1−y)1/3

y2/3 − (−1)2s

. (43)

The adimensional momentum distribution at evaporation, Eq. (39), becomes

F̃(x(tev)) = 1

(8π)5

9

2π

1

f (MBH)
x(tev)

2 I (x(tev)) . (44)

We show this quantity in the left panel of Fig. 4 for the two scenarios of radiation domination
with β = β̄ (solid) and for full BH domination (dotted). Notice that the difference between
the two scenarios is quite small. To reproduce the case of radiation domination with a different
value of β, one has just to suppress F̃ by the factor β/β̄. These results agree with the ones
of Lennon et al. [5].

5.2 Distribution at evaporation: numerical results from BlackHawk

The quantity F̃ derived from BlackHawk is shown in the right panel of Fig. 4, assuming
radiation domination with β = β̄ (solid) and full BH domination (dotted). The suppression
due to the different values of the spin is manifest. The case s = 0 is quite similar to the bosonic
case of the geometrical optics limit. For higher spins, the geometrical optics approximation
becomes worse. Again, we can see that the difference between radiation domination with
β = β̄ and full BH domination is quite small.
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6 The DM phase space distribution

We now calculate the DM phase space distribution, as it is the essential ingredient to derive
both the DM abundance and, using the publicly available code CLASS, the transfer function
for structure formation. The DM phase space distribution (psd) per dof, fDM , at time t , is
defined as

fDM(p, t) ≡ 1

gDM

dnDM

d3(cp)
= 1

gDM

1

(cp)2d	

dnDM

d(cp)
, (45)

where gDM is the number of DM dof, nDM is the DM number density (scaling as a−3 from
evaporation time), p is the DM momentum (scaling as a−1) and d	 = 4π is the solid angle.

For DM produced by evaporating BHs, by using Eqs. (19) and (33), we obtain that the psd
at time tev is

fDM (p(tev), tev) d	 = 1

(cp(tev))2 nBH(tev) F(cp(tev), tev) = nBH(tev)
(MPlc2)2

(kBTBH)5

F̃(x(tev))

x(tev)2 ,

(46)
where in the last equality we switched to the adimensional quantity F̃ defined in Eq. (39).
The BH number density at the time of evaporation is related to the one at formation by

nBH(tev) = nBH(tf )

(
a(tf )

a(tev)

)3

. (47)

Recalling the definition of β in Eq. (9), we have

nBH(tf ) = β
ρR(tf )

MBH
= β 3(4πγ )2

(
kBTBH

h̄c

)3

, (48)

where the last equality has been obtained by combining Eq. (5) for the BH mass at the
formation time and the Friedman equation (1). By exploiting the last two equations, we have

(h̄c)3 fDM(p(tev), tev) d	 = β 3(4πγ )2
(
a(tf )

a(tev)

)3
(MPlc2)2

(kBTBH)2

F̃(x(tev))

x(tev)2 . (49)

Using also Eqs. (24) and (28), we finally have1

(h̄c)3 fDM(p(tev), tev) = AR,BH
F̃(x(tev))

x(tev)2 , (50)

1 In order to match our expression with the results of Baldes et al. [22], we define ξ = (MPlc
2)2

(kTBH)2 =
(8π)2

(
MBH
MPl

)2
. Using Eqs. (24) and (28), we obtain that, at the evaporation time

(h̄c)3 fDM(p(tev), tev) d	 = ζR/BH
ξ F̃(x(tev))

x(tev)2 ,

where

ζR = β 3(4π)2γ 1/2 (3 f (MBH))3/2
(

MPl

MBH

)3
, ζBH = 3(4π)2(3 f (MBH))2

(
MPl

MBH

)4
,

which is the same as Eq. (3.8) of Baldes et al. [22], apart from the fact that they have a factor of 4 instead of 3
for BH domination.
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with

AR = β 3(8π)2(4π)γ 1/2 (3 f (MBH))3/2
(

MPl

MBH

)
,

ABH = 3(8π)2(4π) (3 f (MBH))2
(

MPl

MBH

)2

. (51)

In order to proceed further in the calculation of the DM abundance and transfer function,
it is useful to establish a comparison with the well-known case of a thermal DM candidate.

6.1 Psd for thermal DM

An hypothetical thermal DM decoupling a t = td would have the following psd (per dof)

(h̄c)3 f thDM(p(td), td) = 1

(2π)3

1

e
cp(td)

kB TDM(td) − (−1)2s
, (52)

where TDM(td) is the temperature of the DM at decoupling, which for a thermal DM candidate
has to be identified with the temperature of the radiation bath from which it decouples, namely
TDM(td) = TR(td).

At later times, t > td, both p(t) and TDM(t) scale as the inverse of the scale factor. It is
then useful to define the time-independent parameter

q ≡ q(t) = cp(t)

kBTDM(t)
, (53)

and re-express the psd in terms of q

(h̄c)3 f th
DM(q) = 1

(2π)3

1

eq − (−1)2s . (54)

It is also useful to express the DM temperature now, TDM(t0), in units of the photon
temperature now, Tγ (t0) � 2.7 K.

If decoupling happened just before recombination, td = t−r (or more generally when, in
addition to DM, only photons, neutrinos and electrons were relativistic), clearly TDM(t−r ) =
Tν(t−r ) = Tγ (t−r). Because of the successive reheating of the photons at recombination, at

the present time t0 we have TDM(t0) = Tν(t0) = ( 4
11

)1/3
Tγ (t0).

If decoupling happened much earlier, when also other SM particles were relativis-
tic, allowing for a possible entropy non-conservation from decoupling to recombination,
ᾱ(sa3)d = (sa3)r , we have

a(tr)

a(td)
= ᾱ1/3

(
g∗,S(td)

g∗,S(tr)

)1/3 TR(td)

TR(tr)
= ᾱ1/3

(
g∗,S(td)

g∗,S(tr)

)1/3 TR(td)

Tν(tr )
, (55)

where g∗,S(td) = 106.75 for the complete SM, g∗,S(tr) = 10.75 (including photons, neu-
trinos and electrons). The DM temperature instead simply scales as the inverse of the scale
factor

TDM(td)

TDM(tr)
= TR(td)

TDM(tr)
= a(tr)

a(td)
. (56)

Hence, the DM particles do not share the entropy release from the successive annihilations
and their temperature is suppressed at recombination by a factor

TDM(tr)

Tν(tr)
= 1

ᾱ1/3

(
g∗,S(tr)

g∗,S(td)

)1/3

< 1 . (57)
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Since from recombination to now both TDM and Tν scale as the inverse of the scale factor,
the same relation holds today

TDM(t0)

Tν(t0)
= 1

ᾱ1/3

(
g∗,S(tr )

g∗,S(td)

)1/3

< 1 . (58)

Notice that CLASS actually uses the DM temperature now (or rather the temperature of
the radiation bath at decoupling, rescaled to its value now) in units of the photon temperature
now. For an early decoupled particle, then

TDM (t0)

Tγ (t0)
= TDM(t0)

Tν(t0)

Tν(t0)

Tγ (t0)
= 1

ᾱ1/3

(
g∗,S(tr )

g∗,S(td)

)1/3

︸ ︷︷ ︸
0.465

(
4

11

)1/3

︸ ︷︷ ︸
0.714

≈ 0.332 , (59)

where for the last approximation we used ᾱ = 1, g∗,S(td) = 106.75 and g∗,S(tr) = 10.75.

6.2 Psd for BHs as a function of q

DM particles from BHs were never in thermal equilibrium. Nevertheless, we can imagine
to deal with their distribution as they were “decoupling” at tev, so that they would have the
decoupling temperature TDM(tev) = TR(t+ev), which has already been derived, see Eqs. (30)
and (32).

The time-independent quantity q , defined in Eq. (53), is thus

q = cp(tev)

kBTDM(tev)
= cp(tev)

kBTR(t+ev)
= TBH

TR(t+ev)

cp(tev)

kBTBH
≡ α x(tev) , (60)

where, for radiation domination

αR = 1

8π

1

(3 f (MBH))1/2

(
16π3g∗(tev)

45

)1/4 (
MBH

MPl

)1/2

, (61)

while, according to Eq. (32), for BH domination αBH = (9/16)1/4αR .
In terms of q , the psd of Eq. (50) then becomes2

(h̄c)3 fDM(q) = AR,BH
F̃(q/α)

(q/α)2 (62)

with AR,BH given by Eq. (51). Since the evaporation process happens at early times, Eq. (59)
applies also in this case, with the substitution g∗,S(td) → g∗,S(tev).

In the right panel of Fig. 5, we show the psd obtained from BlackHawk, taking MBH = 1
g, for radiation domination with β̄ (solid) and full BH domination (dashed). For radiation
domination with other values of β, the psd has to be suppressed by a factor β/β̄. This
has to be directly compared with the same situation, calculated in the geometrical optics
approximation, as shown in the left panel. The suppression in the psd associated with higher
spins is manifest. In the left panel we also show the thermal distribution (54) with one dof,
gi = 1. It is clear that the spectrum of particles emitted by a 1 g BH is much harder than the
thermal one.

2 For comparison with the previous literature, notice that Baldes et al. [22] assume TDM(tev) = TBH , so that

qB ≡ x(tev) = cp(tev)

kBTBH
.
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Fig. 5 Phase space distributions for MBH = 1 g. Left: R domination with β = β̄ (solid) and full BH
domination (dashed) with MBH = 1 g, in the geometrical optics approximation. Also shown is the thermal
psd with gi = 1. Right: psd for R domination with β = β̄ (solid) and full BH domination (dashed) with
MBH = 1 g, calculated with BlackHawk

The psd for other values of the BH masses can be easily reconstructed in the following
way. If for MBH = 1 g the peak is at about log10 q ∼ 3, in general it is at log10 q ∼
3 + log10(

MBH
1 g )1/2. In addition, the psd gets suppressed by the factor (

1 g
MBH

)1/2.

7 Dark Matter abundance

The present abundance of a stable DM particle produced by evaporation is directly related
to the number-to-entropy density of such particles, YDM(t0) = nDM(t0)/s(t0),

	DM = ρDM(t0)

ρc
= mDM

ρc

nDM (t0)

s(t0)
s(t0) , (63)

where ρc = 1.88×10−26h2 kg/m3, h being the dimensionless Hubble parameter. Accounting
for a possible entropy non-conservation from evaporation to now, namely ᾱ(sa3)ev = (sa3)0,
we have YDM(t0) = YDM (tev)/ᾱ. Hence,

	DM = mDM

ρc
nDM(tev)

s(t0)

ᾱ s(tev)
= mDM

ρc
nDM(tev)

(
a(tev)

a(t0)

)3

. (64)

The DM number density at evaporation can be calculated by integrating over all momenta
the DM spectrum at evaporation. Using the definition of the psd given in Eq. (45), we have

nDM (tev) =
∫

d3(cp)
dnDM

d3(cp)

∣∣∣∣
tev

=
∫

d3(cp) gDM fDM (p(tev), tev)

= (kBTDM (tev))
3
∫

dq 4π q2 gDM fDM (q)

= (kBTDM (t0))
3
(
a(t0)

a(tev)

)3 ∫
dq 4πq2 gDM fDM (q) , (65)

where in the second-to-last equality we changed the integration variable to q using Eq. (60),
and in the last one, we exploited the fact that TDM(tev) scales as the inverse of the scale factor.

Inserting the last result in Eq. (64), the DM abundance is simply given by

	DM = mDM

ρc
(kBTDM(t0))

3
∫

dq 4π q2 gDM fDM(q) , (66)
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Table 1 Values of m̄BH and m̄R , calculated: in the geometrical optics approximation, for B and F; from
BlackHawk, with increasing values of the spin

B F s = 0 s = 1/2 s = 1 s = 3/2 s = 2

m̄BH c2/MeV 0.114 0.076 0.112 0.155 0.344 2.28 2.59

m̄Rc
2/MeV 0.086 0.057 0.084 0.116 0.259 1.71 1.94

Numerical errors are of order of a few percent

where TDM(t0) is given by Eq. (59) in units of Tγ (t0).

7.1 DM from primordial BHs

Assuming that the DM is fully given by a stable DM candidate from the BH evaporation, we
now calculate the required value for its mass. Our analysis is, to our knowledge, the first that
accounts for the differences due to the spin of the DM candidate.

For comparison, we exploit both the analytical results for the psd obtained in the geo-
metrical optics limit and the numerical ones obtained using BlackHawk. As for the dof,
we consider those of the SM, with the addition of the DM candidate ones. For the DM dof
we make a minimal choice, considering just those associated with polarization. For the geo-
metrical optics approximation, we consider a boson B with gDM = 1 and a fermion F with
gDM = 2. For BlackHawk, we consider massive DM particles with gDM = 1, 2, 3, 4, 5 for
s = 0, 1/2, 1, 3/2, 2, respectively.

For MBH � 107 g, we obtain the following results: for full BH domination

mDMc2 = ᾱ
	DM

0.25

0.1(
g∗,S(tr )
g∗,S(tev)

)
(
MBH

1 g

)1/2

m̄BHc
2 , (67)

while for radiation domination

mDMc2 = ᾱ
	DM

0.25

0.1(
g∗,S(tr )
g∗,S(tev)

)
(
MBH

1 g

)1/2
β̄

β
m̄Rc

2 , (68)

where the values of m̄BH,R are collected in Table 1.
The scaling with the BH mass of Eqs. (67) and (68) slightly breaks at MBH � 107 g, where

one obtains smaller values for m̄BH/R , as an effect of the decrease of g∗(tev), see Fig. 3. For
instance, for MBH = 108(109) g, the suppression in m̄BH/R is by a factor of 0.74(0.56).

As expected, the result for s = 0 from BlackHawk is consistent with the geometrical
optics limit for a boson. It then perfectly matches with previous literature results obtained with
the alternative strategy based on the geometrical optics approximation (see, for example, [21]
and references therein), which we report in Fig. 6 (taken form [21]) for an easy visualization.
The masses m̄BH and m̄R are really close in the geometrical optics limit for the bosonic
case and for the spin 0 numerical result, the last being slightly lower than the previous. This
difference depends on the precise shape of the peak in the psd. For other spins, the suppression
of the psd compared to geometrical optics limit causes a clear increase of the masses m̄BH/R

compared to this limit.
Notice that for radiation domination with β = β̄, the values of m̄BH/R are systematically

smaller by a factor of about 0.75 with respect to BH domination. Such difference could not be
appreciated within the alternative strategy used in the previous literature, as the latter method
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Fig. 6 Isocountours of
Log10 (mDMc2[GeV]) for a
boson within the geometrical
optics approximation, with
regions of BH and radiation
domination. From [21]

does not make any difference between the two scenarios. This discrepancy is indeed due to
the difference of the ratio of the scale factors in the integrands, not to the slight difference in
TR(tev) which was already included in the previous literature.

The strong increase in the masses for increasing values of the spin allows to hope to escape
bounds from structure formation. In the following section, we will study in detail the impact
on structure formation of these warm DM candidates, assuming entropy conservation, ᾱ = 1.
Before doing this, and in view of the comparison to be done in the next section, it is useful
to recall the relevant formulas for the DM abundance for a thermal DM candidate.

7.2 DM from early decoupled thermal relics

We consider a fermion X , with gX = 2, as thermal DM candidate. It is well known that (see,
for example, [18]), if decoupling happens just before reheating, so that TX(t0)/Tν(t0) = 1,
the value of the DM mass for which 	X = 0.25, would be mXc2 = 11 eV; for an early
decoupling, when g∗,S(td) = 106.75, the temperature of the DM candidate now is suppressed,
(TX (t0)/Tν(t0))3 = g∗,S(tr )/g∗,S(td)/ᾱ = 0.1/ᾱ, so that its mass gets enhanced to mXc2 =
110 eV for ᾱ = 1.

We can summarize as follows

	X = 0.25

(
TX (t0)

Tν(t0)

)3 mXc2

11 eV
= 0.25

1

ᾱ

(
g∗,S(tr )
g∗,S(td )

)
0.1

mXc2

110 eV
, (69)

or, for a direct comparison with the case of DM from evaporating BHs,

mXc
2 = ᾱ

	X

0.25

0.1(
g∗,S(tr )
g∗,S(td )

) 110 eV . (70)

Notice that for mXc2 = 3(10) keV, ᾱ = 1 and 	X = 0.25, decoupling would happen
when g∗,S(tr )/g∗,S(td) = 3.6(1.1) × 10−3, namely g∗,S(td) ≈ 2900(9800), hence much
larger than in the SM.
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8 Constraints from structure formation

Candidates of DM particles are classified according to their velocity dispersion, which defines
a free-streaming length. On scales smaller than the free-streaming length, fluctuations in the
DM density are erased and gravitational clustering is suppressed.

The velocity dispersion of cold DM (CDM) particles is by definition so small that the
corresponding free-streaming length is irrelevant for cosmological structure formation. That
of hot DM, e.g. ordinary light neutrinos, is only one or two orders of magnitude smaller than
the speed of light and smoothes out fluctuations in the total matter density even on galaxy
cluster scales, which leads to strong bounds on their mass and density. Between these two
limits, there exists an intermediate range of DM candidates generically called warm DM
(WDM).

The matter power spectrum P(k) is very sensitive to the presence of warm DM particles
with large free-streaming lengths. Due to their free-streaming velocity, warm DM particles
slow down the growth of structure and suppress P(k) on scales smaller than their free-
streaming scale. The effect of the free-streaming on the matter distribution can be described
by a relative “transfer function”

T (k) =
(
P(k)
WDM

P(k)
CDM

)1/2

, (71)

which is the square root of the ratio of the matter power spectrum in the presence of warm
DM to that in the presence of purely cold DM, for fixed cosmological parameters.

For the majority of the cosmological models in which the universe contains only warm
DM (in addition to the usual baryon, radiation and cosmological constant components), the
transfer function can be approximated by the analytical fitting function (see, for example,
[44])

T (k) = (
1 + (αBk)

ν
)γ

, (72)

where αB (labelling the scale of the break), and ν and γ are free parameters sensitive to the
details of the warm DM candidate. For pure warm DM models, the combined data on the
CMB and the Lyman-α forest [18] provide a lower bound on the scale where the transfer
function starts to fall. This lower limit was estimated in [18] to be αB � 0.11 Mpc/h at the
2σ confidence level.

A well-known case is the one of thermal relics3 as warm DM. In such a case, Eq. (72)
simplifies into (see, for example, [45])

TX (k) = (
1 + (αBk)

2ν
)−5/ν

, (73)

where αB is a function of the thermal relic mass and temperature, and the index ν is fixed
(ν = 1.12).

The bound on αB derived in the pioneering analysis of [18], translated into a lower bound
on the thermal relic mass, gives mXc2 � 0.5 keV. A more recent analysis [46] showed that
the lower limit is now mXc2 � 3 keV.

Standard thermal relics (those with mass mXc2 = 11 eV) are completely ruled out, as
well as early decoupled ones (those with g∗(td) = 106.75), with mass mXc2 = 110 eV. Only
very early decoupled thermal relics could manage to be as heavy as 3 keV: this would require
a huge amount of dof at decoupling. We show the transfer function for such early and very
early decoupled thermal relics in Fig. 7.

3 There exist, however, many other warm DM candidates whose origin is rooted in particle physics, e.g. the
gravitino.
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Fig. 7 Squared transfer function for various warm DM models providing full DM contribution, computed
with CLASS. In all the cases, we have used the same (default) cosmological parameters. Black: early decoupled
thermal fermion (gX = 2), with mass mXc

2 = 110 eV; Pink: very early decoupled thermal fermion (gX = 2),
with mass mXc

2 = 3 keV. Top left: massive boson (s = 0) and fermion (s = 1/2) from the evaporation of
primordial BHs, for radiation domination with β = β̄ (solid lines), and for full BH domination (dashed lines),
using the psd calculated with the geometrical optics approximation. Top right: the same as top left panel for
massive spin s = 0, 1/2, 1, 3/2, 2 particles using the psd calculated with BlackHawk. Bottom: s = 0 warm
DM candidate from BH evaporation with radiation domination, for various values of β/β̄

Using the psd’s obtained with BlackHawk (taking the dof of the SM plus those of
the DM candidate), for various values of MBH and of the DM particle spin, we calculated
with CLASS the associated transfer function, requiring that the DM from the evaporation of
primordial BHs accounts for all of the observed DM (	DM = 0.25). We also require that
entropy is conserved, ᾱ = 1. By fixing the BH mass and the DM spin, the mass of the warm
DM candidate is univoquely determined, as shown by Eqs. (67) and (68).

We show the transfer functions in Fig. 7. The top panels applies to the case of full BH
domination (dashed lines) and the case of radiation domination with β = β̄ (solid lines):
these scenarios give quite similar results. Notice that the transfer functions of Fig. 7 actually
apply to all values4 of the BH masses in the range 10−5 −107 g, for which the corresponding
values of the mass providing 	DM = 0.25 is given by Eqs. (67) and (68), according to the
spin. It turns out that, even for the higher spins, there is a conflict with the constraints from
structure formation (at contrary with the expectations of Ref. [5]).

For BHs with masses in the range 107–109 g, the situation is even worse, because the
parameter m̄R/BH is smaller and the ratio TDM(t0)/Tγ (t0) is larger than in the previous case,
being proportional to 1/g∗,S(tev)1/3.

4 The figure of Baldes et al. [22] and their Eq. (5.8) then look at least misleading, as the BH mass, 	DM and
the DM mass are not independent.
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Fig. 8 Squared transfer function
for mixed warm–cold DM
models computed with the same
cosmological parameters and
candidates as Fig. 7, top right
panel, for two different spin
particles and radiation
domination with β = β̄. Solid
lines: 	WDM = 	DM,total,
dashed lines:
	WDM = 1/10 	DM,total, dot
dashed lines:
	WDM = 1/100 	DM,total

The only possibility left is then radiation domination with a sufficiently small value of β. In
the bottom panel of Fig. 7, we consider radiation domination with increasingly smaller values
of β. In particular, focusing on the s = 0 case, we consider the transfer function with β = β̄

(solid) and compare it with the ones (dot dashed) obtained taking β/β̄ = 1/10, 1/30, 1/100.
We can see that the upper limit on β/β̄ is about 1/100: this confirms previous estimates
[4,21] based on a simplified method. The region to be excluded in Fig. 6 is thus the same as
derived in [21].

For the different values of the spin, s = 0, 1/2, 1, 3/2, 2, by fitting the right and bottom
panels of Fig. 7 with Eq. (72), we can derive a general formula for αB ,

αB �
(

β

β̄

)0.8

(0.95, 0.85, 0.51, 0.14, 0.13)
Mpc

h
. (74)

Since for the transfer function associated with the 3 keV thermal relic one has αB � 0.03 Mpc
h ,

we can derive an upper limit on β/β̄. From Eq. (74), for the different values of the spin,
s = 0, 1/2, 1, 3/2, 2, the maximum value of β that allows to satisfy the bounds from structure
formation turns out to be

β

β̄
� (0.013, 0.015, 0.029, 0.15, 0.16) . (75)

Our result for the spin 1/2 case agrees with Baldes et al. (Eq. (6.1) of Ref. [22]), where they
obtained β < 0.016βc, with their βc being our β̄.

One might also be interested in mixed scenarios with the simultaneous presence of both
cold and warm DM, with the warm candidate coming from the evaporation of primordial
BHs accounting only partially for the full DM. For the case of thermal relics, it has been
shown (see, for example, [18]) that in mixed models small-scale structures are not completely
erased below αB and the free-streaming effect leads to a step-like transfer function, with the
standard 
CDM matter power spectrum recovered in the limit 	WDM → 0. However, in
such models the scale of the break αB becomes larger than pure warm DM models, increasing
with the inverse of the mass of the DM candidate. We have verified that the same scenario
arises with candidates coming from the evaporation of primordial BHs, see, for example,
Fig. 8. In such a case, the mass of the warm candidate drops as we reduce its abundance,
according to Eq. (66).
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9 Discussion and conclusions

We improved previous analyses of the constraints on warm DM from primordial BHs evap-
oration [4,5,21,22], by taking into account the effect of the DM spin by means of the code
BlackHawk [27]. Assuming that this kind of warm DM provides the full contribution to the
observed DM, we calculated the associated transfer function by means of the code CLASS
[24–26].

Contrary to expectations based on [5], it turns out that, for BH domination, such candidates
are excluded for all spin values from 0 to 2, in the whole primordial BH mass range 10−5–109

g. Only radiation domination is allowed, if the values β are smaller than indicated in Eq. (75),
according to the warm DM spin.

A couple of possibilities to evade the previous conclusions should be mentioned, which
rely on the introduction of additional particles or fields. As suggested in [4], some mechanism
providing entropy non-conservation and taking place after the evaporation of primordial BHs
(e.g. moduli decay) might succeed in saving the warm DM candidates with BH domination.
Another possibility to evade the bound would be to have a huge increase in the dof at
evaporation. This is not possible to be studied within the present version of the BlackHawk
code, but since analytically it is known that 	X ∝ 1/ f (MBH )1/2 (see, for example, [21]),
the required increase in the Page function f (MBH ) would be really huge: a factor of about
104 for s = 0, 1/2.

While the effect of accretion does not help [21], it is plausible that the primordial BHs
spin (Kerr case) might help. Primordial BHs are usually thought to form during a radiation
dominated era and thus to have really small spin. However, if formed during a transient matter
dominated era, they could have sizeable to near extremal spin [47]. The Hawking radiation
yield of high spin particles is greatly enhanced by the coupling with the BH spin. Hence,
with the same initial density of primordial BHs, a greater fraction of their initial mass could
be emitted as high spin warm DM particles.

In this work, we considered non-interacting DM from primordial BHs evaporation. Inter-
estingly enough, allowing for self-interacting DM offers the possibility to escape the structure
formation bound in the light case for BH domination [48]. Thermalization in the DM sector
indeed decreases the mean DM kinetic energy and, together with number-changing processes,
can have a strong impact, in particular enhancing the DM relic abundance by several orders
of magnitude.
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